$$
\begin{aligned}
& \mathbb{F}_{p} \subset \mathbb{F}_{p^{n}}=\frac{z}{z^{p^{n}}=z} \\
& m \prec n \Longrightarrow \mathbb{F}_{p^{m}}=\frac{z}{z^{p^{m}}=z} \sqsubset \mathbb{F}_{p^{n}}=\frac{z}{z^{p^{n}}=z} \\
& z^{p^{m}}=z \Longrightarrow z^{p^{m d}}=z \\
& z^{p^{m(d+1)}}=z^{p^{m d+m}}=z^{p^{m d} p^{m}}=\left(z^{p^{m d}}\right)^{p^{m}} \overline{\overline{\text { Ind }}} z^{p^{m}} \overline{\overline{\text { Vor }}} z \\
& \mathrm{C}_{\mathbb{F}_{p}} \left\lvert\, \mathbb{F}_{p^{m}}=\frac{z \mapsto z^{p^{r}}}{r \in \gamma_{2}}=()^{p^{\text {ha }}}\right. \\
& n=m q+r: \quad r \in \text { 友 } \\
& z^{p^{m}}=z \Rightarrow z^{p^{n}}=z^{p^{m q}+r}=z^{p^{m q q^{r}}}=\left(z^{p^{m q}}\right)^{p^{r}}=z^{p^{r}} \\
& \mathrm{C}_{\mathbb{F}_{p}} \mid \mathbb{F}_{p^{\infty}}=\lim _{m}()^{p^{m a}}
\end{aligned}
$$

