$$
\begin{aligned}
& \mathcal{J}\left(\mathbb{R}^{4}\right)=\mathbb{P}\left(\mathbb{C}^{2}\right)=\frac{{ }^{2} \mathbb{C}_{2}^{U}}{\mathbb{C}^{U} \times \mathbb{C}^{U}} \\
& \operatorname{Tw}(M)=\mathbb{R}^{4} \Delta \underset{M}{\times} \times \mathcal{J}\left(\mathbb{R}^{4}\right)
\end{aligned}
$$

Atiyah-Hitchin-Singer $\mathrm{Tw}(M)$ komplex $\Leftrightarrow M$ self-dual Nijenhuis Tw $(M)=$ Weyl_( $M$ )

$$
\operatorname{Tw}\left(\mathbb{R}^{4}\right)=\mathbb{R}^{4} \times \mathbb{P}\left(\mathbb{C}^{2}\right)
$$

$$
\begin{gathered}
\operatorname{Tw}\left(\mathbb{S}_{4}\right)={ }^{4} \mathbb{R}_{4}^{U} \times \mathbb{P}\left(\mathbb{C}^{2}\right)=\mathbb{P}\left(\mathbb{C}^{3}\right)=\frac{{ }^{3} \mathbb{C}_{3}^{U}}{{ }^{2} \mathbb{C}_{2}^{U} \times \mathbb{C}^{U}} \\
\operatorname{Tw}\left(\mathbb{P}\left(\mathbb{C}^{3}\right)\right)=\mathbb{G}_{1: 2}\left(\mathbb{C}^{3}\right)=\frac{{ }^{3} \mathbb{C}_{3}^{U}}{\mathbb{C}^{U} \times \mathbb{C}^{U} \times \mathbb{C}^{U}}
\end{gathered}
$$

