$$
\begin{gathered}
Z=X \times Y \times V=U \times V \\
Z_{\mathbb{C}}=U_{\mathbb{C}} \times V_{\mathbb{C}} \\
r_{\mathbb{C}}=\operatorname{rank} U_{\mathbb{C}}= \begin{cases}r & A B D \\
2 r & C \mid B C\end{cases} \\
Z_{>}=\frac{u: v \in U \times V}{u+u^{*}-2 v v^{*} \in X_{>}} \\
U
\end{gathered}
$$

$$
\begin{gathered}
u_{\mathbb{C}}: v_{\mathbb{C}} \in Z_{\mathbb{C}} \Rightarrow u_{\mathbb{C}}+\widetilde{u}_{\mathbb{C}}^{*}-2 v_{\mathbb{C}} \widetilde{v}_{\mathbb{C}}^{*} \in X_{>}^{\mathbb{C}} \\
u_{\mathbb{C}}+\widetilde{u}_{\mathbb{C}}^{*}-2 v_{\mathbb{C}} \widetilde{v}_{\mathbb{C}}^{*} \in X^{\mathbb{C}} \sqsubset U_{\mathbb{C}} \\
\Re_{\mathbb{C}}\left(u_{\mathbb{C}}+\widetilde{u}_{\mathbb{C}}^{*}-2 v_{\mathbb{C}} \widetilde{v}_{\mathbb{C}}^{*}\right)=u_{\mathbb{C}}+\widetilde{u}_{\mathbb{C}}^{*}-2 v_{\mathbb{C}} \widetilde{v}_{\mathbb{C}}^{*}+u_{\mathbb{C}}^{*}+\widetilde{u}_{\mathbb{C}}-2 \widetilde{v}_{\mathbb{C}} v_{\mathbb{C}}^{*} \\
\underbrace{u_{\mathbb{C}}+u_{\mathbb{C}}^{*}-2 v_{\mathbb{C}} v_{\mathbb{C}}^{*}}_{\in X_{\mathbb{C}}^{>}}+\underbrace{\widetilde{u}_{\mathbb{C}}+\widetilde{u}_{\mathbb{C}}^{*}-2 \widetilde{v}_{\mathbb{C}} \widetilde{v}_{\mathbb{C}}^{*}}_{\in X_{\mathbb{C}}^{>}}+2 \underbrace{v_{\mathbb{C}}-\widetilde{v}_{\mathbb{C}} v_{\mathbb{C}}{ }^{*} \widetilde{v}_{\mathbb{C}}}_{\mathbb{C}} \in X_{\mathbb{C}}^{>} \cap X^{\mathbb{C}}=X_{>}
\end{gathered}
$$

