$$
\begin{gathered}
K_{G}^{*}(\cdot)=R(G) \\
R(G) \xrightarrow{\text { char }} \mathcal{C}(G)^{G} \text { conj-inv } \\
R(T) \xrightarrow{\text { char }} \mathcal{C}(T)^{W} \text { Weyl-inv } \\
R(H) \longrightarrow K_{G}(G / H) \\
V \in R(H) \Longrightarrow G \times_{H} V \in K_{G}(G / H) \\
W \in K_{G}(G / H) \Longrightarrow \text { fibre } W_{H} \in R(H) \\
\text { Borel-Weil-Bott } \\
G / T \xrightarrow[\longrightarrow]{\pi} T / T \Longrightarrow R(T)=K_{G}(G / T) \xrightarrow{\pi_{*}} K_{G}(T / T)=R(G) \\
V_{\lambda} \mathbf{\nabla} \mathcal{S}_{+}-\mathcal{S}_{-}=\sum_{w}^{W} \underline{w}_{w(\lambda+\delta)-\delta} \in R(T)
\end{gathered}
$$

