$$
\begin{aligned}
& \text { IIA }=\lim _{1_{\mathbb{R}}^{0} \leadsto 0} M / 1_{\mathbb{R}}^{0} \\
& \text { IIA coupling }=\widehat{1_{\mathbb{R}}^{0}} \\
& 1_{\mathbb{C}}^{0}=\stackrel{\text { size }}{1_{\mathbb{C}}^{0}} \underset{\text { shape }}{1_{\mathbb{C}}^{0}} \\
& \mathrm{M} / 1_{\mathbb{C}}^{0}=\mathrm{M} / 2_{\mathbb{R}}^{0} \sim \operatorname{IIA} / 1_{\mathbb{R}}^{0} \sim \operatorname{IIB} / 1_{\mathbb{R}}^{10} \\
& \text { IIB }=\lim _{1_{\mathbb{C}}^{0} \leadsto 0} F / 1_{\mathbb{C}}^{0} \\
& \text { IIB coupling }={\underset{\mathbb{C}}{0}}_{0} \text { complex structure } \\
& \text { Kahler cone }\left.3_{\mathbb{C}}^{0}\right|_{\mathbb{C}} ^{1: 1} \ni J \\
& \operatorname{size} \int_{1_{\mathbb{C}}} J \\
& \text { ell size } \int_{1_{C}^{0}} J \backsim 0 \text { Kahler cone boundary }
\end{aligned}
$$

