\mathbb{R} basis ${ }^{n} \mathbb{C} \stackrel{\Gamma}{\text { inj }}{ }^{2 n} \mathbb{R} \Leftrightarrow\left[\begin{array}{l}\Gamma \\ \bar{\Gamma}\end{array}\right] \in{ }^{2 n} \mathbb{C}_{2 n}^{\mathrm{C}}$ inv

$$
\begin{aligned}
& \left.\left.\Rightarrow: \quad J \in{ }^{2 n} \mathbb{C}: \quad\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
\Gamma \\
\bar{\Gamma}
\end{array}\right] \downharpoonleft=\left[\begin{array}{l}
\Gamma\lrcorner \\
\bar{\Gamma}\rfloor
\end{array}\right] \Rightarrow \Gamma\right\rfloor=0=\bar{\Gamma}\right\rfloor
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow ل=\frac{\rfloor+\bar{J}}{2}+\frac{i \downarrow-\bar{\jmath}}{2 i}=0 \\
& \left.\Leftarrow: \quad J \in{ }^{2 n} \mathbb{R}: \quad \Gamma\right\rfloor=0 \\
& \left.\Rightarrow \bar{\Gamma}\rfloor=\bar{\Gamma} \bar{\jmath}=\bar{\Gamma}=0 \Rightarrow\left[\begin{array}{l}
\Gamma \\
\bar{\Gamma}
\end{array}\right] \downharpoonleft=\left[\begin{array}{l}
\Gamma\rfloor \\
\bar{\Gamma}\rfloor
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow\right\rfloor=0
\end{aligned}
$$

