unit alg $\mathbb{C} \triangle \ni \mathbb{\mathbb { C }} \nabla_{\epsilon}^{2} \mathbb{C}_{2}=\mathbb{C} \frac{E_{+}=E: E_{-}=F: q^{h}}{E F-F E=E_{+} * E_{-}=\frac{q^{h}-q^{-h}}{q-q^{-1}}: \quad q^{h} E q^{-h}=q^{2} E: \quad q^{h} F q^{-h}=q^{-2} F}$ relations

$$
\mathbb{C} \nabla_{\epsilon}^{2} \mathbb{C}_{2} \xrightarrow[\text { antipode }]{S} \mathbb{C} \nabla_{\epsilon}^{2} \mathbb{C}_{2}
$$

$$
\left\{\begin{array} { l l }
{ S E } & { = - q E } \\
{ S F } & { = - q ^ { - 1 } F } \\
{ S K } & { = K ^ { - 1 } }
\end{array} \left\{\begin{array}{ll}
S E_{ \pm} & =-q^{ \pm} E_{ \pm} \\
S q^{h} & =q^{-h}
\end{array}\right.\right.
$$

$$
\text { Majid Ueno SchmII } \begin{cases}K E=q E K & K F=q^{-1} F K \\ E \neq F & =\frac{K^{2}-K^{-2}}{q-q^{-1}} \\ \Delta E=E \mathbf{\Sigma} K+K^{-1} \mathbf{\Sigma} E & \Delta F=F \mathbf{\Sigma} K+K^{-1} \mathbf{\Sigma} F \\ S E=-q E & S F=-q^{-1} F\end{cases}
$$

$$
\begin{aligned}
& q^{h}=\begin{array}{c|c}
q & 0 \\
\hline 0 & q^{-1}
\end{array} \\
& E F-F E=E_{+} * E_{-}=\frac{q^{h}-q^{-h}}{q-q^{-1}} \\
& \begin{cases}q^{h} E q^{-h} & =q^{2} E \\
q^{h} F q^{-h} & =q^{-2} F \\
q^{h} E_{ \pm} q^{-h} & =q^{ \pm 2} E_{ \pm}\end{cases} \\
& \mathbb{\mathbb { N }} \nabla_{\epsilon}^{2} \mathbb{C}_{2} \mathbf{z} \mathbb{\mathbb { A }} \nabla_{\in}^{2} \mathbb{C}_{2} \stackrel{\Delta}{\mathbb{A}} \mathbb{C}_{\mathcal{E}}^{2} \mathbb{C}_{2} \\
& K=q^{h / 2} \\
& \Delta E^{ \pm}=E_{ \pm} \mathbf{Z} q^{h / 2}+q^{-h / 2} \mathbf{z} E_{ \pm} \\
& \Delta q^{h}=q^{h} \mathbf{\Sigma} q^{h} \\
& \Delta E=E \mathbf{\Sigma} K+K^{-1} \mathbf{z} E \\
& \Delta F=F \mathbf{\Sigma} K+K^{-1} \mathbf{\Sigma} F \\
& \Delta K=K \mathbf{Z} K
\end{aligned}
$$

$$
\begin{gathered}
\text { Kassel Shari SchmI } \begin{cases}\mathbb{K} \mathbb{E}=q^{2} \mathbb{E} \mathbb{K} & \mathbb{K} \mathbb{F}=q^{-2} \mathbb{F} \mathbb{K} \\
\mathbb{E} * \mathbb{F} & =\frac{\mathbb{K}-\mathbb{K}^{-1}}{q-q^{-1}} \\
\Delta \mathbb{E}=\mathbb{E} \mathbf{Z} \mathbb{K}+\mathbb{I} \mathbb{E} & \Delta \mathbb{F}=\mathbb{F} \mathbb{I}+\mathbb{K}^{-1} \mathbf{Z} \\
S \mathbb{E}=-\mathbb{E} \mathbb{K}^{-1} & S \mathbb{F}=-\mathbb{K} \mathbb{F}\end{cases} \\
\text { Zhang } \begin{cases}\mathcal{K} \mathcal{E}=q^{2} \mathcal{E} \mathcal{K} & \mathcal{K} \mathcal{F}=q^{-2} \mathcal{F} \mathcal{K} \\
\mathcal{E} * \mathcal{F} & =\frac{\mathcal{K}-\mathcal{K}^{-1}}{q-q^{-1}} \\
\Delta \mathcal{E}=\mathcal{E} \mathbf{Z} \mathcal{I}+\mathcal{K} \mathbf{Z} \mathcal{E} & \Delta \mathcal{F}=\mathcal{F} \mathbf{Z} \mathcal{K}^{-1}+\mathcal{I} \mathbf{Z} \mathcal{F} \\
S \mathcal{E}=-\mathcal{K}^{-1} \mathcal{E} & S \mathcal{F}=-\mathcal{F} \mathcal{K}\end{cases} \\
\left\{\begin{array}{l}
\mathbb{E}=E K=\mathcal{F} \\
\mathbb{F}=K^{-1} F=\mathcal{E} \\
\mathbb{K}=K^{2}=\mathcal{K}^{-1}
\end{array}\right.
\end{gathered}
$$

