$$
\begin{aligned}
& \beta_{1}-\beta_{0} \notin \mathbb{N} \\
& \left.2 x^{2} \underline{\imath}+\underline{1-x}^{1-\eta}-2\right\urcorner=0 \begin{cases}\eta_{0}=1+2 x+\frac{1}{3} x^{2} & \beta_{0}=0 \\
\eta_{1}=3 x^{1 / 2} \sum_{n}^{\mathbb{N}} \frac{(-x / 2)^{\chi 2}}{(2 n-3)(2 n-1)(2 n+1)} & \beta_{1}=1 / 2\end{cases} \\
& 4 x^{2} \underline{\imath}+4 x \underline{\imath}+\underbrace{4 x^{2}-1}\urcorner=0 \begin{cases}\bigcap_{0}=\sin x^{-1 / 2} & \beta_{0}= \\
१_{1}=\cos x^{-1 / 2} & \beta_{1}=\end{cases} \\
& \left.4 x^{2} \supseteq+4 x \underline{\underline{\imath}}-\underline{4 x^{2}+1}\right\urcorner=0 \begin{cases}\bigcap_{0}=\sinh x^{-1 / 2} & \beta_{0}= \\
\bigcap_{1}=\cosh x^{-1 / 2} & \beta_{1}=\end{cases} \\
& 2 x \underbrace{x+1} \underline{\imath}+3 \underbrace{x+1}\urcorner-\urcorner=0 \begin{cases}\eta_{0}=\sum_{n}^{\mathbb{N}} \frac{(-x)^{n}}{(1-2 n)(1+2 n)} & \beta_{0}= \\
१_{1}=x^{-1 / 2}+x^{1 / 2} & \beta_{1}=\end{cases} \\
& 4 x \supseteq+3 \underline{\imath}+3\urcorner=0 \begin{cases}\eta_{0}=x^{1 / 4} \sum_{n}^{\mathbb{N}} \frac{(-3 x / 4)^{\chi_{2}}}{(5 / 4)_{n}} & \beta_{0}= \\
\eta_{1}=\sum_{n}^{\mathbb{N}} \frac{(-3 x / 4)^{\chi_{2}}}{(3 / 4)_{n}} & \beta_{1}=\end{cases} \\
& 2 x^{2} \underbrace{1-x} \underline{\varrho}-x \underbrace{1+7 x} \underline{\imath}+\urcorner=0 \begin{cases}\Upsilon_{0}=\frac{1}{15} \sum_{n}^{\mathbb{N}} x^{n+1}(2 n+3)(2 n+5) & \beta_{0}= \\
\Upsilon_{1}=\frac{1}{2} \sum_{n}^{\mathbb{N}} x^{n+1 / 2}(n+1)(n+2) & \beta_{1}=\end{cases} \\
& 2 x \underline{\imath}+5 \underline{1-2 x} \underline{\imath}-5\urcorner=0 \begin{cases}\eta_{0}=3 \sum_{n}^{\mathbb{N}} \frac{(5 x)^{\mathfrak{}}}{(2 n+1)(2 n+3)} & \beta_{0}= \\
१_{1}=x^{-3 / 2}+10 x^{-1 / 2} & \beta_{1}=\end{cases} \\
& \left.8 x^{2} \underline{\underline{\imath}}+10 x \underline{\imath}+\underline{1+x}\right\urcorner=0 \begin{cases}१_{0}=x^{1 / 4} \sum_{n}^{\mathbb{N}} \frac{(x / 8)^{\gamma_{2}}}{(7 / 4)_{n}} & \beta_{0}= \\
१_{1}=x^{-1 / 2} \sum_{n}^{\mathbb{N}} \frac{(x / 8)^{\chi_{2}}}{(1 / 4)_{n}} & \beta_{1}=\end{cases} \\
& 3 x \underline{\underline{\imath}}+\underbrace{2-x} \underline{\imath}-2 \mathfrak{\imath}=0 \begin{cases}\eta_{0}=x^{1 / 3} \sum_{n}^{\mathbb{N}}(x / 3)^{\mathfrak{x}}(1+3 n / 4) & \beta_{0}= \\
\eta_{1}=\sum_{n}^{\mathbb{N}}(x / 3)^{n} \frac{n+1}{(2 / 3)_{n}} & \beta_{1}=\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& 2 x \underbrace{x+3} \supseteq-3 x+1 \underline{\imath}+2\urcorner=0 \begin{cases}\bigcap_{0}=3 \sum_{n}^{\mathbb{N}} x^{n+3 / 2} \frac{(-1 / 3)^{n}}{(1-2 n)(2 n+1)(2 n+3)} & \beta_{0}= \\
१_{1}=1+\frac{2}{3} x+\frac{1}{9} x^{2} & \beta_{1}=\end{cases} \\
& 2 x \underline{\imath}+\underbrace{1-2 x^{2} \underline{\imath}-4 x \mathfrak{\imath}=0} \begin{cases}१_{0}=x^{1 / 2} \exp x^{2} / 2 & \beta_{0}= \\
१_{1}=\sum_{n}^{\mathbb{N}} \frac{\left(x^{2} / 2\right)^{n}}{(3 / 4)_{n}} & \beta_{1}=\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \left.3 x^{2} \underline{\underline{\imath}}+x \underline{\Upsilon}-\underline{1+x}\right\urcorner=0 \begin{cases}\bigcap_{0}=x \sum_{n}^{\mathbb{N}}(x / 3)^{\chi x} \frac{1}{(7 / 3)_{n}} & \beta_{0}= \\
\bigcap_{1}=x^{-1 / 3} \sum_{n}^{\mathbb{N}}(x / 3)^{\chi x} \frac{1}{(-1 / 3)_{n}} & \beta_{1}=\end{cases} \\
& 2 x \supseteq+\underbrace{1+2 x} \underline{\imath}+4\urcorner=0 \begin{cases}\eta_{0}=x^{1 / 2} \sum_{n_{n}}^{\mathbb{N}}(-x)^{\aleph_{2}}(1+2 n / 3) & \beta_{0}= \\
\eta_{1}=\sum_{n}^{\mathbb{N}} x^{n} \frac{-1(n+1)}{1 / 2_{n}} & \beta_{1}=\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \left.2 x^{2} \underline{\varrho}-3 x \underline{1-x} \underline{\imath}+2\right\urcorner=0 \begin{cases}\bigcap_{0}=x^{2} \sum_{n}^{\mathbb{N}}(-3 x / 2)^{n} \frac{n+1}{(5 / 2)_{n}} & \beta_{0}= \\
\bigcap_{1}=x^{1 / 2} \sum_{n}^{\mathbb{N}}(-3 x / 2)^{\text {ne }}(1-2 n) & \beta_{1}=\end{cases} \\
& \left.2 x^{2} \underline{\imath}+x \underline{4 x-1} \underline{\imath}+2 \underline{3 x-1}\right\urcorner=0 \begin{cases}\bigcap_{0}=x^{2} e^{-2 x} & \beta_{0}= \\
\bigcap_{1}=x^{-1 / 2} \sum_{n}^{\mathbb{N}} \frac{(-2 x)^{n}}{(-3 / 2)_{n}} & \beta_{1}=\end{cases} \\
& 2 x \supseteq-\underbrace{1+2 x^{2}} \underline{\Upsilon}-x\urcorner=0 \begin{cases}\Upsilon_{0}=\sum_{m}^{\mathbb{N}} x^{2 m+3 / 2} \frac{1}{2^{m}(7 / 4)_{m}} & \beta_{0}= \\
१_{1}=\exp x^{2} / 2 & \beta_{1}=\end{cases}
\end{aligned}
$$

