$$
\underline{\supseteq}+4\urcorner=0 \begin{cases}\urcorner_{0}=\cos 2 x & \beta_{0}=0 \\ १_{1}=\frac{1}{2} \sin 2 x & \beta_{1}=1\end{cases}
$$

Leg $\underbrace{1-x^{2}} \underline{\varrho}-2 x \underline{\Upsilon}+\lambda \underline{\lambda+1}\urcorner=0 \begin{cases}\Upsilon_{0}=\sum_{m}^{\mathbb{N}}(2 x)^{2 m} \frac{(-\lambda / 2)_{m}((1+\lambda) / 2)_{m}}{(2 m)!} & \beta_{0}=0 \\ \eta_{1}=\frac{1}{2} \sum_{m}^{\mathbb{N}}(2 x)^{2 m+1} \frac{((1-\lambda) / 2)_{m}(1+\lambda / 2)_{m}}{(2 m+1)!} & \beta_{1}=1\end{cases}$
Her $\supseteq-2 x \underline{\imath}+2 \lambda\urcorner=0 \begin{cases}\eta_{0}=\sum_{m}^{\mathbb{N}}(2 x)^{2 m} \frac{(-\lambda / 2)_{m}}{(2 m)!} & \beta_{0}=0 \\ १_{1}=\frac{1}{2} \sum_{m}^{\mathbb{N}}(2 x)^{2 m+1} \frac{((1-\lambda) / 2)_{m}}{(2 m+1)!} & \beta_{1}=1\end{cases}$
$\left.\underline{1-x^{2}} \underline{\underline{\imath}}-6 x \underline{\Upsilon}-4\right\urcorner=0 \begin{cases}\eta_{0}=\frac{1}{\left(1-x^{2}\right)^{2}} & \beta_{0}=0 \\ \eta_{1}=\frac{x-x^{3} / 3}{\left(1-x^{2}\right)^{2}} & \beta_{1}=1\end{cases}$
$\underline{\imath}+3 x \underline{\imath}+3\urcorner=0 \begin{cases}\Upsilon_{0}=\sum_{m}^{\mathbb{N}}\left(-3 x^{2} / 2\right)^{\chi_{R}} & \beta_{0}=0 \\ \Upsilon_{1}=\sum_{m}^{\mathbb{N}} x^{2 m+1} \frac{(-3 / 2)^{m}}{(3 / 2)_{m}} & \beta_{1}=1\end{cases}$

$$
\left.\underline{1+4 x^{2}} \supseteq-8\right\urcorner=0 \begin{cases}\bigcap_{0}=1+4 x^{2} & \beta_{0}=0 \\ \bigcap_{1}=-\sum_{m}^{\mathbb{N}} x^{2 m+1} \frac{(-4)^{m}}{(2 m-1)(2 m+1)} & \beta_{1}=1\end{cases}
$$

$$
\underbrace{1+x^{2}} \underline{\underline{\imath}}+10 x \underline{\imath}+20\urcorner=0 \begin{cases}\eta_{0}=\sum_{m}^{\mathbb{N}} x^{2 m} \frac{-1^{m}(m+1)(2 m+1)(2 m+3)}{3} & \beta_{0}=0 \\ १_{1}=\sum_{m}^{\mathbb{N}} x^{2 m+1} \frac{-1^{m}(m+1)(m+2)(2 m+3)}{6} & \beta_{1}=1\end{cases}
$$

$$
\left.x^{x^{2}+4} \underline{\underline{\imath}}+2 x \underline{\Upsilon}-12\right\urcorner=0 \begin{cases}\bigcap_{0}=3 \sum_{m}^{\mathbb{N}} x^{2 m} \frac{(-1 / 4)^{m}(m+1)}{(2 m-1)(2 m-3)} & \beta_{0}=0 \\ \bigcap_{1}=x+\frac{5}{12} x^{3} & \beta_{1}=1\end{cases}
$$

$$
\underline{x}^{x^{2}-9} \underline{\underline{\imath}}+3 x \underline{\Upsilon}-3 \mathfrak{\imath}=0 \begin{cases}\eta_{0}=\sum_{m}^{\mathbb{N}}\left(x^{2} / 9\right)^{\gamma_{\mathcal{T}}} \frac{(3 / 2)_{m}}{2 m-1} & \beta_{0}=0 \\ १_{1}=x & \beta_{1}=1\end{cases}
$$

$$
\begin{aligned}
& \underline{\imath}+2 x \underline{\imath}+5\urcorner=0 \begin{cases}\Upsilon_{0}=\sum_{m}^{\mathbb{N}} x^{2 m} \frac{(-4)^{m}(5 / 4)_{m}}{(2 m)!} & \beta_{0}=0 \\
\Upsilon_{1}=\sum_{m}^{\mathbb{N}} x^{2 m+1} \frac{(-4)^{m}(7 / 4)_{m}}{(2 m+1)!} & \beta_{1}=1\end{cases} \\
& \underbrace{x^{2}+4} \supseteq+6 x \underline{\imath}+4\urcorner=0 \begin{cases}\eta_{0}=\sum_{m}^{\mathbb{N}} x^{2 m} \frac{m+1}{(-4)^{m}} & \beta_{0}=0 \\
\eta_{1}=\frac{1}{3} \sum_{m}^{\mathbb{N}} x^{2 m+1} \frac{2 m+3}{(-4)^{m}} & \beta_{1}=1\end{cases} \\
& 2 \underline{\supseteq}+x \underline{\Upsilon}-4\urcorner=0 \begin{cases}\bigcap_{0}=1+x^{2}+\frac{1}{12} x^{4} & \beta_{0}=0 \\
१_{1}=3 x \sum_{m}^{\mathbb{N}} \frac{\left(-x^{2} / 4\right)^{\eta x}}{(2 m-3)(2 m-1)(2 m+1)} & \beta_{1}=1\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\imath}+x^{2} ๆ=0 \begin{cases}\bigcap_{0}=\sum_{m}^{\mathbb{N}}\left(\frac{x}{4}\right)^{2 m} \frac{-1^{m}}{m!(3 / 4)_{m}} & \beta_{0}=0 \\
\bigcap_{1}=4 \sum_{m}^{\mathbb{N}}\left(\frac{x}{4}\right)^{2 m+1} \frac{-1^{m}}{m!(5 / 4)_{m}} & \beta_{1}=1\end{cases} \\
& \underline{1-4 x^{2}} \underline{\underline{\imath}}+6 x \underline{\Upsilon}-4 \mathfrak{\imath}=0 \begin{cases}\bigcap_{0}=1+2 x^{2} & \beta_{0}=0 \\
\bigcap_{1}=x \sum_{m}^{\mathbb{N}} \frac{\left(4 x^{2}\right)^{\dagger 2}(1 / 4)_{m}}{(1+2 m)(1-2 m)} & \beta_{1}=1\end{cases} \\
& \left.\underline{1+2 x^{2}} \underline{\varrho}+3 x \underline{\Upsilon}-3\right\urcorner=0 \begin{cases}\eta_{0}=-\sum_{m}^{\mathbb{N}} \frac{\left(-2 x^{2}\right)^{\eta \mathbb{R}}(3 / 4)_{m}}{2 m-1} & \beta_{0}=0 \\
१_{1}=x & \beta_{1}=1\end{cases}
\end{aligned}
$$

