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We introduce the concept of “covariant symbolic calculus” on real and complex sym-

metric domains, prove a general product formula for the link transform (generalized

Berezin transform) between two such calculi, and describe a basic example (Toeplitz

calculus) in more detail.

1. Introduction

The complex Hermitian spaces of non-compact type, realized as bounded sym-
metric domains D ⊂ Cn, are a fundamental class of non-compact Kähler manifolds
whose quantization, e.g. by the well-known Berezin-Toeplitz operators, has been
studied intensively [BLU], [UU]. Writing D = G/K for a semi-simple Lie group
G of Hermitian type and its maximal compact subgroup K, the quantization map

A : C∞(D) → L(H)(1.1)
f 7→ Af

realized by (possibly unbounded) operators on a complex Hilbert space H should
satisfy the covariance condition

Af◦g−1 = U(g)Af U(g−1)

for all g ∈ G, where U denotes an irreducible (projective) representation of G act-
ing on H. In [AU1] a general theory concerning such “covariant quantizations” on
complex symmetric domains (including the flat case D = Cn) is developed for the
weighted Bergman spaces H = H2

ν (D) of holomorphic functions on D, belonging
to the scalar holomorphic discrete series of G. The Toeplitz calculus and also the
Weyl calculus are natural examples of covariant quantizations, and the main result
of [AU1] gives a “product formula” for the link transform f 7→ A∗(Bf ) on C∞(D)
in terms of the spherical Fourier transform of certain K-invariant “characteristic”
functions associated with the covariant quantizations A and B.

While the setting of complex symmetric domains is still an active research area
(e.g., concerning vector-valued representations or the Weyl calculus for domains
of higher dimension), a promising new direction is to apply ideas and methods
from quantization theory to real symmetric domains GR/KR, for a semi-simple
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or reductive Lie group GR not necessarily of Hermitian type. Besides dealing
with a much wider geometric framework compared to the complex case, a major
application of this more general approach is to harmonic analysis of GR, yielding
an explicit decomposition of certain (reducible) GR-representations into irreducible
components. The complex case described above corresponds to the special case of
a tensor product representation.

2. Real Symmetric Domains

Let
D = G/K

be a Hermitian symmetric space of non-compact type, realized as the (spectral)
unit ball

D = {z ∈ Z : ‖z‖ < 1}
of a complex JB∗-triple Z of finite dimension. Then

G = Aut(D)◦

is the identity component of the holomorphic Automorphism group of D, and
K = Aut(Z)◦. Let

z 7→ z

be a conjugation of Z preserving the triple product, and define

ZR := {z ∈ Z : z = z},
DR := D ∩ ZR = {z ∈ ZR : ‖z‖ < 1},
GR := {g ∈ G : g(z) = g(z) ∀ z ∈ Z} = {g ∈ G : g(DR) = DR},
KR := K ∩GR.

Then ZR is a real JB∗-triple and

DR = GR/KR

is a real Riemannian symmetric space of non-compact type, called a real bounded
symmetric domain. Up to a few low dimensional exceptions, all Riemannian sym-
metric spaces of non-compact type can be realized in this way. In the following
we assume that DR is irreducible. The domain D is called the complexification of
DR. It is not necessarily irreducible.

Example 2.1. Let ZR be a complex (irreducible) JB∗-triple, considered as a
real JB∗-triple. Then its unit ball DR is a complex bounded symmetric domain,
considered as a real bounded symmetric domain. Put

Z := ZR × ZR, D := DR ×DR
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endowed with the flip conjugation

(z1, z2) := (z2, z1)(2.1)

for all z1, z2 ∈ ZR. The corresponding real form is the diagonal

{(z1, z2) ∈ Z : z1 = z2} = {(z, z) : z ∈ ZR} ≡ ZR,

{(z1, z2) ∈ D : z1 = z2} = {(z, z) : z ∈ DR} ≡ DR.

Thus the complex case gives rise to a product domain in the complexification.
Putting

(g1, g2)(z1, z2) := (g1(z1), g2(z2))

for z1, z2 ∈ DR and g1, g2 ∈ GR := Aut(DR)◦, we have

G := Aut(D)◦ = {(g1, g2) : g1, g2 ∈ GR} ≈ GR ×GR.

Furthermore, an Automorphism (g1, g2) ∈ G commutes with (2.1) if and only if
g1 = g2, since we have for z1, z2 ∈ DR

(g1, g2)(z1, z2) = (g1, g2)(z2, z1) = (g1(z2), g2(z1))

and
(g1, g2)(z1, z2) = (g1(z1), g2(z2)) = (g2(z2), g1(z1)).

Example 2.2. The complex matrix ball

D = {z ∈ Cp×q : z∗ z < I}

in Z := Cp×q, endowed with the usual conjugation z 7→ z, gives rise to the real
matrix ball

DR = {z ∈ Rp×q : z∗ z < I}

in ZR = Rp×q. In particular, the interval DR = (−1, 1) ⊂ R has the unit disk
D = {z ∈ C : |z| < 1} as complexification.

Example 2.3. The complex matrix ball

D = {z ∈ C2×2 : z∗ z < I}

in Z = C2×2, endowed with the conjugation(
a b
c d

)−

:=
(

d −c

−b a

)
=

(
0 1

−1 0

) (
a b

c d

) (
0 −1
1 0

)
,

has the real form
DR = {z ∈ H : z z∗ < I}
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in ZR = H. Here H denotes the real division algebra of quaternions.

Example 2.4. Every (irreducible) symmetric cone Ω in a Euclidean Jordan al-
gebra X is a real symmetric domain (realized as the unit ball of X via a Cayley
transform) whose complexification can be realized as the tube domain

T (Ω) := {x + iy : x ∈ Ω, y ∈ X}

in Z := XC.
Generalizing Example 2.4 every irreducible real bounded symmetric domain can

be realized as a real Siegel domain as follows:
Let Z be an irreducible complex JB∗-triple with conjugation z 7→ z, and consider

the Peirce decomposition

Z = U ⊕ V, U = Z1(e), V = Z1/2(e)

with respect to a maximal tripotent e = e ∈ Z. Then the respective real forms
satisfy

ZR = UR ⊕ VR(2.2)

and UR is a semi-simple (not necessarily Euclidean) real Jordan algebra with a
decomposition

UR = X ⊕ Y,(2.3)

where
X := {x ∈ UR : x∗ = x}

is an irreducible Euclidean Jordan algebra, and we put

Y := {y ∈ UR : y∗ = −y}.

Combining (2.2) and (2.3) we obtain

ZR = X ⊕ Y ⊕ VR.(2.4)

The self-adjoint part X ⊕ iY of U is also a Euclidean Jordan algebra. According
to [L2, 10.1] or [U, Section 21], the unit ball of Z is equivalent (via a Cayley
transformation) to a complex Siegel domain

D =
{

u + v ∈ Z :
u + u∗

2
− {e v∗ v} ∈ ΩX⊕iY

}
where ΩX⊕iY is the positive cone of X ⊕ iY . It follows that

DR = {x + y + v ∈ ZR : x− {e v∗ v} ∈ Ω},(2.5)

where Ω = X∩ΩX⊕iY is the positive cone of X. This is the unbounded realization
of DR as a real Siegel domain.
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Summing up, real symmetric domains DR are of the following types.

Type 1 Z is irreducible and DR has an unbounded realization

DR ≈ {x + y + v ∈ ZR : x− {e v∗ v} ∈ Ω}

as described above.

Type 2 ZR is a complex irreducible JB∗-triple, with unit ball DR being a complex
Hermitian symmetric domain, and the complexification is given by

Z = ZR × ZR and D = DR ×DR.

We also include the flat case:

Type 3 D = Z = Cn, endowed with the usual conjugation, so that DR = ZR =
Rn.

3. Quantization Hilbert Spaces

For a real symmetric domain DR = GR/KR, with complexification D = G/K,
let

H2
ν (D)(3.1)

be the ν-th weighted Bergman (resp. Bargmann) space of holomorphic functions
on D, endowed with the canonical irreducible (projective) representation

Uν : G → U(H2
ν (D)).(3.2)

More precisely, according to the three types of domains (cf. Section 1), (3.1) and
(3.2) are defined as follows.

Case 1 Let Z be an irreducible JB∗-triple, with unit ball D of rank r, dimension
n and genus p. Let ∆(z, w) denote the Jordan triple determinant and denote by
(z|w) the unique scalar product invariant under K := Aut(Z)◦ normalized by the
condition (c|c) = 1 for all minimal tripotents c ∈ Z. Let dm(z) be the associated
Lebesgue measure. Fix ν > p− 1 and consider the probability measure

dµν(z) =
ΓΩ(ν)

πn ΓΩ(ν − n
r )

∆(z, z)ν−p dm(z)(3.3)

where ΓΩ denotes the so-called Koecher-Gindikin Γ-function of the positive cone
Ω associated with Z [FK]. The weighted Bergman space

H2
ν (D) := {h ∈ L2(D,µν) : h holomorphic}
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= {h : D → C holomorphic : ‖h‖2
ν :=

∫
D

dµν(z) |h(z)|2 < +∞}

has the reproducing kernel

K(z, w) = ∆(z, w)−ν(3.4)

for all z, w ∈ D. The irreducible unitary (projective) representation Uν of G on
H2

ν (D) is defined by
(Uν(g−1)h)(z) := j(g, z) h(g(z))(3.5)

for all g ∈ G, h ∈ H2
ν (D) and z ∈ D, where

j(g, z) := [DetZ g′(z)]ν/p.

Case 2 If DR ⊂ ZR is an irreducible complex symmetric domain, we consider the
Hilbert space tensor product

H2
ν (D) := H2

ν (DR)⊗H2
ν (DR)(3.6)

for the weighted Bergman space H2
ν (DR) over DR, as described in Case 1. Here

ν > pR−1 where pR = genus (DR). H2
ν (D) consists of sesqui-holomorphic functions

h(z1, z2) on D := DR × DR ⊂ Z := ZR × ZR which are square-integrable under
the product measure

dµν(z1, z2) := dµR
ν (z1) dµR

ν (z2).(3.7)

An equivalent realization of (3.6) is via Hilbert-Schmidt integral operators

(hφ)(z1) =
∫

DR

dµR
ν (z2) h(z1, z2) φ(z2)(3.8)

on H2
ν (DR). The reproducing kernel of H2

ν (D) is the product

K(z1, z2, w1, w2) := KR(z1, w1) KR(w2, z2),(3.9)

where KR(z1, w1) is the kernel function for H2
ν (DR). H2

ν (D) carries an irreducible
unitary (projective) representation Uν of G = GR ×GR defined by

Uν(g1, g2)T = UR
ν (g1) T UR

ν (g2)∗(3.10)

for all g1, g2 ∈ GR and T ∈ H2
ν (D), regarded as a Hilbert-Schmidt operator on

H2
ν (DR). For the diagonal (g, g) ∈ G, with g ∈ GR, we obtain the adjoint action

Uν(g, g) T = UR
ν (g) T UR

ν (g)−1.

We put
j(g1, g2; z1, z2) := jR(g1, z1) jR(g2, z2)
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for all g1, g2 ∈ GR and z1, z2 ∈ DR.

Case 3 For the flat case D = Cn, let (z|w) denote the inner product and let
dm(z) be the associated Lebesgue measure. Fix ν > 0 and consider the probability
measure

dµν(z) :=
(ν

π

)n

e−ν(z|z)dm(z).(3.11)

The weighted Bargmann space

H2
ν (Cn) := {h ∈ L2(Cn; dµν) : h holomorphic}

= {h : Cn → C holomorphic : ‖h‖2
ν :=

∫
Cn

dµν(z) |h(z)|2 < ∞}

has the reproducing kernel
K(z, w) = eν(z|w)(3.12)

for all z, w ∈ Cn. H2
ν (Cn) carries an irreducible unitary (projective) representation

of the semi-direct product G := U(n) / Cn via

(Uν(g)h)(z) := j(g−1, z) h(g−1(z))(3.13)

for all g ∈ G, h ∈ H2
ν (Cn) and z ∈ Cn, where

j(g−1, z) =
K(z, g(0))

K(g(0), g(0))
= exp (ν(z|g(0))− ν

2
(g(0)|g(0))).

This completes the definition of H2
ν (D). In all three cases we have

j(g, z) K(g(z), g(w)) j(g, w) = K(z, w)(3.14)

for all g ∈ G and z, w ∈ D. Put

Kw(z) := K(z, w).(3.15)

Then Kw ∈ H2
ν (D) for all w ∈ D, and (3.14) shows

U(g) Kw = j(g, w) Kg(w)

for all g ∈ G and w ∈ D since

j(g, w) Kg(w)(g(z)) = j(g, w) K(g(z), g(w))

= j(g, z)−1 K(z, w) = j(g−1, g(z)) Kw(z)
= (U(g) Kw)(g(z))

for all z ∈ D. Let
(h|k)ν :=

∫
D

dµν(z) h(z) k(z)
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denote the scalar product in H2
ν (D). Then

h(z) = (Kz|h)ν(3.16)

for all h ∈ H2
ν (D) by the reproducing kernel property.

Let z 7→ z denote the conjugation of D with real form DR. Since D is simply
connected

I(z) := K(z, z)1/2(3.17)

defines a holomorphic function on D (not belonging to H2
ν (D)).

Example 3.1. In the product case (Case 2) we have

I(z1, z2) = K(z1, z2, (z1, z2))1/2 = K(z1, z2, z2, z1)1/2(3.18)
= [KR(z1, z2) KR(z1, z2)]1/2 = KR(z1, z2)

as a holomorphic function on D = DR×DR. Since the reproducing kernel property
implies

φ(z1) =
∫

DR

dµR
ν (z2) KR(z1, z2) φ(z2)

for all φ ∈ H2
ν (DR), it follows that I corresponds to the identity operator on

H2
ν (DR). On the other hand, the kernel

Kw1,w2(z1, z2) = K(z1, z2, w1, w2)(3.19)

= KR(z1, w1) KR(w2, z2) = KR
w1

(z1) KR
w2

(z2)

for (w1, w2) ∈ D corresponds to the rank 1 operator KR
w1

(KR
w2

)∗ acting on H2
ν (DR)

since for all φ ∈ H2
ν (DR) ∫

DR

dµR
ν (z2) Kw1,w2(z1, z2) φ(z2)

=
∫

DR

dµR
ν (z2) KR

w1
(z1) KR(w2, z2) φ(z2)

= KR
w1

(z1)
∫

DR

dµR
ν (z2) KR(w2, z2)φ(z2)

= KR
w1

(z1) φ(z2) = KR
w1

(KR
w2
|φ)ν .

Proposition 3.2. I is the unique (up to a multiplicative constant) holomorphic
function on D which is Uν-invariant under GR ⊂ G.

Proof. Let g ∈ GR. In order to show

I(z) = (Uν(g−1) I)(z) = j(g, z) I(g(z))(3.20)
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for all z ∈ D, we may assume that z = ζ ∈ DR since both sides of (3.20) are
holomorphic. Since I(ζ), j(g, ζ) and I(g(ζ)) are positive, the assertion follows by
taking squares

[j(g, ζ) I(g(ζ))]2 = j(g, ζ) K(g(ζ), g(ζ)) j(g, ζ) = K(ζ, ζ) = I(ζ)2.

2

As a consequence of (3.20) we have

I(ζ) = I(gζ(o)) = j(gζ , o)−1 I(o)(3.21)

for all ζ ∈ DR, with gζ ∈ GR satisfying gζ(o) = ζ. Here o is the origin of DR.

Lemma 3.3. For all z ∈ D we have∫
DR

dµ0(ζ) K(z, ζ) I(ζ)−1 = I(z)
∫

DR

dµ0(ζ) K(o, ζ) I(ζ)−1.(3.22)

Proof. Since both sides of (3.22) are holomorphic on D we may assume z ∈ DR.
Write z = g(o) for some g ∈ GR. Then GR-invariance of µ0 implies∫

DR

dµ0(ζ) K(z, ζ) K(ζ, ζ)−1/2

=
∫

DR

dµ0(ζ) K(z, g(ζ)) K(g(ζ), g(ζ))−1/2

=
∫

DR

dµ0(ζ) j(g, o)−1 K(o, ζ) j(g, ζ)−1 j(g, ζ) K(ζ, ζ)−1/2

= j(g, o)−1

∫
DR

dµ0(ζ) K(o, ζ) K(ζ, ζ)−1/2.

Since K(z, z) = K(g(o), g(o)) = j(g, o)−2 K(o, o) = j(g, o)−2 the assertion follows.
2

Notation. In view of Lemma 3.3 it is natural to normalize the GR-invariant
measure µ0 on DR by the condition∫

DR

dµ0(ζ) K(o, ζ) I(ζ)−1 = 1.(3.23)

This normalization (depending on ν) will be chosen in the sequel. Then

I(z) =
∫

DR

dµ0(ζ) K(z, ζ) I(ζ)−1(3.24)
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for all z ∈ D. In the case of complex bounded symmetric domains DR the nor-
malization (3.23) amounts to

dµ0(ζ) = dµR
ν (ζ) KR(ζ, ζ)(3.25)

since KR(o, ζ) = 1.

Proposition 3.4. For holomorphic h ∈ H2
ν (D) we have∫

D

dµν(w) h(w) I(w) =
∫

DR

dµ0(ζ) h(ζ) I(ζ)−1.(3.26)

Proof. We may assume h = Kz for some z ∈ D. Since I(z) := K(z, z)1/2 is
holomorphic, Lemma 3.3 implies∫

DR

dµ0(ζ) Kz(ζ) I(ζ)−1 =
∫

DR

dµ0(ζ) K(z, ζ) I(ζ)−1

= I(z) = (Kz|I)ν =
∫
D

dµν(w) Kz(w) I(w).

2

4. Covariant Symbolic Calculi on Real Symmetric Domains

We will now introduce the new concept of covariant calculus for real symmet-
ric domains, which arises as a natural generalization of the complex case [AU1]
replacing operators by Hilbert space vectors.

Definition 4.1. A covariant symbolic calculus is given by a linear “symbol map”

σ : H2
ν (D) → {functions on DR}(4.1)

h 7→ σh

satisfying the covariance condition

σ(Uν(g) h) = (σh) ◦ g−1(4.2)

for all g ∈ GR. More precisely, σ should have a GR-invariant domain Dom(σ) of
holomorphic functions on D containing all reproducing kernel vectors Kw, w ∈ D.
Then the covariance condition becomes

(σKw) ◦ g−1 = σ(Uν(g) Kw) = j(g, w) σ(Kgw)(4.3)
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for all w ∈ D and g ∈ GR. In addition we require that the holomorphic function
I(z) := K(z, z)1/2 on D belongs to Dom(σ). Then σI is a constant function by
(4.2) and Lemma 3.3, and we normalize σ by assuming

σI = 1.(4.4)

The function σh is also called the passive (or weak) symbol of h. The main
examples of symbolic calculi are “real” in the sense that σKo is a real-valued
function on DR. This will be assumed in the sequel.

Proposition 4.2. For every symbolic calculus σ we have

(σh)(ζ) = ((σKt)(ζ)|h)ν(4.5)

for all h ∈ Dom(σ) and ζ ∈ DR, where for fixed ζ the function

z 7→ (σKt)(ζ) (z) := (σKz)(ζ)(4.6)

is anti-holomorphic on D.

Proof. We may assume h = Kw for w ∈ D. Then

(σKw)(ζ) = (σKt)(ζ) (w) = (Kw|(σKt)(ζ))ν

and hence
(σKw)(ζ) = (Kw|(σKt)(ζ))ν = ((σKt)(ζ)|Kw)ν .

2

Definition 4.3. The adjoint

σ∗ : {functions on DR} → H2
ν (D)(4.7)

of a covariant symbolic calculus σ is defined by assigning to a function f on DR
(belonging to Dom(σ∗)) the holomorphic function

(σ∗f)(z) :=
∫

DR

dµ0(ζ) f(ζ) (σKz)(ζ)(4.8)

on D. Here the invariant measure µ0 is normalized by the condition (3.23), de-
pending on ν but not on σ. We call f the active (or strong) symbol of σ∗f . The
adjoint σ∗, corresponding to the map A of (1.1), can of course also be taken as
the starting point of the theory. The ”dual” view point emphasizing the symbol
map σ is closer to Berezin’s original approach.
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Proposition 4.4. A covariant symbolic calculus σ and its adjoint σ∗ are related
by duality

(σ∗f |h)ν = (f |σh) :=
∫

DR

dµ0(ζ) f(ζ) (σh)(ζ)(4.9)

for all f ∈ Dom(σ∗) and h ∈ Dom(σ).

Proof. We may assume h = Kz for some z ∈ D. Then

(σ∗f |Kz)ν = (Kz|σ∗f)ν = (σ∗f)(z)

and (4.9) follows from (4.8) by taking conjugates. 2

Since (4.9) involves the GR-invariant measure µ0 and σ is GR-covariant, it follows
that σ∗ satisfies the covariance condition

σ∗ (f ◦ g−1) = Uν(g)(σ∗f)(4.10)

for all g ∈ GR and f ∈ Dom(σ∗).

Proposition 4.5. For any covariant symbolic calculus σ the adjoint σ∗ satisfies

σ∗1 = I.(4.11)

Proof. For ζ ∈ DR and gζ ∈ GR satisfying ζ = gζ(o) the covariance of σ implies

(σKo)(g−1
ζ (o)) = σ(Uν(gζ)Ko)(o) = j(gζ , o)(σKζ)(o) = I(ζ)−1(σKζ)(o).

Since GR is unimodular and (σKξ)(η) is real for ξ, η ∈ DR, Proposition 3.4 and
Proposition 4.2 imply

(σ∗1)(o) =
∫

DR

dµ0(ζ)(σKo)(ζ) =
∫

DR

dµ0(ζ)(σKo)(gζ(o))

=
∫

DR

dµ0(ζ)(σKo)(g−1
ζ (o)) =

∫
DR

dµ0(ζ) I(ζ)−1(σKζ)(o)

=
∫
D

dµν(z) I(z)(σKz)(o) = ((σKt)(o) | I)ν = (σI)(o) = 1.

Since σ∗1 = (σ∗1)(o) I by covariance, the assertion follows. 2

Definition 4.6. Let σ be a covariant symbolic calculus with adjoint σ∗. The
composite map

f 7→ (σσ∗) f = σ(σ∗f)
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acting on functions on DR is called the link transform associated with σ. Note
that σσ∗ maps the active symbol to the passive symbol. By our assumptions, σσ∗

has a GR-invariant domain and commutes with the GR-action

(σσ∗)(f ◦ g) = (σσ∗f) ◦ g(4.12)

for all functions f ∈ Dom(σσ∗) and g ∈ GR. More generally, one may consider
transforms

f 7→ (σ1σ
∗
2) f = σ1(σ∗2f)

linking two covariant symbolic calculi σ1, σ2 on H2
ν (D), and the invariance property

(4.12) still holds. In view of (4.4) and (4.11) these transforms are “stochastic”
operators: (σ1σ

∗
2) 1 = σ1(σ∗21) = σ1I = 1.

Proposition 4.7. Let σ1, σ2 be covariant symbolic calculi. Then the link trans-
form σ1σ

∗
2 has the integral kernel

((σ1Kt)(ξ) | (σ2Kt)(η))ν =
∫
D

dµν(z)(σ1Kz)(ξ) (σ2Kz)(η)(4.13)

with respect to µ0 (normalized by (3.23)).

Proof. Using (4.5) and (4.8) we obtain

(σ1σ
∗
2f)(ξ) = ((σ1Kt)(ξ) |σ∗2f)ν

=
∫
D

dµν(z)(σ1Kz)(ξ)(σ∗2f)(z)

=
∫
D

dµν(z)(σ1Kz)(ξ)
∫

DR

dµ0(η) f(η) (σ2Kz)(η)

=
∫

DR

dµ0(η) f(η)
∫
D

dµν(z)(σ1Kz)(ξ) (σ2Kz)(η).

2

It is well known [H] that the L2-space L2(DR, µ0) has a multiplicity-free decom-
position

L2(DR, µ0) ≡
∫
a#

|c(λ)|−2dλ 〈GR〉λ(4.14)

under the group GR, where 〈GR〉λ denotes the principal series representation with
spectral parameter λ ∈ a#, c(λ) is Harish-Chandra’s c-function and we choose an
Iwasawa decomposition

GR = KR A N(4.15)
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of GR, with a = Lie(A). By GR-invariance it follows that the link transform σ1σ
∗
2

is diagonalized under the GR-action. More precisely, let φλ ∈ C∞(DR) be the
normalized spherical function associated with λ. Then

σ1σ
∗
2φλ = σ̃1σ∗2(λ) φλ(4.16)

for all φλ ∈ Dom(σ1σ
∗
2), and the eigenvalues σ̃1σ∗2(λ) completely characterize

the link transform. For every λ ∈ a# the Iwasawa decomposition (4.15) defines
”exponential functions” [H]

eλ(ζ) = exp 〈A(g)|λ + ρ〉, g ∈ GR, g(o) = ζ

on DR satisfying eλ(o) = 1 and

eλ(g(ζ)) = eλ(g(o)) eλ(ζ)

for all g ∈ NA, such that

φλ(ζ) =
∫

KR

dk eλ(kζ)

is the spherical function of type λ. In the flat case eλ is expressed in terms of the
exponential function [AU1]; in the curved setting an explicit description of eλ can
be given by realizing DR as a real Siegel domain (cf. Section 4).

Proposition 4.8. For every covariant symbolic calculus σ we have

(σ∗eλ)(z) = (σ∗eλ)(o) eλ(z) I(z)(4.17)

where eλ(z) denotes the unique extension of eλ to a holomorphic function on D.

Proof. Since both sides of (4.17) are holomorphic it suffices to let z = ζ ∈ DR.
Let gζ ∈ NA satisfy gζ(o) = ζ. Then

(σ∗eλ)(ζ) = (σ∗eλ)(gζ(o)) = j(gζ , o)−1(Uν(g−1
ζ )(σ∗eλ))(o)

= j(gζ , o)−1(σ∗(eλ ◦ gζ))(o) = j(gζ , o)−1eλ(ζ) (σ∗eλ)(o)
= I(ζ) eλ(ζ) (σ∗eλ)(o).

2

Our main result is a “product formula” for the link transform for any pair of
covariant symbolic calculi.

Theorem 4.9. Let σ1, σ2 be covariant symbolic calculi on an irreducible real sym-
metric domain DR. Then the GR-invariant link transform σ1, σ

∗
2 has the eigenval-

ues

σ̃1σ∗2(λ) =
(σ∗1eλ)(o) (σ∗2eλ)(o)

cλ
(4.18)
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for all λ ∈ Dom(σ̃1σ∗2) ⊂ a#, where cλ is a positive constant independent of σ1, σ2

which will be computed explicitly in Section 5. In particular,

σ̃σ∗(λ) =
1
cλ

|(σ∗eλ)(o)|2.(4.19)

Proof. By Proposition 4.7, σ1σ
∗
2 is the adjoint of σ2σ

∗
1 with respect to µ0. Using

Proposition 4.8 and Proposition 4.2 it follows that

(σ∗2eλ)(o) (eλI|(σ1Kt)(o))ν(4.20)
= (σ∗2eλ)(o) ((σ1Kt)(o) | eλI)ν = ((σ1Kt)(o) |σ∗2eλ)ν

= σ1(σ∗2eλ)(o) = σ̃1σ∗2(λ) = σ̃2σ∗1(λ)

= (σ∗1eλ)(o) (eλI|(σ2Kt)(o))ν .

Therefore

cλ :=
(σ∗2eλ)(o)

(eλI|(σ2Kt)(o))ν

=

[
(σ∗1eλ)(o)

(eλI|(σ1Kt)(o))ν

]
.

Taking σ1 = σ2 it follows that cλ is real. Therefore cλ is independent of σ1, σ2 and
(4.18) follows from (4.20). 2

Remark 4.10. In terms of harmonic analysis

(σ∗eλ)(o) =
∫

DR

dµ0(ζ) eλ(ζ) (σKo)(ζ)

=
∫

DR

dµ0(ζ)φλ(ζ) (σKo)(ζ) = (σKo)∼(λ)

can be identified with the spherical Fourier transform [H] of the real KR-invariant
function σKo on DR. Viewed as a function of λ, we call

ao(λ) := (σ∗eλ)(o)

the fundamental function of σ.

5. The Toeplitz-Berezin Calculus

Up to now the discussion of covariant symbolic calculi was quite general. In this
section we describe a basic example, the Toeplitz-Berezin calculus, and show that
it determines the value of the constant cλ in an explicit way. Let DR = GR/KR be
an irreducible real symmetric domain, with complexification D and quantization
Hilbert space H2

ν (D), as introduced in Section 2. Let o ∈ DR ⊂ D be the origin.
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Definition 5.1. The Toeplitz-Berezin symbol

τ : H2
ν (D) → C∞(DR)

is defined by
(τh)(ζ) := K(ζ, ζ)−1/2h(ζ) = I(ζ)−1 h(ζ)(5.1)

for all h ∈ H2
ν (D) and ζ ∈ DR. In particular

(τKz)(ζ) = I(ζ)−1 K(ζ, z)(5.2)

for all z ∈ D and ζ ∈ DR.
Note that τ is well-defined (and injective) for all holomorphic functions h on D

since DR ⊂ D is a set of uniqueness. The normalization τI = 1 made in (4.4) is
trivially satisfied.

By Definition 4.3 the adjoint τ∗ of τ (called the Toeplitz-Berezin calculus) is
defined by

(τ∗f)(z) =
∫

DR

dµ0(ζ) f(ζ) I(ζ)−1 K(z, ζ)(5.3)

for all functions f ∈ L∞(DR), since dµ0(ζ) I(ζ)−1 is a finite measure for ν large
enough. Here µ0 is normalized by (3.23) so that (3.24) implies τ∗1 = I. According
to Proposition 4.7, the link transform ττ∗ (called the Berezin transform in the
complex case) has the integral kernel∫

D

dµν(z)(τKz)(ξ) (τKz)(η)(5.4)

=
∫
D

dµν(z) I(ξ)−1 K(ξ, z) I(η)−1 K(η, z)

= I(ξ)−1 I(η)−1 K(ξ, η) =
K(ξ, η)

K(ξ, ξ)1/2 K(η, η)1/2

for all ξ, η ∈ DR.

Example 5.2. In case DR is complex (Case 2) H2
ν (D) = H2

ν (DR) ⊗ H2
ν (DR) is

the space of Hilbert-Schmidt operators via the identification (3.8), where h is a
sesqui-holomorphic function on DR ×DR. For fixed z ∈ DR we have

(KR
z |hKR

z )ν = (hKR
z )(z) =

∫
DR

dµR
ν (w) h(z, w) KR

z (w) = h(z, z)

since w 7→ h(z, w) is holomorphic. Therefore (5.1) amounts to

(τh)(z, z) = I(z, z)−1 h(z, z) = KR(z, z)−1 h(z, z)

=
(KR

z |hKR
z )ν

(KR
z |KR

z )ν
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for all z ∈ DR. This is the classical Berezin symbol of the operator h.
On the other hand, the sesqui-holomorphic function

(τ∗f)(z, w) =
∫

DR

dµ0(ζ) f(ζ) I(ζ, ζ)−1 K(z, w, ζ, ζ)

=
∫

DR

dµ0(ζ) f(ζ) KR(ζ, ζ)−1 KR(z, ζ) KR(ζ, w)

=
∫

DR

dµR
ν (ζ) f(ζ) KR(z, ζ) KR(ζ, w)

on DR ×DR, defined via (5.3), gives rise to the integral operator

((τ∗f)φ)(z) =
∫

DR

dµR
ν (w) (τ∗f)(z, w) φ(w)

=
∫

DR

dµR
ν (w)

∫
DR

dµR
ν (ζ) f(ζ) KR(z, ζ) KR(ζ, w) φ(w)

=
∫

DR

dµR
ν (ζ) f(ζ) KR(z, ζ)

∫
DR

dµR
ν (w) KR(ζ, w) φ(w)

=
∫

DR

dµR
ν (ζ) f(ζ) KR(z, ζ) φ(ζ) = E(fφ)(z)

where E denotes the orthogonal projection onto H2
ν (DR). Thus

(τ∗f)φ = E(fφ) =: Tfφ

gives the Toeplitz operator with symbol f acting on H2
ν (DR). By (5.4) the Berezin

transform in the complex case has the kernel

K(ξ, ξ, η, η)
K(ξ, ξ, ξ, ξ)1/2 K(η, η, η, η)1/2

=
KR(ξ, η) KR(η, ξ)
KR(ξ, ξ) KR(η, η)

=
|KR(ξ, η)|2

KR(ξ, ξ) KR(η, η)

for all ξ, η ∈ DR.

Proposition 5.3. For all λ ∈ a# we have

τ̃ τ∗(λ) = (τeλ)(o) = cλ.(5.5)

Proof. Since
(τKz)(o) = K(o, o)−1/2 Kz(o) = Ko(z)
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for all z ∈ D, Proposition 4.2 implies

τ̃ τ∗(λ) = τ(τ∗eλ)(o) = ((τKt)(o) | τ∗eλ)ν = (Ko|τ∗eλ)ν = (τ∗eλ)(o).

This shows that (τ∗eλ)(o) is real, and the product formula (4.19) implies

(τ∗eλ)(o) = τ̃ τ∗(λ) =
|(τ∗eλ)(o)|2

cλ
=

(τ∗eλ)(o)2

cλ
.

2

Combining Proposition 5.3 with Theorem 4.9 and Remark 4.10 we obtain

Corollary 5.4. For covariant symbolic calculi σ1, σ2 on H2
ν (D) the link transform

σ1σ
∗
2 has the eigenvalues

σ̃1σ∗2(λ) =
(σ∗2eλ)(o) (σ∗1eλ)(o)

(τ∗eλ)(o)
=

(σ2Ko)∼(λ) (σ1Ko)∼(λ)
(τKo)∼(λ)

where τ is the Toeplitz-Berezin calculus and ∼ denotes spherical Fourier trans-
forms.

In view of Corollary 5.4 it is important to compute the integral

(τ∗eλ)(o) =
∫

DR

dµ0(ζ) eλ(ζ) (τKo)(ζ)

=
∫

DR

dµ0(ζ) eλ(ζ) I(ζ)−1 K(o, ζ)

=
∫

DR

dµ0(ζ) eλ(ζ) K(ζ, ζ)−1/2 K(o, ζ)

explicitly. In the complex case this has been carried out in [UU], verifying a long-
standing conjecture of Berezin. For details on the complex case and also the flat
case we refer to [AU1]. In the sequel we determine (τ∗eλ)(o) for real symmetric
domains. The Toeplitz-Berezin calculus has also been studied in [DP], [N], [Z]; we
avoid a case-by-case separation according to the various root systems of DR, thus
giving a more uniform treatment.

As in Section 2 consider the unbounded realization

DR = {x + y + v ∈ ZR : x− {ev∗v} ∈ Ω}

as a real Siegel domain. For the Jordan theoretic concepts used in the sequel we
refer to [FK], [L2], [U]. Let e1, . . . , er ∈ X be a frame with e = e1 + · · ·+ er. Then
we have Peirce decompositions

X =
∑

1≤i≤j≤r

Xij , Y =
∑

1≤i≤j≤r

Yij , VR =
∑

1≤j≤r

V R
j
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and we put

1 = dim Xjj (1 ≤ j ≤ r)
a := dim Xij (1 ≤ i < j ≤ r).

In case ZR 6= X we also put

b := dim V R
j (1 ≤ j ≤ r)

c := dim Yjj (1 ≤ j ≤ r).

It is known that
dim Yij = a (1 ≤ i < j ≤ r)

up to one exception (root system D2) which we omit in the sequel. The dimensions
of the respective subspaces are then given by

nX := dimR X = r + r(r − 1) a/2
nY := dimR Y = cr + r(r − 1) a/2
nV := dimC V = dimR VR = rb.

Put n := dimR ZR = nX + nY + nV . Let P denote the quadratic representation of
X and let ∆(x) be the Jordan determinant of X.

Lemma 5.5. For x ∈ Ω we have

DetX P 1/2
x = ∆(x)nX/r.

Proof. Without loss of generality (due to the spectral decomposition and transi-
tivity of KR on frames) we may assume x =

∑
j xjej diagonal. Putting t′ = P

1/2
x t

for t ∈ X, the respective Peirce components satisfy t′ij = x
1/2
i tij x

1/2
j . It follows

that

DetX P 1/2
x =

∏
1≤j≤r

xj

∏
1≤i<j≤r

(xixj)a/2

= (x1 · · ·xr)1+(r−1)a/2 = ∆(x)1+(r−1)a/2 = ∆(x)nX/r.

2

In the sequel we use the conical functions

∆α(x) = ∆1(x)α1−α2∆2(x)α2−α3 · · ·∆r(x)αr(5.6)

on Ω, associated with α = (α1, . . . , αr), where ∆1, . . . ,∆r are the Jordan theoretic
minors. Let ∆α

∗ denote the corresponding function using the minors in reverse
order er, . . . , e1. For the following result, cf. [FK, Section VII.1].
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Lemma 5.6. Let x ∈ Ω and Re(αj) > −1− (r − j) a
2 . Then∫

Ω

dt ∆α(t) e−(x|t) = ΓΩ

(
α +

nX

r

)
∆−α∗−nX/r
∗ (x)

where
ΓΩ

(
α +

nX

r

)
=

∫
Ω

dt ∆α(t) e−(e|t)

is the (multi-variable) Koecher-Gindikin Γ-function and α∗ := (αr, . . . , α1).

Lemma 5.7. Let Re(β) > 1 + a
2 (2r − j − 1) + Re(αj) > a

2 (r − 1). Then

ΓΩ(β)
∫
Ω

dt ∆α(t)∆(e + t)−β = ΓΩ

(
α +

nX

r

)
ΓΩ

(
β − α + δ − 2nX

r

)

where δ = (δ1, . . . , δr) is defined by

δj := 1 + (j − 1)a.(5.7)

Proof. Applying Lemma 5.6 twice we obtain

ΓΩ(β)
∫
Ω

dt ∆α(t) ∆(e + t)−β

=
∫
Ω

dt ∆α(t)
∫
Ω

ds ∆(s)β−nX/r e−(s|e+t)

=
∫
Ω

ds ∆(s)β−nX/r e−(s|e)
∫
Ω

dt ∆α(t) e−(s|t)

= ΓΩ

(
α +

nX

r

) ∫
Ω

ds ∆β−α∗−2nX/r
∗ (s) e−(s|e)

= ΓΩ

(
α +

nX

r

)
ΓΩ

(
β − α∗ − nX

r

)
.

Now the assertion follows from the well-known identity

ΓΩ(α∗) = ΓΩ

(
α + δ − nX

r

)
.(5.8)

2

Lemma 5.8. [FK, p. 142, Exercise 5] Let 2γ > 1 + (r − 1) a. Then

ΓΩ(γ)
∫
X

dx ∆(e + x2)−γ = πnX 4nX−rγ ΓΩ(2γ − nX/r)
ΓΩ(γ)

.
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Proof. Let ∆C be the holomorphic extension of ∆ to the complexified Jordan
algebra XC. By analytic continuation, Lemma 5.6 implies for every x ∈ X

ΓΩ(γ)∆C(e + ix)−γ =
∫
Ω

ds ∆(s)γ−nX/r e−(e+ix|s)

=
∫
Ω

ds ∆(s)γ−nX/r e−(e|s) e−i(x|s).

It follows that ΓΩ(γ) ∆C(e + ix)−γ is the Fourier transform of the function

f(s) := χΩ(s) ∆(s)γ−nX/r e−(e|s)

on X, where χΩ is the characteristic function of Ω ⊂ X. Therefore Parseval’s
formula implies

ΓΩ(γ)2
∫
X

dx |∆C(e + ix)|−2γ = (2π)nX

∫
X

ds |f(s)|2

= (2π)nX

∫
ds ∆(s)2γ−2nX/r e−2(e|s)

= (2π)nX ΓΩ

(
2γ − nX

r

)
∆(2e)−2γ+nX/r

= πnX 4nX−rγ ΓΩ

(
2γ − nX

r

)
.

Now the assertion follows from

|∆C(e + ix)|2 = ∆C(e + ix) ∆C(e− ix) = ∆C((e + ix)(e− ix)) = ∆(e + x2).

2

From now on we assume Y 6= {0}. For t ∈ X the Jordan multiplication operator
Mt leaves X and Y invariant.

Lemma 5.9. For t ∈ Ω we have

∆(t)nX/r DetY Mt = ∆(t)nY /r DetX Mt.

Proof. Assuming t =
∑

j tj ej diagonal and putting x′ = Mt x, y′ = Mt y for x ∈
X and y ∈ Y , the respective Peirce components satisfy x′ij = xij(ti + tj)/2, y′ij =
yij(ti + tj)/2 for all 1 ≤ i ≤ j ≤ r. It follows that

DetX Mt =
∏

1≤j≤r

tj ·
∏

1≤i<j≤r

(
ti + tj

2

)a

,

DetY Mt =
∏

1≤j≤r

tcj ·
∏

1≤i<j≤r

(
ti + tj

2

)a

.
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Since ∆(t) = t1 · · · tr and c− 1 = nY −nX

r , the assertion follows. 2

Let rU and ∆U be the rank and Jordan determinant of U . We define

νR :=
νrU

2r
, pR :=

prU

2r
=

nX + nY + nV /2
r

.(5.9)

Lemma 5.10. Let 2νR > (r − 1) a + c. Then

2νrU

∫
Y

dy ∆U (e− y)−ν = π(nX+nY )/2 2nX+nY
ΓΩ

(
2νR − nY

r

)
ΓΩ(νR) ΓΩ

(
νR + nX−nY

2r

) .

Proof. For t ∈ Ω, x ∈ X and y ∈ Y we have

(x2|t) = ({xx∗e}|t) = (x|{xe∗t}) = (x|Mtx),
−(y2|t) = ({yy∗e}|t) = (y|{ye∗t}) = (y|Mty).

In view of Lemma 5.9 this implies

π−nY /2

∫
Y

dy e(y2|t) = π−nY /2

∫
Y

dy e−(y|Mt y)

= Det−1/2
Y Mt = ∆(t)(nX−nY )/2r Det−1/2

X Mt

= ∆(t)(nX−nY )/2r π−nX/2

∫
X

dx e−(x|Mt x)

= ∆(t)(nX−nY )/2r π−nX/2

∫
X

dx e−(x2|t).

Since ∆U (e− y) is real for all y ∈ Y , we have

∆U (e− y) = ∆U (e− y) = ∆U ((e− y)∗) = ∆U (e + y)

and therefore

∆U (e−y)2 = ∆U (e−y) ∆U (e+y) = ∆U ((e−y)(e+y)) = ∆U (e−y2) = ∆(e−y2)rU /r.

Applying Lemma 5.6 and Lemma 5.8 it follows that

π−nY /2 ΓΩ(νR)
∫
Y

dy ∆U (e− y)−ν

= π−nY /2 ΓΩ(νR)
∫
Y

dy ∆(e− y2)−νR

= π−nY /2

∫
Y

dy

∫
Ω

dt ∆(t)νR−nX/r e−(e−y2|t)
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= π−nY /2

∫
Ω

dt ∆(t)νR−nX/r e−(e|t)
∫
Y

dy e(y2|t)

= π−nX/2

∫
Ω

dt ∆(t)νR−(nX+nY )/2r e−(e|t)
∫
X

dx e−(x2|t)

= π−nX/2

∫
X

dx

∫
Ω

dt ∆(t)νR−(nX+nY )/2r e−(e+x2|t)

= π−nX/2 ΓΩ

(
νR +

nX − nY

2r

) ∫
X

dx ∆(e + x2)(nY −nX)/2r−νR

= π−nX/2 πnX 4nX+(nY −nX−νrU )/2 ΓΩ

(
2νR − nY

r

)
ΓΩ

(
νR + nX−nY

2r

) .

2

For x ∈ X the quadratic representation Px acts also on Y .

Lemma 5.11. For x ∈ Ω we have

DetY P 1/2
x = ∆(x)nY /r.

Proof. Assuming x =
∑

j xj ej diagonal and putting y′ = P
1/2
x y for y ∈ Y , the

respective Peirce components satisfy y′ij = x
1/2
i yij x

1/2
j . It follows that

DetY P 1/2
x =

∏
1≤j≤r

xc
j

∏
1≤i<j≤r

(xi xj)a/2

= (x1 · · ·xr)c+(r−1) a/2 = ∆(x)c+(r−1) a/2 = ∆(x)nY /r.

2

Lemma 5.12. Let x ∈ Ω and 2νR > (r − 1) a + c. Then

2νrU

∫
Y

dy ∆U (x− y)−ν

= ∆(x)−2νR+nY /r π(nX+nY )/2 2nX+nY
ΓΩ (2νR − nY

r )
ΓΩ (νR) ΓΩ (νR + nX−nY

2r )
.

Proof. Putting y′ = P
−1/2
x y for y ∈ Y , we have

dy = ∆(x)nY /r dy′

by Lemma 5.8. Since

∆U (x− y) = ∆U (P 1/2
x (e− y′)) = ∆U (x) ∆U (e− y′) = ∆(x)rU /r ∆U (e− y′)
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it follows that∫
Y

dy ∆U (x− y)−ν = ∆(x)−2νR+nY /r

∫
Y

dy′ ∆U (e− y′)−ν .

Now the assertion follows from Lemma 5.10. 2

Let R denote the canonical Jordan representation of X on VR [FK], [L1].

Lemma 5.13. For x ∈ Ω we have

DetVR R1/2
x = ∆(x)nV /2r.

Proof. Assuming x =
∑

j xj ej diagonal and putting v′ = R
1/2
x v for v ∈ VR, the

respective Peirce components satisfy v′j = x
1/2
j vj . It follows that

DetVR R1/2
x =

( ∏
1≤j≤r

x
1/2
j

)b

= (x1 · · ·xr)b/2 = ∆(x)b/2 = ∆(x)nV /2r.

2

For v ∈ VR we have (e|{ev∗v}) = ({ee∗v}|v) = (v|v)/2 and therefore∫
VR

dv e−(e|{ev∗v}) =
∫
VR

dv e−(v|v)/2 = (2π)nV /2.(5.10)

Lemma 5.14. Let x ∈ Ω. Then∫
VR

dv e−(x|{ev∗v}) = (2π)nV /2 ∆(x)−nV /2r.

Proof. Putting v′ = R
1/2
x v for v ∈ VR, we have

dv = ∆(x)−nV /2r dv′

by Lemma 5.13. Moreover

P 1/2
x {ev∗v} = {e(R1/2

x v)∗ (R1/2
x v)} = {e∗v′v′}

and hence

(x|{ev∗v}) = (P 1/2
x e|{ev∗v}) = (e|P 1/2

x {ev∗v}) = (e|{e∗v′v′}).

Now the assertion follows from (5.10). 2

Lemma 5.15. Let β > (r − 1) a
2 + b

2 . Then

ΓΩ(β)
∫
VR

dv ∆(e + {ev∗v})−β = (2π)nV /2 ΓΩ

(
β − nV

2r

)
.
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Proof. Applying Lemma 5.6 and Lemma 5.14 we obtain

ΓΩ(β)
∫
VR

dv ∆(e + {ev∗v})−β

=
∫
VR

dv

∫
Ω

dx ∆(x)β−nX/r e−(x|e+{ev∗v}) =

∫
Ω

dx ∆(x)β−nX/r e−(x|e)
∫
VR

dv e−(x|{ev∗v})

= (2π)nV /2

∫
Ω

dx ∆(x)β−nX/r−nV /2r e−(x|e)

= (2π)nV /2 ΓΩ

(
β − nV

2r

)
.

2

Lemma 5.16. Let x ∈ Ω and β > (r − 1) a
2 + b

2 . Then

ΓΩ(β)
∫
VR

dv ∆(x + {ev∗v})−β = (2π)nV /2 ΓΩ

(
β − nV

2r

)
∆(x)nV /2r−β .

Proof. Putting v′ = R
−1/2
x v for v ∈ VR, we have

dv = ∆(x)nV /2r dv′

by Lemma 5.13. Moreover

P−1/2
x {ev∗v} = {e(R−1/2

x v)∗ (R−1/2
x v)} = {e∗v′v′}

and hence

∆(x + {ev∗v}) = ∆(P 1/2
x (e + P−1/2

x {ev∗v})) = ∆(x) ∆(e + {e∗v′v′}).

Therefore∫
VR

dv ∆(x + {ev∗v})−β = ∆(x)nV /2r−β

∫
VR

dv′ ∆(e + {e∗v′v′})−β

and Lemma 5.15 implies the assertion. 2

Theorem 5.17. The link transform ττ∗ of the Toeplitz calculus with “Wallach”
parameter ν has the eigenvalues

τ̃ τ∗(λ) =
ΓΩ

(
λ + ρ + νR − nY +nV /2

r

)
ΓΩ

(
−λ + ρ + νR − nY +nV /2

r

)
ΓΩ

(
νR − nY +nV /2

r

)
ΓΩ(νR)

.
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Here λ = (λ1, . . . , λr) is the spectral parameter in a# and ρ = (ρ1, . . . , ρr) is the
half-sum of positive restricted roots [L2], [Z] given by

2ρj = 1 + (j − 1)a +
nY − nX + nV /2

r
.(5.11)

Proof. Writing ζ = x + y + v ∈ X ⊕ Y ⊕ VR according to (2.4), the domain DR is
defined by the condition

t := x− {ev∗v} ∈ Ω.(5.12)

Using (3.4) and applying Lemma 5.12, Lemma 5.16 and Lemma 5.7 we obtain in
case ZR 6= X

Iα :=
∫

dx

∫
dv

∫
dy ∆U (x− {ev∗v})−p/2 ∆α(x− {ev∗v}) ·

·∆U

(
e + x− y

2

)−ν

∆U (x− {ev∗v})ν/2

= 2νrU

∫
dx

∫
dv

∫
dy ∆α+νR−pR(x− {ev∗v}) ·∆U (e + x− y)−ν

= 2νrU

∫
Ω

dt ∆α+νR−pR(t)
∫
VR

dv

∫
Y

dy ·∆U (e + t + {ev∗v} − y)−ν

= 2nX+nY π(nX+nY )/2 ΓΩ

(
2νR − nY

r

)
ΓΩ(νR) ΓΩ

(
νR + nX−nY

2r

) ·
·
∫
Ω

dt ∆α+νR−pR(t)
∫
VR

dv ∆(e + t + {ev∗v})−2νR+nY /r

= 2nX+nY π(nX+nY )/2
(2π)nV /2 ΓΩ

(
2νR − nY +nV /2

r

)
ΓΩ(νR) ΓΩ

(
νR + nX−nY

2r

) ·

·
∫
Ω

dt ∆α+νR−pR(t) ∆(e + t)−2νR+nY /r+nV /2r = 2nX+nY +nV /2 πn/2 ·

·
ΓΩ

(
α + νR − pR + nX

r

)
ΓΩ

(
2νR − nY +nV /2

r − α− νR + pR + δ − 2nX

r

)
ΓΩ(νR) ΓΩ

(
νR + nX−nY

2r

)
= 2nX+nY +nV /2 πn/2

ΓΩ

(
α + νR − nY +nV /2

r

)
ΓΩ

(
νR − α + δ − nX

r

)
ΓΩ(νR) ΓΩ

(
νR + nX−nY

2r

)
since rpR = nX + nY + nV /2. In the remaining case ZR = X, Lemma 5.7 yields

Iα :=
∫
Ω

dx ∆(x)−nX/r ∆α(x) ∆
(

e + x

2

)−ν

∆(x)ν/2
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= 2rν

∫
Ω

dx ∆α−nX/r+ν/2(x) ∆(e + x)−ν

= 2rν ΓΩ

(
ν
2 + α

)
ΓΩ

(
ν
2 − α + δ − nX

r

)
ΓΩ(ν)

.

In general [Z, Lemma 2.3] we have

eλ(x + y + v) = ∆λ+ρ(x− {ev∗v}).

Since τ̃ τ∗(−ρ) = (ττ∗1)(e) = 1, it follows that

τ̃ τ∗(λ) = Iλ+ρ/I0 =
ΓΩ

(
λ + ρ + νR − nY +nV /2

r

)
ΓΩ

(
νR − λ− ρ + δ − nX

r

)
ΓΩ

(
νR − nY +nV /2

r

)
ΓΩ

(
νR + δ − nX

r

)
in both cases (since νR = ν/2 if ZR = X). Since

2ρ = δ +
nY − nX + nV /2

r

by (5.7) and (5.11) and

ΓΩ

(
νR + δ − nX

r

)
= ΓΩ (νR)

by (5.8), the assertion follows. 2

Remark 5.18. In case DR is complex, we have νR = ν and d := dimC DR =
nY + nV /2. Therefore (5.10) simplifies to

τ̃ τ∗(λ) =
ΓΩ(ρ + ν − d

r + λ) ΓΩ(ρ + ν − d
r − λ)

ΓΩ(ν − d
r ) ΓΩ(ν)

(cf. [AU1]).

Remark 5.19. While the Toeplitz-Berezin calculus is certainly fundamental, it is
important to study other covariant symboli calculi such as the Wick calculus and
the Weyl calculus and the relationship between them. In [AU1] a detailed investi-
gation is carried out in the complex case, in particular for the Bargmann spaces
over Cn. In the curved setting the Weyl calculus, which involves the symmetries
in a crucial way, poses many open problems, but in [AU2] the eigenvalues for the
link transform of the Weyl calculus are determined for all (real and complex) sym-
metric domains of rank 1. The surprising new feature is the deep role played by
hypergeometric functions in this context.
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