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Abstract

We define the Weyl functional calculus for real and complex symmetric do-
mains, and compute the associated Weyl transform in the rank 1 case.

0 Introduction

In the theory of pseudo-differential operators the Weyl calculus (a quantization method
for the cotangent bundle T#(R")) is of basic importance since it allows the full sym-
plectic group Sp(2n,R) as covariance group and the relationship between operators
and symbols has optimal continuity properties. Unterberger [10, 11] has introduced
an analogous Weyl calculus for (curved) hermitian symmetric spaces of non-compact
type and computed the Weyl transform in the simplest case of the unit disk. The
higher dimensional case is more difficult. In this paper we define the Weyl calculus
for real symmetric domains and then determine the Weyl transform for all symmetric
spaces of rank 1. The new feature is the appearance of a hypergeometric function
in the spectral decomposition, indicating that the harmonic analysis underlying the
Weyl calculus involves (multi-variable) special functions in a significant way.

1 Real symmetric domains and quantization Hilbert spaces

Real bounded symmetric domains, as defined in [7], are those Riemannian symmetric
spaces D = G/K of non-compact type which are real forms of the well-known complex
hermitian bounded symmetric domains D¢ = G¢/Kc, where Gec = Aut(Dc)° is a
real semisimple Lie group of hermitian type and K¢ is a maximal compact subgroup.
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The well-known Harish-Chandra embedding, in its Jordan theoretic form, realizes D¢
as the open unit ball
Dc={z€Zc: ||z|| <1}

of a complex vector space Z¢ ~ C" endowed with a Jordan triple product {uv*w}
[7, 12]. Now let z — Z be a conjugation on Z¢ preserving the triple product and
define

Z = {z€Z¢c:zZ=2z2}, D := {z€D¢c: z=2}=2ZnN D,
G = {geGc: M:g(E)VZEDc}Z{gEGc: g(D)=D}, K := KcNnQG.

Then D = G/K is called a real bounded symmetric domain which is a Riemannian
symmetric space under the reductive Lie group G. Up to a few low dimensional
exceptions all irreducible Riemannian symmetric spaces of non-compact type can be
realized this way. Assuming that Z is irreducible one can show that the following
cases occur:

Case 1 Dc is an irreducible hermitian domain with real form D.
We may also include the flat case

Case 2 D¢ = Z¢ ~ C*, endowed with the usual conjugation, so that D = Z =~ R".
In this case we obtain (non-reductive) semi-direct products G¢c = U(n) «C*, G =
O(n) «R".

Case 3 D is itself a complex hermitian domain with complexification D¢ = D x D
endowed with the flip conjugation (z1,%2) := (22,%1) for all 21,29 € D. In this case

G(C = {(91752) 101,92 € G} ~GxG

where (91,75)(21,22) := (91(21), 92(22))-

For every real symmetric domain D as above there exists a scale of ” quantization
Hilbert spaces” H, of holomorphic functions on the complexification D¢ of D. These
Hilbert spaces constitute the ”scalar holomorphic discrete series” of G¢ = Aut(D¢)°
via irreducible unitary (projective) representations U, : G¢ — U(H,) of the form

(Un(g~h)(2) = 5(g,2) h(g(2))

for all g € G¢, h € H, and z € D¢. Here j(g, z) is a suitable automorphy factor.

For each irreducible complex bounded symmetric domain B of dimension 7, define
the weighted Bergman spaces

Hj(B) :={h € L*(B,dug) : h holomorphic}.



Here 8 > p — 1 is a scalar parameter, where p is the genus of B. The probability

T,
W5(2) = o (6 —nfra)

involves the so-called Jordan triple determinant A(z,w) and the Gindikin I'-function

measure

A(z,z)?Pdm(z) (1.1)

of the positive cone Qp associated with B. Moreover, rp is the rank of B and dm(z)
is Lebesgue measure. The reproducing kernel of Hé (B) has the form

K(z,w) = A(z,w) ™"

for all z,w € B. Returning to the real symmetric domain D with complexification
D¢, we consider the different cases:

Case 1 If D¢ is an irreducible complex symmetric domain with real form D, we
define
H, := HEC(D(C), v = 2rv/rc (1.2)

where r¢ > 7 is the rank of Dc. We have j(g, z) = (Det g’ (z))c/P< in this case, where
pc is the genus of D¢.

Case 2 In the flat case Z¢ = C”, with real form Z = R", the quantization Hilbert
spaces are the Bargmann spaces

H, := H2(C") = {h € L*(C", ) : h holomorphic}
with respect to the probability measure

ds(2) = (2)" e C9) dm(z)

where (z|w) is the scalar product on C" and dm/(z) is the associated Lebesgue measure.
The reproducing kernel is
K(z,w) = e’#lv)

for all z,w € C" and U, is the Schrodinger representation of U(n)<C" in the ”complex
wave” realization, with its well-known multiplier j(g,z) [1].

Case 3 If D is itself a complex hermitian domain, with measure dy, as defined in
(1.1), we consider the product probability measure du(z1,22) := dpy(21) dupy(z2) on
D¢ = D x D and put

H, :={h € L*(Dc,dp) : h sesqui-holomorphic} = H2(D) ® H2(D)



realized via Hilbert-Schmidt operators

(hé)(2) = / dyiy(w) h(z,m) P(w)
D

for ¢ € H2(D) and z € D. This Hilbert space has the reproducing kernel
K(z1,Z9; w1, we) = K(z1,w1) K(ws,22), (1.3)
with K the kernel function of H2(D), and

U,(91,92) h =U,(g1) h Uy,(g2)*

is the corresponding irreducible unitary (projective) representation of Gc = G X G on
H,, realized as Hilbert-Schmidt operators. We put j(g1,92; 21,%2) := j(91,21) 7(92, 22)
in this case.
In all cases the reproducing kernel K (z,w) and the (projective) multiplier j(g, z)
are related by
i(g,2) K(g(2), g(w)) j(g,w) = K(z,w) (1.4)

for all z,w € D¢ and g € G¢. This implies

Uu(9) K, = j(g,2) Kg(z)- (1.5)

2 The Weyl calculus and its basic properties

In [1, 2] a general concept of ”covariant symbolic calculus” of symmetric domains has
been developed. In the (more general) real version [2] one considers a linear ”symbol”
map o : H, — {functions on D} satisfying the covariance condition

a(Uy(g)h) = (oh) o g™ (2.1)

for all g € G C G¢ and h € H,. More precisely, the domain Dom(o) should contain
all the kernel vectors
Ky(z) = K(z,w)

for w € D¢, and the condition (2.1) becomes

i(g,w) o(Kyw)) = (0 Kp) o g™ (2.2)
for all g € G and w € D¢. In addition we assume that the holomorphic function

I(z) := K(2,2)"/?
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on Dc, defined via the conjugation z +— z and the holomorphic square-root on the
(simply-connected) domain D¢, belongs to Dom/(o) and satisfies

ol =1. (2.3)

Since U,(g) I = I for all g € G, oI is a constant function according to (2.1) so that
(2.3) is just a normalization.

In [2], the so-called Toeplitz-Berezin calculus has been studied in detail (cf. also
[3, 9, 15]). We now consider another covariant symbolic calculus, the Weyl calcu-
lus introduced in the complex setting in [10]. For { € D the symmetry s € G is
characterized by the conditions

st =id, s¢(Q)=¢, st(¢) = —Id.
Lemma 2.1 j(s¢,¢) =1 for all { € D.

Proof: Since sg = 4id we have 1 = j(sg,g) = j(s¢, 5¢(€)) J(s¢,¢) = j(s¢,¢)? and
hence j(s¢,¢) € {£1}. Since D is connected it follows that j(s¢,() = j(s0,0) = 1.

|
Lemma 2.2 For ( € D and z € D¢ we have
: K(z,0)
Jj(se,2) = ——.
02 = Kz, 0
Proof: By Lemma 2.1 , we have j(s¢,2) K(s¢z,() = j(s¢,2) K(scz,5¢C) j(s¢,¢) =
:](SQZ) K(SC'Z’C) :K(ZJC) ||
As a special case of Lemma 2.2 , we obtain
. K(z,0)
j(S,Z) - K(SZ,O)

for the origin { = 0 € D and its symmetry s = s,.

Definition 2.1 The Weyl symbol map w, : span{K,;z € Dc} — C*°(D) is defined
by

c—l K(Caz)l/z

Y OK(C,scz)'/?
for all z € D¢ and ( € D. Here z is the conjugate of z (so that (2.4) is anti-
holomorphic in z). The normalization constant ¢, determined by the condition

(wy K5)(C) = K(z, 3<z)1/2 (2.4)

w, I =1 (2.5)



will be computed below. Note that Lemma 2.2 implies
(w, K)(Q) = ¢, " e 2)'/? K(s¢z,2)? (2.6)
as a holomorphic function in z € D¢. Together with (1.5), (2.6) implies

en(w, K2)(Q) = (i(s¢, 2) K (2,5¢2)'” = (i(s¢, 2) Ko2(2))'/* (2.7)
= (U, (s¢) K2)(2)Y? = (K7 | U, (s¢) K,) /2.

Example 2.1 In the product case D¢ = D x D, with D complex hermitian, H, can
be identified with the space of Hilbert-Schmidt operators acting on H2(D), and under
this identification

KZ1,22 :Kz1 K:z (2‘1,22 ED)

becomes a rank 1 operator [2, Example 3.1]. Therefore (2.7) yields
ey Ky 2)(0) = (Kapizy |Ub(5¢) Koy )V = (Ky K, | U (50) (K K2,))Y2 =
(K2 K2, | Uy (50) Koy K2, Uy(50))'? = (K K7, | (Un(5¢) Ko ) (U () K2y))'/? =
(Ko [ Ub(5¢) Ko ) (U (5¢) Koy | K2 = (Ko | Uy () Kiy) = tr(Us(s¢) Koy K3,)-
Hence we have
ey (w,T)(¢) = tr(Un(s¢) T)

for all (trace-class) operators 1" acting on HZ(D). This coincides with the ”Weyl
symbol” of T' as defined in [10].

Proposition 2.1 The Weyl symbol (2.4) is covariant under G.
Proof: Let ( € D, g € G and z € Dc. Then sy = gs¢ g~! and (1.2) and (2.6)
imply

cy [j(g,Z) (wy Kg()) (g (C))] = j(9,2)” §(s4(),9(2)) K(sg(¢)(9(2)), 9(2)) =
j(9,2) §(gsc97",9(2)) K(g(sc(2)),9(2)) i(g,%) =
i(s¢, 2) (g, s¢(2)) K(g(s¢(2)),9(2)) 7(9,Z

since j(g,2) j(gscg™,9(2)) = j(g5¢.2) =
square-roots and conjugates it follows that j(g

— j(s¢,2) K(5¢(2),7) = ¢ (0n K)(0)

¢ %) (g,sg(z)). Taking holomorphic
) (wy Kg(2))(9(¢)) = (wy K.)(¢) which

yields covariance in view of (2.2). [ |

Given a covariant symbolic calculus o one defines its adjoint o* : {functions on D} —
H, by assigning to a function f € Dom (c*) the holomorphic function

_ / duo(C) 1(¢) GE©)
D

(=]



on D¢. Here dug is the G-invariant measure on D normalized by the condition

/ dio(€) 1(0)! = 1. (2.8)
D

By [2, Proposition 4.4] ¢* is the adjoint of o with respect to L?(D, dug). According
to Definition 2.1 the adjoint f +— w} f of the Weyl symbol map is given by

K(z,0"?
/duo (w0 K2)(Q) /du (s; )12 K (s¢z,2)"/?

1/2

! / do(€) F(C) §(ser2)V? K(scz,2) /2 = &t / diol€) £(0) (o) K) (@)

D D

as a holomorphic function in z € D¢. Whereas the Toeplitz map f — 7, f is well-
defined for f € L*(D), it is more difficult to find conditions on f € C*°(D) such that
wy f is well-behaved [11, 13].

Example 2.2 In the flat case D = R" and D¢ = C", the v-th Bargmann space
H2(C") has the reproducing kernel K (z,w) = exp v(z|w) and
Sz =20~z
is the symmetry. Hence the Weyl calculus w}, : L?(R") — HZ(C") has the form
o @NE) = [ A1) eap § (£10) + (sc212) = (sc) =
Rn

[ e 0) eom 5 ((10) + 26 — 212 = 0)) = [ dC F0) eap (2u(le) ~ § (217) — v(<IO).
n R’I’L

Since ¢, = 27"/ in this case, we obtain the Bargmann transform [4, p. 40].

The link transform of a covariant symbolic calculus o is defined as the map f +—
(o0 0*) f := o(c*f) acting on functions on D. By [2, Proposition 4.7] o ¢* is an integral
operator in L?(D,dug) with kernel

/ dn(2) (0 K.)(€) (0 K2) ()

D¢
for £,m € D. For the Weyl transform w,w;, we obtain the integral kernel

L oy (E&2) Kz 5¢2) K(z,0) K(sy7,7) 1/2
[ dnte ( K(, 5¢2) K(sn7,7) )

C

D¢



for £,m € D. In comparison, the integral kernel of the Toeplitz transform 7,7 has the
much simpler expression [2, (5.4)]

K(&,n)
K(&,6)Y2 K(n,n)'/?

Since D = G/K is a Riemannian symmetric space there is an explicit Plancherel
decomposition [6]
LD, ) = [ dA[eN] ? (G
a#
in terms of the Hilbert spaces (G)y of the principal series of G' with parameter A € a#,
where ¢()) is Harish-Chandra’s c-function and we use an Iwasawa decomposition

G = N AK with a := Lie(A). By covariance every covariant symbolic calculus o
yields a multiplicity-free decomposition

H, ~ / doo(N) (G)a

of H,, under the restricted action of G C G¢. The defining measure dog(\) depends
on the choice of calculus, more precisely on the eigenvalues

ao*(N) := (a0*$»)(0)

of the G-invariant link transform oo*, computed on the spherical function ¢, of type
X\ € a¥#. Here o € D is the origin. It is technically easier to use the N A-covariant
”exponential functions” ey, where

() = [ dk ex(kC)
/

for all ( € D. For the Toeplitz-Berezin calculus 7, the eigenvalues of 7,7 are given
by the integral

() = (mhex) (o) = / dpio(€) ex(€) (1, Ko)(Q) = / dpiol€) ex(¢) K (0,¢) K(¢,¢)~V/2

D D

which can be computed using the structure theory of Jordan triples ( [2, 15, 3, 9])
yielding a (complicated) product of classical I-functions. For arbitrary covariant
symbolic calculi 01,092 on H, there is a ”product formula” [2, Theorem 4.9]

T @)o3en)0)
71930 = T e (o)




Thus the integral

0,()1/2
(wy, ex)( /dﬂo ex(¢) (wy K. /duo ex(¢ (C(Sci)))l/z K (0,5¢(0))'/?

is needed for the computation of the eigenvalues of w,w*()) of the Weyl transform.

3 Polar coordinates and root decomposition

From now on we only consider the non-flat case. For a deeper study of the Weyl cal-
culus (and other covariant symbolic calculi) on real symmetric domains it is necessary
to recall the basic structure theory of symmetric spaces G/K (of non-compact type)
related to the root decomposition [6]

g=admod / Ya
aEY

induced by a Cartan subspace a C g. Here m is the centralizer of a in € and g,
denotes the root space associated with o € a#. Put ¥ := {a € a# \ {0} : go #
{0}}. According to [7] every (irreducible) real symmetric domain D = G/K has an
unbounded realization as a real Siegel domain

Dx{z+y+veXaYadV: z—{evv} €Q}.

Here X is a euclidean Jordan algebra of rank r, with unit element e and positive
cone 2, X @Y is a semi-simple real Jordan x-algebra with self-adjoint part X and
skew-adjoint part Y, and the Peirce decomposition [7] of Z with respect to e has
the 1-eigenspace X @Y and the %—eigenspace V. Now choose a frame ey,...,e, of
minimal idempotents in X satisfying e; + ...+ e, = e and consider the joint Peirce
decomposition [7]

Yo Xy Y= > Yy, V= Wy

1<i<j<r 1<i<j<r 1<5<r
Then for 1 < j <rand 1<4<j<r wehave dim X;; =1 and
a:=dim X;j, b:=dim Vy;, c:=dimY;;

are independent of 4, and of the frame eq,...,e,. For the symmetric cones we have
Y = {0} = V. In all other cases (except root system Do, which is not considered in
the sequel) the classification yields dim Y;; =a (1 <14 < j < r). Hence the fine



structure of D is completely encoded in the numerical invariants a, b, c. In particular,
we have nx:=dim X =r+5r(r—1), ny:=dimY =cr+5r(r—1), ny:=
dim V = br. Returning to the bounded realization, the commuting completely
integrable holomorphic vector fields

Myi= (e~ {z€j2)) o (1<5<7) (3.)

on D¢ [12, 7] leave D invariant and can be chosen as a basis of a. Let M1# . ,MT# €
a# denote the dual basis satisfying M’ (M;) = 6;; for 1 < i,j < r. Then, by [7, 15]
the positive restricted roots of g are the following:

M¥ — MY, multiplicity a (1 <i<j<r) (3.2)
M¥ + MF, multiplicity a (1<i<j<r) (3.3)
oM, multiplicity ¢ (1 <j <r) (3.4)
MY, multiplicity b (1 < j < r), (3.5)

unless Z = X, in which case only (3.2) occurs. This case and also the root type Do
will be omitted in the sequel. For the half-sum of positive roots p we obtain

2 = Y maa= Y a(Mf-MFrMfamt)e Y (oM +bMP)

€T, 1<i<j<r 1<j<r

. b
= Z 2aMJ#+ Z (2c+b)M]#: Z 20 —-1Da+c+ §)M]#

1<i<j<r 1<j<r 1<j<r

and hence .
p= > ((j—l)a+c+§> MY
1<j<r

By [6, Theorem 5.8] there exists a Haar measure dg on G such that

/dgf /dt1 -dt, f(exp(X;t; M) H sinh (a(X;t; M;))™

acXy

holds for K-invariant functions of f on D = G/K. Here ¥ denotes the set of positive
roots and m, is the multiplicity of @ € ¥,. For each tripotent ¢ = {cc* ¢} € Z the
vector field

M. :=(c—{zc" z}) 832

satisfies exp (t M,.)(0) = tanh (¢) ¢ for all ¢ € R [12, 7]. Similarly, we have
T A
erp thMj (0) :Ztanh(t )e
j=1 j=1
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for the (commuting) vector fields (3.1). Using the coordinates

z; = tanh® (¢;) € [0,1] (3.6)
1/2
i (1=

/ dg f(9(0)) =

satisfying % =2z x;), the explicit root decomposition (3.2)-(3.5) yields

/Hdt sinh (2¢;)¢ sinh (¢;)° - f (X, tanh (¢;) ;) H|smht —t;) sinh(t; +t;)|* =

i<j

256'/ ‘ T b/2 Ti— T4
/H i 1./2 (1—J$j) (1—]33]-) E‘(l—xz)(lj—%)

Z a-f(ijjﬂe]):

2r(cfl) / dey -+ - dz, - H(l _ wj)—l—c—b/2—a(r—1) $§C—1+b)/2 . H |$z _ :L.j|a - f (Ej 37]1/2 ej) —

[0;1]" J <
[0,1]7 <

Let © be the positive cone of the euclidean Jordan algebra X. The Gindikin TI'-
function I'q associated with Q [5, Chapter VII] has the property [5, p. 123 and p.

104]
Tq <a+— —CQ/H|:BZ—:BJ\ Hdw] Tz, (3.7)

RT 1<j

where cq is a constant depending only on 2. Similarly for the Beta-integral [5, p. 130
and p. 104] which is symmetric in o and :

Po(a+ 2X) Ta(y + =X)
= T; — X dzr; T —z:)7. 3.8
Tala+ 7+ 2) Il =l Loy =y 5)

[0,1]" 1<j

Lemma 3.1 For&,ne€ DN X we have
K(&n) ' = Ale— {£e*n})”.
Proof: In case D¢ is irreducible, we have

K(&m)™'? = Ac(é,n)"e = Ac(e—{& " n})"e/?, Ale—{£e"n}) e e/* = Ale—{¢e" n})”.
In case D¢ = D x D, with D complex hermitian, (1.3) implies

K(&&nn) 2= K(&n) ™" = AE,n)" = Ale — {€e"n})".

In both cases, the assertion follows. [ |
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Proposition 3.1 The measure py normalized by (2.8) is given by

Ca(v + #2570 /dgf(g(O)).

/duo(C)f(C) =c 2" Loy — M) Ta(3) J

D 2r

Proof: By Lemma 3.1 we have for ¢ := X;tanh (¢;)e; € DNX

IQ) ' =KV =Ale—{¢e ¢} =[] (1 - tanh?® ()Y =[] (1 — =)

J J

Since n — 2ny — ny = nx — ny, it follows that

[ dg 1go)~t =2 [ TLjai s
G

o1 *<J
dej (1- xj)V_(nX+nY+nV/2)/7' xg_ny—nx—knv)/Qr _
J
To(v — w) To(Z)

col 2ny —nx 2r
Q nx—ny
FQ(V + o )

The spherical functions of the cone (2, regarded as a reductive symmetric space,
can be expressed in terms of the so-called Jack polynomials Jp(z1,...,z,) associated

with an integer partition m = (mq,...,m,). Using the Jack polynomials and the
multi-variable Pochhammer symbol

__ Ta(a+m)
(a)m T QPQ(O{)

one defines the multivariable hypergeometric series [5]

2F1< af ) (T1,...,2) :ZM Im (1, Tp).

The multivariable hypergeometric function together with the Gindikin I'-function
yields the following Selberg-type integral

Zj — a
cor [ T] a5 25202 P TL Il = (3.9)
LRI <

et )T a ) (b 8 (1)
To(at+y+2x) 2 aty+Bx

2’...’5
T

12



for (suitably restricted) scalar parameters «,3,. Since K(z,0) = 1 in the bounded
setting, (2.4) implies

(wy Ko)(¢) = ¢, bu(¢), (3.10)
where we define b, (¢) := K(s¢(0),¢)™"/? for all ¢ € D.

Lemma 3.2 The K-invariant function b, on D satisfies

d o [1—tanb?(t)]” 4 (1-z;\”
y h (¢, . — J — J
b jz_:ltan (tj)ej H [1+tanh2(tj)] H (1+~’L‘])

Jj=1 Jj=1

Proof: By Lemma 3.1 we have K((, s¢(0))"*/? = A(e — {Ce* 5¢(0)})” for ¢ € DN X.
Applying geodesic reflection, it follows that for £ := Z§:1 tanh (t;)e; € DN X we
have

s¢(0) =) _tanh (2t;) ;.
j=1

By orthogonality of {e;}, we obtain

v

b,(> tanh(t;)e;) = A | e—{(O tanh(t;)e;)e* () tanh (2tx)ep)} | =

j=1 Jj=1 k=1
- | T (1o tanb® (t) \" _ (L tanh®(t))"
jl;[l(l—tanh(t]) tanh (2t;)) _j1;[1 (1 21+tanh2a(tj)) _g <1+tanh2 (t;)) .

Proposition 3.2 The normalizing constant for the Weyl calculus at parameter v is

_ ny+nv/2 1 1
c, =277 2F1<V r V) (5,---,5)-

nx-—n
v+ X2r =

Proof: By definition, ¢, is chosen such that w,I = 1. Since the definition of w,
applies directly only to the kernel vectors we use the dual condition w)1 = I. By
(3.10) we have

1= (w31)(0) = / dpio(O)(wy Ko)(¢) = 5 / dpio() 6,(C)

D D

and hence

@:/wwwﬂm
D
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Applying Proposition 3.1 and Lemma 3.2 yields, putting z; = 1 — x;

To (v — ) 1 (2)
Do (v + 255%)

/ dpio() b,(C) = cq 2X Y / dg b,(g(0)) =

G
H|ZZ—ZJ| Hdzj z; (nx+ny+nv/2)/T( Zj)(ny—nx—‘r-nv)/Qr( Zj ) _

9 _ 4.
1] &< J K
2 ¢q H |zz . zj|a . Hdzj zj—(nx+ny+nv/2)/r(1 _ Zj)(ny—nx+nv)/27'(1 o %)—u
0.1 *< 7
g T (y_ny+:bv/2> T (2%) » V_w v (1 1)
B Lo (v+ 2xmx) 2 v+ B 272
[ |

In the sequel the Laplace-Beltrami operator A on D (not to be confused with the
Jordan determinant) will play a crucial role.

Proposition 3.3 FExpressed in the coordinates
yj = —sinh® (t;)  (1<j<r) (3.11)

the Laplace-Beltrami operator A on D has the K-radial part A given by

S B, yi(1—y;) 1+c+b b 9
A=) Syi(l-y) 3—+a ) = + —(Q+c+3)yip o—-
P i ( i) dy; = vy 2 ( 2) T oy;

m'—n

Proof: For any Riemannian symmetric space G/K, the K-radial part of A realized
on A :=exp (a4 )(0) has the form [6, Proposition II. 3.9]

A=A+ Z mq coth (o) ay
ac¥y

where A 4 is the (euclidean) Laplacian on A and oy € a is determined by (ay|H) =
a(H) for all H € a. Specializing to the root decomposition (3.2)-(3.5) we obtain

0 0
Z (9t2 +Z (c coth (2t;) 2 Btj + b coth (t;) 8_tj) +

0 0 0 0
aZcoth ((‘% 8ti> + coth (t; + t;) (815 + B_tZ) =

©1<J

Z % + 2c coth (2t;) + b coth (t;) + a Z (coth (t; —t;) + coth (t; + ¢;)
J i#]
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since — coth (¢; — ¢;) = coth (¢; — t;). Since Wi — _ ginh? (tj) we have

dt;
0 0 0
coth (2¢,) — = —coth (2¢;) sinh(2¢;,) — = (2y; — 1) —,
0 0 0
coth (t;) — = —coth (¢;) sinh(2¢;) — =2(y; — 1) —,
(t5) ot (t5) (2t5) dy; (y) )ayj
0 sinh (2¢;) sinh (2¢;) 0
h(t: — ¢t h (. ) = J J —_
(cot (tj i) + cot (tj +)) ot; sinh (tj —t;) sinh (tj +t;) Byj’
4 cosh? (t;) sinh?® (t;) 9 Ay(l-y) O
sinh? (t;) cosh? (t;) — cosh?® (t;) sinh? (t;) Oy; vi —y; Oy
and
O\°  (dy,\*( 0 \> d*; @ a9 \? B
— ) == — —= — =y, (1 —y;) | — dy; — 2) —.
(o) = (3) (o) + 5 o~ () + -5
Substituting into the previous expression for A yields the assertion. [ |

4 The Weyl transform for rank 1 domains

The Weyl transform is harder to analyze than the Toeplitz-Berezin transform. Up to
now only the simplest case of the unit disk has been treated in detail [10]. In this
section we analyze the Weyl transform for an important class of higher-dimensional
symmetric domains, namely those of rank 1. This includes the unit ball in C", and
our main result is new even in this special case.

Let K denote one of the real division algebras R, C,H or 0. Then Z := K™ becomes
a real Jordan triple for m > 1, with m = 2 in case K = Q. The unit balls

m
D :={(z1,-..,zm) e K" : Zw,xf <1}
=1

are precisely the real bounded symmetric domains of rank 1. Here z — z* is the
natural involution on K. We put

a:=dimr K n:=dimgrD = am.

The Peirce decomposition with respect to the tripotent e := (1,0,...,0) € K™ has
the form
Kr=XepYoV

15



where

X =Rx{0}™ Y =R x{o}y* !, V={0}xK!
and Rt := {z € K: z* = —z}. The vector field
0
M := (e — * —
(e~ {ze"2}) 5
generating a gives rise to the positive roots

2M# . multiplicity c=a — 1 (4.1)
M#,  multiplicity b =n — a.

For the half-sum p of positive roots we obtain

2= (a—1)2M* + (n— a) M* = (_1+”;r“> 2M#.

In terms of the coordinate 3 := — sinh? (t) € (—oo0, 0] the Laplace-Beltrami operator
A on D has the radial part (Proposition 3.2)
A d\? n n+a d
—Soyl-y ([~ Z_ = 43
A ) (dy) +(2 5 y) dy (4.3)

when acting on K-invariant functions. Since (4.3) corresponds to the hypergeometric
equation it follows that the hypergeometric series

o B o (@ (B o
2F1( ” ) (y) :== kZZO Ve R

yields the eigenfunctions (regular at y = 0):

A a BY) a f
1 2F1( n/2 )—aﬂ 2F1( n/2 >

n+a
2

Using the coordinate z := tanh? (¢) we obtain the spherical function

where

a+f= —1=2p. (4.4)

mmma=¢manazgm<”+2;‘k)w) (4.5

:2”<p+§w§_x)(xf1):(“‘”ﬁA2“(p+A7$;p+%)(”




with eigenvalue

L h= V) (1.6

Note that p = 1/2 for the unit disk. We are interested in the Weyl calculus acting on
H,, where D¢ is the complexification of D. By [7, 12.18] Z has the complexification
Z¢, of rank r¢ and the half sum of positive roots p, given by the following table

Z Zc TC p
R™ cr 1| 2t
crlchxC*|2| =

2% 2 1
H" | C ><1 6m 2 m ;F :
Q? Cif 2 | U

Here (C%,6 denotes the 16-dimensional exceptional Jordan triple not of tube type. For
rank 1 domains we have X = R and Q = (0,00). Hence I'g is the usual I'-function
and cg =1. Sincenxy =1, ny =a—1, ny=a(m—1)=n—a, 2p+1=(n+a)/2,
Proposition 3.1 shows

o Tlv+1-73)
/wmwmzf r T(I) /wf

(v—2p) T
D

where, for K-invariant functions, we have

/dg f(g /dx f(z'%e) - (1 — )2~ gn/27 1, (4.7)

G

Specializing Proposition 3.2 yields the normalizing constant

_ v—2p v 1
=27V oF — 4.8

since ny +ny /2 = a — 1 + 5% = 2p. The main result of this paper, leading to the
eigenvalues of the Weyl transform, is the following;:

Theorem 4.1 Let D be a real bounded symmetric domain of rank 1 and dimension
n. Then the Weyl calculus w, satisfies

2Fl(z/—p—l—)\ l/—p—)\)(l)

o0y = L= PN T —p—X) v+5—2p 2

(wy, ex)(0) = T —25) T() ST
2F1(1/+%—2p>(§)
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n_ no_ o,
F 2 p-l—)\nQ A )
_Twv—p+XN)Twv—-—p—-2X) vt+g—2p
B T(v —2p) T'(v) n _ n
v F( 2 )(%)
I/+§—2p

Proof: Using (4.7), (4.5) and Lemma 3.2, and applying [8, §20.2, p. 399, (6)] to the
admissible parameters o = p+ A, B=A—p+ 5, y=3, p=v+A—-p, o=vand
z = —1, we obtain

1
ZH/ dg $(9(0)) bu(g(0)) = / dz $(z'/% ) by (217 e)(1 — 2) 7271227t =
0

Ry ISY p+A p—A+3 L—z\” = e n/2—1 _
dz (1 —z) 2F1< n/2 (x) 2 (1—-2x) x

o S ~——_ 0@

dz 2F1( ptA n)\/Q_ Pt ) (z) (1 —z)" AP L (14 z) v 221 =

F(%)P(V_P+)\)P(V_P_)\) —y v—p+XA v—p—XA v 1
m 2 3Fy n (
v+ 5 —2p)T(v) v+g5—2p v

with the 3 F5-function reducing to oF;. This implies the assertion, since (w} e))(0) is
a multiple of this integral normalized at A = p. [ |
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