— Blatt 1 —

Abgabe: Freitag, 19.4.2002, 11 Uhr s.t.

(1) (4 Punkte)

Prof. Dr. H. Upmeier

Definiere eine Relation \leq auf \mathbb{R}^2 durch

$$(u,v) \leq (x,y) : \iff u \leq x \text{ und } v \leq y.$$

- (i) Zeige: \leq ist eine Ordnungsrelation (d.h. reflexiv, transitiv und anti-symmetrisch) auf \mathbb{R}^2 .
- (ii) Definiert ≼ eine totale Ordnung? Beweise oder widerlege!
- (iii) Fertige eine saubere Zeichnung der Menge

$$\{(x,y): (x,y) \succeq (0,0)\}$$

im \mathbb{R}^2 an.

(2) (5 Punkte)

Definiere eine Relation \prec auf \mathbb{R}^2 durch

$$(u, v) \prec (x, y) : \iff u < x \text{ oder } u = x, v < y.$$

Zeige, dass \leq eine totale Ordnung auf \mathbb{R}^2 definiert, und beschreibe für fest gewählte Paare $(u_1, v_1) \prec (u_2, v_2)$ die Menge

$$\{(x,y) \mid (u_1,v_1) \leq (x,y) \leq (u_2,v_2)\}$$

im \mathbb{R}^2 .

(3) (mündlich)

Sei A eine total-geordnete Menge ("Alphabet") und W die Menge aller "Wörter" in A, d.h. endliche Folgen

$$a_0 a_1 \cdots a_n$$

mit $a_i \in A$. Definiere

$$a_0 a_1 \cdots a_n \prec b_0 b_1 \cdots b_m$$

falls $\exists i < \min(n, m)$ so dass

$$a_0 = b_0, \ldots, a_i = b_i, a_{i+1} < b_{i+1}$$

oder n < m und

$$a_0=b_0,\ldots,a_n=b_n.$$

Zeige, dass \prec eine totale Ordnung auf W definiert ("lexikografische Ordnung").

(4) (5 Punkte)

Sei K ein total-geordneter Körper. Beweise im Detail mit den Axiomen:

$$x^2 + y^2 = 0 \implies x = y = 0$$

für alle $x, y \in K$.

— Blatt 2 —

Abgabe: Freitag, 26.4.2002, 11 Uhr s.t.

(1) (5 Punkte)

Sei (M, d) ein metrischer Raum und $a, b \in M$.

- (i) Für alle $x, y \in M_r[a]$ gilt $d(x, y) \leq 2r$.
- (ii) Es gelte $M_r[a] \cap M_s[b] \neq \emptyset$. Dann gilt

$$x, y \in M_r[a] \cup M_s[b] \implies d(x, y) \le 2(r + s)$$
.

(2) (4 Punkte)

Sei (M,d) metrischer Raum und $a \neq b$ in M. Zeige: Es gibt r > 0 mit

$$M_r[a] \cap M_r[b] = \emptyset$$
.

(3) (5 Punkte)

Seien (M_1, d_1) und (M_2, d_2) metrische Räume.

(i) Beweise, dass durch

$$d((x_1, x_2), (y_1, y_2)) := d_1(x_1, y_1) + d_2(x_2, y_2)$$

(für $x_1, y_1 \in M_1$ und $x_2, y_2 \in M_2$) eine Metrik auf $M_1 \times M_2$ definiert wird.

(ii) Schreibe diese Metrik für den Spezialfall $M_1=M_2=\mathbb{R}$ und $d_1=d_2=$ übliche Abstandsmetrik, und stelle die r-Umgebung

$$\mathbb{R}^2_r[(a_1,a_2)]$$

von $(a_1, a_2) \in \mathbb{R}^2$ graphisch dar.

(4) (mündlich)

Definiere

$$\mathbb{C} = \left\{ \left(\begin{array}{cc} x & y \\ -y & x \end{array} \right) \middle| x, y \in \mathbb{R} \right\} .$$

Bekanntermaßen ist \mathbb{C} ein Körper. Zeige, dass es keine totale Ordnung \leq auf \mathbb{C} gibt, so dass \mathbb{C} ein total geordneter Körper wird.

— Blatt 3 —

Abgabe: Freitag, 3.5.2002, 11 Uhr s.t.

(1) (4 Punkte)

Prof. Dr. H. Upmeier

(i) Für einen metrischen Raum (M,d) bestimme die folgenden Teilmengen von M:

$$\bigcap_{s>r} M_s(a) \qquad (r>0 \text{ fest})$$

und

$$\bigcap_{s>r} M_s(a)$$
 $(r>0 \text{ fest})$ $\bigcup_{r< s} M_r[a]$ $(s>0 \text{ fest}).$

(ii) Bestimme die folgenden Teilmengen von ℝ:

$$\bigcup_{n\geq 1} \left] 0, \frac{1}{n} \right] ,$$

$$\bigcap_{n\geq 1} \left[-\frac{1}{n}, 0 \right[,$$

$$\bigcap_{n\geq 1} \left[-\frac{2}{n}, \frac{2}{n} \right] .$$

Gebe jeweils einen detaillierten Beweis an.

(2) (4 Punkte)

- (i) Finde eine Folge offener Intervalle $I_n \subset \mathbb{R}$, so dass $\bigcap_{n \geq 1} I_n$ ein abgeschlossenes Intervall ist.
- (ii) Finde eine Folge abgeschlossener Intervalle $J_n \subset \mathbb{R}$, so dass $\bigcup_{n \geq 1} J_n$ ein offenes Intervall ist.
- (3) (5 Punkte)

Sei $(E, \|\cdot\|)$ ein normierter \mathbb{R} -Vektorraum und

$$M := E^{\mathbb{N}} = \{ (a_n) \mid \forall \ n \in \mathbb{N} \ a_n \in E \}$$

die Menge aller Folgen (a_n) in E. Zeige:

(i) M ist ein \mathbb{R} -Vektorraum bzgl. der Verknüpfungen

$$(a_n) + (b_n) := (a_n + b_n)$$
 und $\lambda \cdot (a_n) = (\lambda \cdot a_n)$.

(ii) Zeige, dass die Relation

$$(a_n) \sim (b_n) :\iff a_n - b_n \to 0 \quad (\text{in } E)$$

auf M eine Äquivalenzrelation ist.

(4) (mündlich)

Sei M wie in Aufgabe 3. Zeige, dass M/\sim bzgl. einer wohl-definierten Addition und Skalarmultiplikation ein \mathbb{R} -Vektorraum ist.

— Blatt 4 —

Abgabe: Freitag, 10.5.2002, 11 Uhr s.t.

(1) (mündlich)

Sei (M, d) ein metrischer Raum und $U \subset M$.

(i) Sei U offen und $a \in U$. Beweise:

Für jede Folge
$$a_n \in M$$
 mit $\lim_{n \to \infty} a_n = a$ gilt $a_n \in U$ für fast alle n . (*)

(ii)* Umgekehrt ist $U \subset M$ offen, falls die Aussage (*) für alle $a \in U$ gilt.

(2) (5 Punkte)

Untersuche die nachstehenden Folgen in \mathbb{R} auf Konvergenz (mit detaillierter Begründung):

(i)
$$a_n = 3 - \frac{(-1)^n}{n^2}$$
 $(n \ge 1)$,

(ii)
$$a_n = n - \frac{1}{n+1}$$
 $(n \ge 0)$,

(iii)
$$a_n = \begin{cases} \frac{1+n}{n} & (n \text{ gerade}) \\ \frac{1-n}{n} & (n \text{ ungerade}) \end{cases}$$
 , $n \ge 1$

(3) (4 Punkte)

Bestimme die folgenden Grenzwerte mit Hilfe der Grenzwertsätze. Begründe jeweils die Anwendbarkeit dieser Sätze.

(i)
$$\lim_{n \to \infty} \frac{n^2 + 14}{7 + n - n^2}$$
,

(ii)
$$\lim_{n \to \infty} \frac{(-1)^n}{n} + \frac{n^2}{n^2 + 1}$$
,

(iii)
$$\lim_{n\to\infty} \frac{n+1}{2n-1} \cdot \frac{n^3}{1+n^3}$$
,

(iv)
$$\lim_{n\to\infty} \frac{n^2+1}{n^3+1} (3+\frac{1}{n}).$$

(4) (5 Punkte)

Sei $(E, \|\cdot\|)$ ein normierter Vektorraum. Man beweise: Ist $\alpha_n \in \mathbb{R}$ eine Folge mit $\alpha_n \to \alpha \in \mathbb{R}$ und $x_n \in E$ eine Folge mit $x_n \to x \in E$, so gilt $\alpha_n x_n \to \alpha x \in E$. (Hinweis: Modifiziere den Beweis der Produktregel).

— Blatt 5 —

Abgabe: Freitag, 17.5.2002, 11 Uhr s.t.

(1) (5 Punkte)

Sei M eine Menge mit diskreter Metrik

$$d(x,y) := \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}.$$

Gebe eine notwendige und hinreichende Bedingung (= Charakterisierung) dafür, dass eine Folge $a_n \in M$ konvergiert, bzw. eine Cauchy-Folge ist. Ist (M, d) vollständig?

(2) (mündlich)

Sei (M,d) ein metrischer Raum. Beweise die folgende Aussage: Eine Folge $a_n \in M$ konvergiert gegen $a \in M$ genau dann, wenn für die Menge $N := \{\frac{n-1}{n}: n \geq 1\} \cup \{1\} \subset [0,1]$ die Abbildung

$$\varphi:N\to M$$
,

definiert durch

$$\varphi\left(\frac{n-1}{n}\right) := a_n,$$

$$\varphi(1) := a$$

stetig im Punkte $1 \in N$ ist.

(3) (4 Punkte)

Man beweise:

(i) Für $x, y \in \mathbb{R}$ gilt

$$\max(x, y) = \frac{1}{2}(x + y + |x - y|).$$

(ii) Sei *M* ein metrischer Raum.

Sind $f, g: M \to \mathbb{R}$ stetig, dann ist auch max $(f, g): M \to \mathbb{R}$ stetig.

(4) (5 Punkte)

Welche der folgenden Abbildungen $\varphi : \mathbb{R} \to \mathbb{R}$ ist stetig (mit Beweis):

(i)
$$\varphi(x) = \frac{x^3-2}{x^2+1}$$
,

(ii)
$$\varphi(x) = \begin{cases} \left| \frac{x-1}{x+1} \right| & x \neq -1 \\ 0 & x = -1 \end{cases}$$

(iii)
$$\varphi(x) = \begin{cases} \left| \frac{x+1}{x-1} \right| & x \neq 1 \\ 0 & x = 1 \end{cases}$$
,

(iv)
$$\varphi(x) = \begin{cases} x^2 & x \ge 0 \\ -x & x < 0 \end{cases}$$
.

— Blatt 6 —

Abgabe: Freitag, 24.5.2002, 11 Uhr s.t.

(1) (mündlich)

Prof. Dr. H. Upmeier

Sei M ein metrischer Raum und $a_n \in M$ eine Folge, so dass die Teilfolgen $b_n := a_{2n}$ und $c_n := a_{2n+1}$ konvergieren:

$$b_n \leadsto b, \quad c_n \leadsto c.$$

Man beweise:

- (i) Wenn b = c, dann ist (a_n) konvergent.
- (ii) Wenn $b \neq c$, dann ist (a_n) divergent.

(2) (4 Punkte)

Sei $I_n = [a_n, b_n]$ eine Folge abgeschlossener Intervalle mit $I_{n+1} \subset I_n$ für alle n ("Intervall-Schachtelung"). Man beweise (mit dem Konvergenz-Satz für monotone Folgen), dass

$$\bigcap_{n}I_{n}\neq\emptyset.$$

(3) (5 Punkte)

Sei $f:X\to Y$ eine Abbildung zwischen metrischen Räumen und sei

$$X = \bigcup_{i \in I} U_i$$

mit $U_i \subset X$ offen für alle $i \in I$ (beliebige Indexmenge). Man zeige:

$$f$$
 stetig $\iff \forall i \in I, f|_{U_i}$ stetig.

(4) (5 Punkte)

Bestimme

$$\sup \left\{ \frac{n-2}{n}; \ n \in \mathbb{N}, \ n \ge 1 \right\}$$

und

inf
$$\left\{ (-1)^n \left(1 - \frac{1}{n^2} \right) : n \in \mathbb{N}, n \ge 1 \right\}$$
.

— Blatt 7 —

Abgabe: Freitag, 31.5.2002, 11 Uhr s.t.

(1) (5 Punkte)

Untersuche (mit Beweis), welche der folgenden Teilmengen von \mathbb{R} beschränkt / abgeschlossen / kompakt sind:

- (i) $M_1 = \left\{ \frac{n-1}{n} : n \ge 1 \right\} \cup [1, 2],$
- (ii) $M_2 = \left\{ \frac{n^2+1}{n^2} : n \ge 1 \right\} \cup [0,1],$
- (iii) $M_3 = \bigcup_{n \geq 1} [n, n + \frac{1}{n}].$
- (2) (5 Punkte)
 - (i) Beweise die Formel

$$\sup (-X) = -\inf (X)$$

für (nach unten) beschränkte nicht-leere Teilmengen $X \subset \mathbb{R}$

- (ii) Seien $M, N \subset \mathbb{R}$ beschränkte nicht-leere Teilmengen. Bestimme $\sup (M \cup N)$ und $\inf (M \cup N)$ mit Hilfe von $\sup (M)$, $\sup (N)$ bzw. $\inf (M)$, $\inf (N)$ (mit ausführlichem Beweis).
- (3) (mündlich)

Sei M metrischer Raum. Man beweise: Die Vereinigung endlich vieler kompakter Mengen $K_1, \ldots, K_n \subset M$ ist wieder kompakt. Gilt dies auch für unendliche Vereinigungen?

(4) (4 Punkte)

Beweise: Für jede nicht-leere Menge $X \subset \mathbb{R}$ ist die Menge der oberen Schranken von X,

$$S := \{ s \in \mathbb{R} : \ s > X \}$$

abgeschlossen.

— Blatt 8 —

Abgabe: Freitag, 7.6.2002, 11 Uhr s.t.

(1) (4 Punkte)

Bestimme (mit Beweis) lim inf und lim sup für die Folgen:

(i)
$$a_n = (-1)^n \cdot \left(1 + \frac{1}{n}\right), n \ge 1,$$

(ii)
$$b_n = 1 + \frac{(-1)^n}{n}, n \ge 1,$$

- (iii) $c_n = a_n \cdot b_n$, $n \ge 1$.
- (2) (5 Punkte) Sei M ein metrischer Raum und $a_n \in M$ eine Cauchy-Folge. Zeige: Konvergiert eine Teilfolge $(a_{j(m)})$ gegen $a \in M$, so gilt $a_n \rightsquigarrow a$.
- (3) (5 Punkte)
 - (i) Seien X, Y metrische Räume und $f: X \to Y$ gleichmäßig stetig. Beweise: Ist $a_n \in X$ eine Cauchy-Folge, so ist $f(a_n) \in Y$ eine Cauchy-Folge.
 - (ii) Zeige, dass die Funktion

$$f:]0, \infty[\to \mathbb{R}, \ f(x) = \frac{1}{x^2}$$

nicht gleichmäßig stetig ist (obwohl sie stetig ist).

(4) (mündlich)

Sei K ein kompakter metrischer Raum und $a_n \in K$ eine Folge, so dass alle konvergenten Teilfolgen von (a_n) den gleichen Grenzwert $a \in K$ haben. Beweise, dass $a_n \rightsquigarrow a$.

— Blatt 9 —

Abgabe: Freitag, 14.6.2002, 11 Uhr s.t.

(1) (4 Punkte)

Prof. Dr. H. Upmeier

Bestimme (mit Beweis), wann eine Menge M, mit der diskreten Metrik, kompakt bzw. zusammenhängend ist.

(2) (4 Punkte)

Sei (M,d) ein metrischer Raum. Eine stetige Abbildung $\gamma:[0,1]\to M$ heißt ein Weg in M. M heißt weg-zusammenhängend, falls $\forall x,y\in M$ \exists Weg γ in M mit

$$\gamma(0) = x$$
, $\gamma(1) = y$.

Beweise:

- (i) Für jeden Weg γ in M ist die Bildmenge $\gamma([0,1]) \subset M$ zusammenhängend.
- (ii) Ist M weg-zusammenhängend, so ist M zusammenhängend.

(3) (mündlich)

Welche der folgenden Teilmengen des \mathbb{R}^2 , mit der euklidischen Metrik, sind zusammenhängend (mit Begründung)?

(i)
$$M = \{(x, y) : x < 1, y > 2\},\$$

(ii)
$$M = \mathbb{R}^2_1((-1,0)) \cup \mathbb{R}^2_1((1,0)),$$

(iii)
$$M = \mathbb{R}^2_1[(-1,0)] \cup \mathbb{R}^2_1[(1,0)],$$

(iv)
$$M = \bigcup_{n \geq 0} \{(t, nt): 0 \leq t \leq 1\}.$$

Skizziere jeweils diese Mengen.

(4) (6 Punkte)

Seien (X, d_X) und (Y, d_Y) metrische Räume. Für $Z := X \times Y$ setze

$$d_Z((x_1, y_1), (x_2, y_2)) := \max(d_X(x_1, x_2), d_Y(y_1, y_2)).$$

Nach Vorlesung ist dies eine Metrik auf Z. Beweise:

- (i) Die Projektionen pr_X, pr_Y sind gleichmäßig stetig.
- (ii) Eine Folge $z_n = (x_n, y_n) \in Z$ konvergiert genau dann gegen z = (x, y), wenn $x_n \rightsquigarrow x \in X$ und $y_n \rightsquigarrow y \in Y$.
- (iii) Falls X und Y kompakt sind, so gilt dies auch für Z.

— Blatt 10 —

Abgabe: Freitag, 21.6.2002, 11 Uhr s.t.

- (1) (5 Punkte)
 - (i) Sei $f:[a,b] \to \mathbb{R}$ stetig mit $f(a) \le a$ und $f(b) \ge b$. Zeige (über Zwischenwertsatz): $\exists x \in [a,b]$ mit f(x) = x (Fixpunkt von f).
 - (ii) Sei $g:[0,1] \to [0,1]$ stetig. Zeige: g hat einen Fixpunkt $x \in [0,1]$.
- (2) (5 Punkte) Sei $p(x)=x^{2n+1}+\sum\limits_{k=0}^{2n}a_k\,x^k$. Zeige: p hat eine Nullstelle $x\in\mathbb{R}$.
- (3) (4 Punkte)
 - (i) Beweise, dass eine abzählbare Vereinigung

$$A = \bigcup_{n \ge 0} A_n$$

abzählbarer Mengen $A_n \ (n \ge 0)$ wieder abzählbar ist.

(ii) Beweise, dass die Menge

$$A := [0,1] \setminus \mathbb{Q} = \{x \in [0,1] : x \text{ irrational}\}\$$

nicht abzählbar ist.

(4) (mündlich)

Beweise: Die Menge $2^{\mathbb{N}}$ aller Bitfolgen ist nicht abzählbar.

— Blatt 11 —

Abgabe: Freitag, 28.6.2002, 11 Uhr s.t.

(1) (5 Punkte)

Zeige, dass die 3-te Wurzelfunktion

$$f(x) := x^{1/3}$$

eine umkehrbar stetige Abbildung $f:[0,\infty[\to [0,\infty[$ definiert, welche in $0\in\mathbb{R}$ nicht differenzierbar ist.

(2) (5 Punkte)

Berechne f([-10, 5]) für das Polynom

$$f(x) = -x^3 - 6x^2 + 36x + 17.$$

(3) (4 Punkte)

Auf welchen abgeschlossenen Intervallen ist

$$f(x) = x^4 - \frac{4}{3}x^3 - 10x^2 - 12x + 21$$

streng monoton wachsend bzw. fallend?

(4) (mündlich)

Beweise im Detail: Eine stetige Funktion $f:U\to\mathbb{R}$ ist genau dann in $o\in U$ differenzierbar, wenn die Funktion $g:U\setminus\{o\}\to\mathbb{R}$, definiert durch

$$g(x) := \frac{f(x) - f(o)}{x - o}$$

eine stetige Fortsetzung \hat{g} auf U hat (d.h. $\hat{g}: U \to \mathbb{R}$ stetig und $\hat{g}|_{U \setminus \{o\}} = g$).

— Blatt 12 —

Abgabe: Freitag, 5.7.2002, 11 Uhr s.t.

(1) (5 Punkte)

Prof. Dr. H. Upmeier

Sei $I \subset \mathbb{R}$ ein offenes Intervall und $f: I \to \mathbb{R}$ differenzierbar. Beweise:

- (i) Ist $f'(x) > 0 \quad \forall x \in I$, dann ist f streng monoton wachsend.
- (ii) Ist $f'(x) \leq 0 \quad \forall x \in I$, dann ist f monoton fallend.

Gilt in (i) bzw. (ii) auch die Umkehrung?

(2) (5 Punkte)

Seien $f,g:[a,\infty]\to\mathbb{R}$ stetig und differenzierbar auf $[a,\infty]$. Man beweise:

(*)
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

unter den Voraussetzungen

- (i) $\lim_{x \to \infty} f(x) = 0 = \lim_{x \to \infty} g(x)$
- (ii) $g'(x) \neq 0 \quad \forall x > a$
- (iii) der rechte Limes in (*) existiert.

(Führe durch $y:=\frac{1}{x-a}$ auf die "klassische" Regel von de l'Hospital zurück.)

(3) (mündlich)

Finde eine differenzierbare Funktion $f: \mathbb{R} \to \mathbb{R}$, welche nicht zweifach differenzierbar ist.

(4) (4 Punkte)

Bestimme das n-te Taylorpolynom für

- (i) $f(x) := x^k$ um o := 0,
- (ii) $f(x) := x^k$ um o := 1,
- (iii) $f(x) := \frac{1}{x}$ um o := -1.

— Blatt 13 —

Abgabe: Freitag, 12.7.2002, 11 Uhr s.t.

(1) (3 Punkte)

Prof. Dr. H. Upmeier

Welche der folgenden Reihen sind konvergent bzw. divergent (mit Beweis)?

(i)
$$\sum_{n=0}^{\infty} \frac{n^2}{n^3+1}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

(iii) Berechne den Reihenwert

$$\sum_{n=0}^{\infty} \left[2^{-n} - \left(\frac{-3}{4} \right)^{n+2} \right]$$

(2) (3 Punkte)

Bestimme das offene Konvergenzintervall der folgenden Potenzreihen:

(i)
$$\sum_{n=0}^{\infty} \frac{n}{n+1} 3^{n+1} \cdot x^n$$

(ii)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^n}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^{2n+1}$$

(3) (3 Punkte)

Berechne

$$\sup_{n\in\mathbb{N}} \left(\sqrt{n+1} - \sqrt{n}\right) \quad \text{und} \quad \inf_{n\in\mathbb{N}} \left(\sqrt{n+1} - \sqrt{n}\right) \, .$$

(4) (3 Punkte)

Sei $x_n \in \mathbb{R}$ eine beschränkte Folge. Zeige: Für alle konvergenten Teilfolgen $(x_{j(m)})$ von (x_n) gilt

$$\lim_{m} x_{j(m)} \leq \lim \sup_{n} x_{n}.$$

(5) (3 Punkte)

Sei $c \in]a, b[$ und $f : [a, b] \to \mathbb{R}$ stetig und auf $]a, b[\setminus \{c\}]$ differenzierbar.

Zeige: Falls $\lim_{c \neq x \to c} f'(x)$ existiert, ist f in c differenzierbar mit $f'(c) = \lim_{c \neq x \to c} f'(x)$.

Hinweis: Wende de l'Hospital an.