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Abstract. Motivated by questions in algebra and combinatorics we study two ideals associated

to a simple graph G:
• the Lovász-Saks-Schrijver ideal defining the d-dimensional orthogonal representations of

the graph complementary to G and

• the determinantal ideal of the (d + 1)-minors of a generic symmetric with 0s in positions
prescribed by the graph G.

In characteristic 0 these two ideals turn out to be closely related and algebraic properties such

as being radical, prime or a complete intersection transfer from the Lovász-Saks-Schrijver ideal
to the determinantal ideal. For Lovász-Saks-Schrijver ideals we link these properties to combi-

natorial properties of G and show that they always hold for d large enough. For specific classes

of graphs, such a forests, we can give a complete picture and classify the radical, prime and
complete intersection Lovász-Saks-Schrijver ideals.

Introduction

Let k be a field, n ≥ 1 be an integer and set [n] := {1, . . . , n}. For a simple graph G = ([n], E)
with vertex set [n] and edge set E we study the following two classes of ideals associated to G.

• Lovász-Saks-Schrijver ideals:
For an integer d ≥ 1 we consider the polynomial ring k[yi,` | i ∈ [n], ` ∈ [d]]. For every

edge e = {i, j} ∈
(

[n]
2

)
we set

f (d)
e =

d∑
`=1

yi` yj`.

The ideal

Lk
G(d) = ( f (d)

e | e ∈ E ) ⊆ k[yi,` | i ∈ [n], ` ∈ [d]]

is called the Lovász-Saks-Schrijver ideal, LSS-ideal for short, of G with respect to k. The
ideal Lk

G(d) defines the variety of orthogonal representations of the graph complementary
to G (see [28, 27]).

• Coordinate sections of generic (symmetric) determinantal ideals:
Consider the polynomial ring k[xij | 1 ≤ i ≤ j ≤ n] and let X be the generic n × n
symmetric matrix, that is, the (i, j)-th entry of X is xij if i ≤ j and xji if i > j. Let
Xsym
G be the matrix obtained from X by replacing the entries in positions (i, j) and (j, i)

for {i, j} ∈ E with 0. For an integer d let Ik
d (Xsym

G ) ⊆ k[xij | 1 ≤ i ≤ j ≤ n] be the ideal
of d-minors of Xsym

G . The ideal Ik
d (Xsym

G ) defines a coordinate hyperplane section of the
generic symmetric determinantal variety. Similarly, we consider ideals defining coordinate
hyperplane sections of the generic determinantal varieties and the generic skew-symmetric
Pfaffian varieties.

We observe in Section 7 that the ideal Ik
d+1(Xsym

G ) and the ideal Lk
G(d) are closely related.

Indeed, if k has characteristic 0 classical results from invariant theory can be employed to show
that Ik

d+1(Xsym
G ) is radical (resp. is prime, resp. has the expected height) provided Lk

G(d) is
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radical (resp. is prime, resp. is a complete intersection). We also exhibit similar relations between
variants of Lk

G(d) and ideals defining coordinate sections of determinantal and Pfaffian ideals.
These facts turn the focus on algebraic properties of the LSS-ideals Lk

G(d). In particular, we
analyze the questions: when is Lk

G(d) a radical ideal? when is it a complete intersection? when
is it a prime ideal? We show that for d large enough all three properties hold for Lk

G(d). Among
others, we are able to give necessary conditions that lead to a full classification of graphs for
which Lk

G(d) is a complete intersection or prime in case of small d. In characteristic 0 we deduce
sufficient conditions for Ik

d+1(Xsym
G ) to be radical, prime or of expected height. To our knowledge

coordinate sections of determinantal varieties have been systematically studied only in the case of
maximal minors, for example the results in [5, 17, 18].

The study of the properties of LSS-ideals has its roots in the work Lovász on orthogonal graph
embeddings (see [27] for references, motivation and an overview) and we think it is interesting in
its own. An orthogonal embedding of a graph G in Rd is a map φ : V → Rd where φ(i) ⊥ φ(j)
if {i, j} is an edge in the edge set Ē of the graph Ḡ complementary to G. Thus by definition
the real variety associated to the LSS-ideal LR

Ḡ
(d) of the complementary graph Ḡ coincides with

the set of all orthogonal graph embeddings of G in Rd. Note that the variety includes degenerate
embeddings that are not injective or send vertices to the zero vector. Since the geometry of the
variety of orthogonal graph embeddings was first studied in [28] the ideals Lk

G(d) carry the name
Lovász-Saks-Schrijver ideals. Indeed, many of our algebraic results are inspired by results from
[27, 28] about the geometry of the real variety of (general position) orthogonal embeddings.

For d = 1, 2 LSS-ideals are well understood objects. For d = 1 the LSS-ideal Lk
G(1) is called

edge ideal of the graph G. As a squarefree monomial ideal it is clearly a radical ideal with respect
to every field. It is prime only when E is empty and a complete intersection if and only if G is
a matching, i.e. any two edges in E have empty intersection. Starting from d = 2 the properties
of being radical, prime and complete intersection become more subtle. For the results in this case
see [22]. For d > 2 we know of no general results beyond the ones described in Section 2.

In Section 1.2 we generalize LSS-ideals to hypergraphs. We are able to state a few of the
results from Section 2 in this generality. But most questions on hypergraph LSS-ideals remain
unanswered. Nevertheless, extending the link between LSS-ideals for graphs and ideals of minors,
hypergraph LSS-ideals for uniform hypergraphs can be related to the closure of the space of
symmetric tensors of bounded rank with prescribed 0s in the their expansion in the standard basis
(see Proposition 8.10).

The paper is organized as follows. In Section 1 we introduce basic concepts and notation from
graph theory and Gröbner bases theory. Then in Section 2 we formulate our main results on LSS-
ideals and sketch some of the proofs. In Section 3 we provide the proofs for the results showing
persistence of the properties complete intersection and primeness. In particular, it follows that
for fixed d there are graphs which are minimal obstructions to these properties. In Section 4
we exhibit some of these obstructions and prove their necessity. For small d we give complete
characterizations of graphs with prime or complete intersection LSS-ideals. In Section 5 we define
a new combinatorial invariant for graphs. We use it to prove that Lk

G(d) is radical, complete
intersection or prime for d large enough. In Section 6 we define our notation for ideals of minors
and Pfaffians of generic matrices and recall classical results about their relation to invariant theory.
Then in Section 7 we use this connection to invariant theory to prove that if Lk

G(d) is radical or
prime then same property hold for the ideal of (d+ 1) minors of generic matrices with positions of
0s prescribed by a graph G. In addition, we give obstructions on G preventing the corresponding
ideals of minors to be prime. Finally, in Section 8 we pose questions and state open problems.

1. Notations and generalities

1.1. Graph and Hypergraph Theory. In the following we introduce graph theory notation.
We mostly follow the conventions from [12]. For us a graph G = (V,E) is a simple graph on a

finite vertex set V . In particular, E is a subset of the set of 2-element subsets
(
V
2

)
of V . In most

of the cases we assume that V = [n] := {1, . . . , n}. A subgraph of a graph G = (V,E) is a graph
G′ = (V,E′) such that E′ ⊆ E. More generally, a hypergraph H = (V,E) is a pair consisting
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of a finite set of vertices V and a set E of subsets of V . We are only interested in the situation
when the sets in E are inclusionwise incomparable. Such a set of subsets is called a clutter. In
particular, if G = (V,E) is a graph then G is a hypergraph and E is a clutter.

For d,m, n > 0 we will use the following notations:

• Kn denotes the complete graph on n vertices ([n],
(

[n]
2

)
),

• Km,n denotes the complete bipartite graph ([m] ∪ [ñ], {{i, j̃} : i ∈ [m], j̃ ∈ [ñ] } with

bipartition [m] and [ñ] = {1̃, . . . , ñ}.
• Bn denotes the subgraph of Kn,n obtained by removing the edges {i, ĩ} with i = 1, . . . , n.
• For n > 2 we denote by Cn the n-cycle, i.e. the subgraph ofKn with edges {1, 2}, {2, 3}, . . . ,
{n− 1, n}, {n, 1}.

• For n > 1 we denote by Pn the path of length n− 1, i.e. the subgraph of Kn with edges
{1, 2}, {2, 3}, . . . , {n− 1, n}.

We denote by Ḡ = (V, Ē) with Ē =
(
V
2

)
\ E the graph complementary to G = (V,E). Let

W ⊆ V . We write GW = (W, {e ∈ E : e ⊆ W}) for the graph induced by G on vertex set W
and G−W for the subgraph induced by G on V \W . In case W = {v} for some v ∈ V we simply
write G− v for G− {v}.

A graph G = (V,E) on a vertex set V of size ≥ k + 1 is called k-(vertex)connected if for every

W ⊂ V with |W | = k − 1 the graph G −W is connected. By deg(v) :=
∣∣∣ {e ∈ E | v ∈ e} ∣∣∣ we

denote the degree of the vertex v and by ∆(G) = maxv∈V deg(v) the maximal degree of a vertex
in G. Clearly, if G is k-connected then every vertex has degree at least k and ∆(Ḡ) ≤ n− k − 1,
where n = |V |. Finally, we denote by ω(G) the clique number of G, i.e. the largest a such that G
contains a copy of a complete subgraph Ka.

The following well known fact follows directly from the definitions.

Lemma 1.1. Given a graph G = ([n], E) and an integer 1 ≤ d ≤ n the following conditions are
equivalent:

(1) Ḡ is (n− d)-connected.
(2) G does not contain a subgraph Ka,b with a+ b = d+ 1.

1.2. Basics on LSS-ideals and their generalization to hypergraphs. Let H = (V,E) be a
hypergraph. We define for e ∈ E

f (d)
e =

d∑
`=1

∏
i∈e

yi`.

If E is a clutter we call the ideal

Lk
H(d) = ( f (d)

e | e ∈ E ) ⊆ k[yi,` | i ∈ [n], ` ∈ [d]]

the LSS-ideal of the hypergraph H.
It will sometimes be useful to consider Lk

H(d) as a multigraded ideal. For that we equip
k[yi,` | (i, `) ∈ [n]× [d]] with the multigrading induced by deg(yi,`) = ei for the i-th unit vector ei

in Zn and (i, `) ∈ V × [d]. Clearly, for e ∈ E the polynomial f
(d)
e is multigraded of degree

∑
i∈e ei.

In particular, Lk
H(d) is Zn-multigraded. The following remark is an immediate consequence of

the fact that if E is a clutter the two polynomials f
(d)
e and f

(d)
e′ corresponding to distinct edges

e, e′ ∈ E have incomparable multidegrees.

Remark 1.2. Let H = ([n], E) be a hypergraph such that E is clutter. The generators f
(d)
e , e ∈ E,

of Lk
H(d) form a minimal system of generators. In particular, Lk

H(d) is a complete intersection if

and only if the polynomials f
(d)
e , e ∈ E, form a regular sequence.

The following alternative description of Lk
G(d) for a graph G turns out to be helpful in some

places.

Remark 1.3. Let G = ([n], E) be a graph. Consider the n× d matrix Y = (yi,`). Then Lk
G(d) is

the ideal generated by the entries of the matrix Y Y T in positions (i, j) with {i, j} ∈ E. Here Y T

denotes the transpose of Y .
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Similarly, for a bipartite graph G, say a subgraph of Km,n, one considers two sets of variables

yij with (i, j) ∈ [m]× [d], yĩj with (i, j) ∈ [ñ]× [d] and the matrices Y = (yij) and Ỹ = (yĩj). Then

Lk
G(d) coincides with the ideal generated by the entries of the product matrix Y Ỹ T . in positions

(i, j) for {i, j̃} ∈ E

1.3. Gröbner Bases. We use the following notations and facts from Gröbner bases theory, see
for example [4] for proofs and details. Consider the polynomial ring k[yij | (i, j) ∈ [n]× [d]]. For
a vector w = (wij)(i,j)∈[n]×[d] ∈ Rnd and a polynomial

f(y) =
∑

α∈N[n]×[d]

aαyα

we set mw(f) = maxaα 6=0{α ·w} and

inw(f) =
∑

α·w=mw(f)

aα · yα.

The latter is called the initial term of f with respect to w. For a fixed term order ≺ and w ∈ R[n]×[d]

we set yα ≺ω yβ if and only if either α ·w < β ·w or α ·w = β ·w and yα ≺ yβ .
The following will allows us to deduce properties of ideals from properties of their initial ideals.

Proposition 1.4. Let I be a homogeneous ideal in the polynomial ring S, ≺ a term order on
S and w ∈ Rnd. If in≺(I) or inw(I) is radical (resp. a complete intersection, prime) then
so is I. Moreover, if for generators f1, . . . , fr of I the initial terms in≺(f1), . . . , in≺(fr) (resp.
inw(f1), . . . , inw(fr)) form a regular sequence then f1, . . . , fr form a regular sequence and are a
Gröbner basis for I.

2. Results and counterexamples for Lovász-Saks-Schrijver ideals

For the first part of this section let G = (V,E) be a graph. We start by studying radicality of
Lk
G(d). As mentioned in the Introduction Lk

G(1) is always radical for trivial reasons. For d = 2
the following result from [22] gives a complete answer.

Theorem 2.1 (Thm. 1.1 [22]). Let G = ([n], E) be a graph. If char k 6= 2 then the ideal Lk
G(2) is

radical. If char k = 2 then Lk
G(2) is radical if and only if G is bipartite.

The next examples show that Lk
G(3) need not be radical. In the examples we assume that k

has characteristic 0 but we consider it very likely that the ideals are not radical over any field.
A quick criterion implying that an ideal J in a polynomial ring S is not radical is to identify

an element g ∈ S such that J : g 6= J : g2. We call such a g a witness (of the fact that J is not
radical). Of course the potential witnesses must be sought among the elements that are somehow
“closely related” to J . Alternatively, one can try to compute the radical of J or even its primary
decomposition directly and read off whether J is radical. But these direct computations are
extremely time consuming for LSS-ideals and did not terminate on our computers in the examples
below. Nevertheless, in all examples we have quickly identified witnesses.

Example 2.2. We present three examples of graphs G such that Lk
G(3) is not radical over any field

k of characteristic 0. The first example has 6 vertices and 9 edges and it is the smallest example
we have found (both in terms of edges and vertices). The second example has 7 vertices and 10
edges and it is a complete intersection. This shows that Lk

G(3) can be a complete intersection
without being radical. The third example is bipartite, a subgraph of K5,4 with 12 edges, and is
the smallest bipartite example we have found. In all cases, since the LSS-ideal Lk

G(3) has integral
coefficients, we may assume that k = Q and exhibit a witness g, i.e. a polynomial g such that
Lk
G(3) : g 6= Lk

G(3) : g2. The latter inequality can be checked with the help of CoCoA [1] or
Macaulay 2 [19].

(1) Let G be the graph with 6 vertices and 9 edges depicted in Figure 1(1), i.e. with edges

E = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 6}, {3, 5}, {4, 6}}.
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Figure 1. Graphs G with non-radical Lk
G(3)

Here the witness can be chosen as follows. Denote by Y = (yij) a generic 6 × 3

matrix. As discussed in Remark 1.3 the ideal LQ
G(3) is generated by the entries of Y Y T

corresponding to the positions in E. Now g can be taken as the 3-minor of Y with row
indices 1, 5, 6.

(2) Let G be the graph with 7 vertices and 10 edges depicted in Figure 1(2), i.e. with edges

E = {{1, 2}, {1, 4}, {1, 5}, {2, 3}, {2, 7}, {3, 4}, {3, 7}, {4, 5}, {5, 6}, {6, 7}}.
Here the witness can be chosen as follows. Denote by Y = (yij) a generic 7 × 3 matrix.

Again as discussed in Remark 1.3 the ideal LQ
G(3) is generated by the entries of Y Y T

corresponding to the positions in E. Now g can be taken as the 3-minor of Y with row

indices 1, 2, 4. The fact that LQ
G(3) is a complete intersection can be checked quickly with

CoCoA [1] or Macaulay 2 [19].
(3) Let G be the subgraph of the complete bipartite graph K5,4 depicted in Figure 1(3), i.e.

with edges

E = {{1, 1̃}, {1, 2̃}, {1, 3̃}, {1, 4̃}, {2, 1̃}, {2, 2̃}, {3, 2̃}, {3, 3̃}, {4, 3̃}, {4, 4̃}, {5, 1̃}, {5, 4̃}}.
Denote by X = (xij) a generic 5× 3 matrix and by Y = (yij) a generic 3× 4 matrix. As

explained in Remark 1.3 the ideal LQ
G(3) is generated by the entries of XY corresponding

to the positions in E. Now the witness g can be taken to be the 3-minor of X corresponding
to the column indices 1, 2, 4.

The following result shows that the properties complete intersection and prime for Lk
G(d) are

closely linked and persist once they occur.

Theorem 2.3. Let G = ([n], E) be a graph. Then:

(1) If Lk
G(d) is prime then Lk

G(d) is a complete intersection.
(2) If Lk

G(d) is a complete intersection then Lk
G(d+ 1) is prime.

(3) If Lk
G(d) is prime then Lk

G(d+ 1) is prime.
(4) If Lk

G(d) is a complete intersection then Lk
G(d+ 1) is a complete intersection.

(5) If Lk
G(d) is a complete intersection then Lk

G′(d) is a complete intersection for every sub-
graph G′ of G.

(6) If Lk
G(d) is a prime then Lk

G′(d) is prime for every subgraph G′ of G.

The proof of the theorem consists of several steps that we first briefly sketch and then present
in full detail in Section 3.

Sketch of the proof. To prove (1) and (2) we interpret Lk
G(d) as the defining ideal of the symmetric

algebra of a module over the quotient of the polynomial ring by Lk
G−n(d). Then we show that the

statement follows by induction on n employing a result of Avramov [2, Prop. 3] characterizing
complete intersection symmetric algebras and a result of Huneke [24, Thm 1.1] characterizing
symmetric algebras that are domains.
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To prove (3) and (4) we consider the vector v = (vij)(i,j)∈[n]×[d+1] ∈ Rn(d+1) with entries vij = 1

if (i, j) ∈ [n]× [d] and vi,d+1 = 0 for every i ∈ [n]. Observe that inv(f
(d+1)
e ) = f

(d)
e for all e ∈ E.

Therefore, inv(Lk
G(d+ 1)) ⊆ Lk

G(d). Either Lk
G(d) is a complete intersection by assumption or by

(1) in case the assumption is that Lk
G(d) is prime. This implies that inv(Lk

G(d+1)) = Lk
G(d). Then

the assertions follow by the transfer of properties from inv(J) to J as recalled in Proposition 1.4.
Assertion (5) is obvious. For (6) one observes that by (1) Lk

G(d) is also a complete intersection.
It is a general fact that if a regular sequence of homogeneous polynomials generates a prime ideal
then so does every subsequence. �

Remark 2.4. There is no persistence result for the property of being radical. Indeed, we already
have seen that Lk

G(1) is always radical and Lk
G(2) is always radical in case char k 6= 2. On the

other hand Example 2.2 gives examples of a non-radical Lk
G(3). Simple examples also show that

radicality is not inherited by subgraphs.
On the other hand radicality is inherited by induced subgraphs. This follows from the fact that

for every subset W ⊆ V one has

Lk
GW (d) = Lk

G(d) ∩ k[yij : i ∈W, j ∈ [d]].

as can be checked using the multigraded structure.

We will now see that Lk
G(d) is a complete intersection and prime (and hence radical) for d large

enough.
We prove this fact in Section 5. Indeed, more generally we show that for d� 1 and a hypergraph

H = (V,E), where E is a clutter, the hypergraph LSS-ideals Lk
H(d) is radical and a complete

intersection.
As a vehicle we define a purely (hyper)graph theoretic invariant pmd(H) ∈ N called the positive

matching decomposition of H and show the following.

Theorem 2.5. Let H = (V,E) be a hypergraph for a clutter E. Then:

(1) For all d ≥ pmd(H) the ideal Lk
H(d) has a radical complete intersection initial ideal.

(2) For all d ≥ pmd(H) the ideal Lk
H(d) is a radical complete intersection.

(3) If G = (V,E) is graph then for all d ≥ pmd(G) + 1 the ideal Lk
G(d) is prime.

(4) If G = (V,E) is a graph then pmd(G) ≤ min{2|V |−3, |E|} Furthermore, if G is a bipartite
graph then pmd(G) ≤ min{|V | − 1, |E|}.

The proof of the theorem consists of several steps that we first briefly sketch and then present
in full details in Section 5.

Sketch of the proof. We show that for every d ≥ pmd(G) there exists a vector v = (vij)(i,j)∈[n]×[d] ∈
Rnd such that the set {inv(f

(d)
e ) : e ∈ E} consists of pairwise coprime monomials. It follows that

inv(Lk
G(d)) = (inv(f

(d)
e ) : e ∈ E) and hence inv(Lk

G(d)) is radical and a complete intersection. This
complete the proof of (1). By Proposition 1.4 then (2) is implied. Therefore, in the graph case
Theorem 2.3(2) implies (3). The claim (4) is derived by simple estimates using the combinatorial
structure of the graph. �

For complete graphs G = Kn and char k = 0 we provide asymptotic (in terms of n) results on

when LKnG (d) is radical, complete intersection or prime in Proposition 7.6 and Corollary 7.7 using

the transfer of properties from LKnG (d) to Ik
d+1(Xsym

G ) and bounds derived using Gröbner basis
arguments in Corollary 5.5.

For the case of complete bipartite graphs Km,n results by De Concini and Strickland [13] or
Musili and Seshadri [31] imply (1)-(3) of the following theorem.

Theorem 2.6. Let G = Km,n. Then:

(1) Lk
G(d) is radical for every d.

(2) Lk
G(d) is a complete intersection if and only if d ≥ m+ n− 1.

(3) Lk
G(d) is prime if and only if d ≥ m+ n.

(4) pmd(G) = m+ n− 1.
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Proof. Taking into account Remark 1.3, the assertions (1), (2), and (3) follow form general results
on the variety of complexes proved from [13] and, with different techniques, from [31]. It has been
observed by Tchernev [33] that the assertions in [13] that refer to the so-called Hodge algebra
structure of the variety of complexes in [13] are not correct. However, those assertions can be
replaced with statements concerning Gröbner bases as it is done, for example, in a similar case in
[33]. Hence, (1),(2) and (3) can still be deduced from the arguments in [13]. Alternative proofs of
(2) and (3) are given also in Section 4. Assertion (4) is proved in Section 5. �

Seeing Theorem 2.6(2) and (3) one may wonder if the assertion (2) in Theorem 2.3 can be
reversed. The next example shows that in general this is not the case:

Example 2.7. Let G = Cn be the n-cycle. If n is even and n 6= 4 then the ideal Lk
G(d) is prime

if and only if it is a complete intersection if and only if d ≥ 3. These assertions are special cases
of the subsequent Theorem 2.9.

In view of Theorem 2.3 for fixed d and k the graphs G for which Lk
G(d) is a complete intersection

or prime define (downward) monotone graph properties. Thus by persistence there are graphs G
and numbers d such that Lk

G(d) is not prime, Lk
G′(d) is prime for each proper subgraph G′ of

G and Lk
G(d + 1) is prime. Such a pair G and d can be considered as a “minimal obstruction”

to primeness. Similarly, we have minimal obstructions to being a complete intersection. The
next results are first steps towards a classification of minimal obstructions. The results are partly
inspired by theorems from Lovász’s book [27, Ch. 9.4].

Proposition 2.8. Let G = ([n], E). Then we have:

(1) If Lk
G(d) is prime then G does not contain a subgraph isomorphic to Ka,b with a+b = d+1,

i.e. Ḡ is (n−d)-connected. Furthermore, if d > 3 and char k = 0 then G does not contain
a subgraph isomorphic to Bd.

(2) If Lk
G(d) is a complete intersection then G does not contain a subgraph isomorphic to Ka,b

with a+ b = d+ 2, i.e. Ḡ is (n− d+ 1)-connected. Furthermore, if d > 2 and char k = 0
then G does not contain a subgraph isomorphic to Bd+1.

Further obstructions are derived from Proposition 7.6 in Corollary 7.8. For example, in charac-
teristic 0, if Lk

G(6) is prime then G cannot contain K6. But for small values of d the implications
of Proposition 2.8 are actually equivalences.

Theorem 2.9. Let G be a graph.

(1) For d ≤ 3 then the following are equivalent:
(a) Lk

G(d) is prime.
(b) G does not contain a subgraph isomorphic to Ka,b with a+ b = d+ 1.
(c) Ḡ is (n− d)-connected.

(2) For d ≤ 2 the following conditions are equivalent:
(a) Lk

G(d) is a complete intersection
(b) G does not contain a subgraph Ka,b with a+ b = d+ 2 and when d = 2 the graph G

does not contain an even cycle.
(c) Ḡ is (n − d + 1)-connected and when d = 2 the graph G does not contain an even

cycle.

For forests (i.e. graphs without cycles) we can give a quite complete picture.

Theorem 2.10. Let G be a forest and k any field. Then:

(1) Lk
G(d) is radical for all d.

(2) Lk
G(d) is a complete intersection if and only if d ≥ ∆(G).

(3) Lk
G(d) is prime if and only if d ≥ ∆(G) + 1.

The main tool in the proof of Theorem 2.10 is the notion of Cartwright-Sturmfels ideals devel-
oped in [9, 10, 11] and inspired by [7, 8]. Indeed it turns out that for a forest G the ideal Lk

G(d)
is a Cartwright-Sturmfels ideal.
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3. Stabilization of algebraic properties of Lk
G(d)

In this section we prove Theorem 2.3 and state some of its consequences. Before embarking in
the proofs we need to recall important results on properties of the symmetric algebra of a module.
We will state the results in the way that suit our needs best.

Recall that, given a ring R and an R-module M presented as the cokernel of an R-linear map

f : Rm → Rn

the symmetric algebra SymR(M) ofM is (isomorphic to) the quotient of SymR(Rn) = R[x1, . . . , xn]
by the ideal J generated by the entries of A (x1, . . . , xn)T where A is the m×n matrix representing
f . Vice versa every quotient of R[x1, . . . , xn] by an ideal J generated by homogeneous elements
of degree 1 in the xi’s is the symmetric algebra of an R-module.

Part (1) of the following is a special case of [2, Prop. 3] and part (2) a special case of [24, Thm
1.1]. Here and in the rest of the paper we denote for a matrix A with entries in a ring R and a
number t by It(A) the ideal generated by the t-minors of A in R.

Theorem 3.1. Let R be a complete intersection. Then

(1) SymR(M) is a complete intersection if and only if height It(A) ≥ m − t + 1 for all t =
1, . . . ,m.

(2) SymR(M) is a domain and Im(A) 6= 0 if and only if R is a domain, and height It(A) ≥
m− t+ 2 for all t = 1, . . . ,m.

The equivalent conditions of (2) imply those of (1).

Remark 3.2. Let G = ([n], E) be a graph. The (multigraded) ideal Lk
G(d) ⊆ S = k[yi,j : i ∈

[n], j ∈ [d]] is generated by elements that have degree at most one in each block of variables.
Hence Lk

G(d) can be seen as an ideal defining a symmetric algebra in various ways.
For example, set G1 = G−n, U = {i ∈ [n−1]|{i, n} ∈ E}, u = |U |, S′ = k[yi,j : i ∈ [n−1], j ∈

[d]] and R = S′/Lk
G1

(d). Then S/Lk
G(d) is the symmetric algebra of the cokernel of the R-linear

map
Ru → Rd

associated to the u× d matrix A = (yij) with i ∈ U and j = 1, . . . , d.

Remark 3.3. In order to apply Theorem 3.1 to the case described in Remark 3.2 it is important
to observe that for every G no minors of the matrix (yij)(i,j)∈[n]×[d] vanish modulo Lk

G(d). This

is because Lk
G(d) is contained in the ideal J generated by the monomials yikyjk and the terms in

the minors of (yij) do not belong to J for obvious reasons.

We will formulate our next results in terms of the following algebraic invariants. Given an
algebraic property P of ideals and a graph G we set

asymk(P, G) = inf{d : Lk
G(d′) has property P for all d′ ≥ d}.

Here we are of course interested in the properties P ∈ {radical, c.i.,prime}. Other properties
of ideals such as defining a normal ring or a UFD are interesting as well but will not be treated
here.

Before we use this new notation we provide the proof of Theorem 2.3(4) and (5).

Proof of Theorem 2.3(4) and (5). Assume Lk
G(d) is a complete intersection. Then each minimal

generating set is a regular sequence. By Remark 1.2 the f
(d)
e for e ∈ E form a minimal generating

set and hence a regular sequence. In particular, each subset is a regular sequence as well. From
this (5) follows.

For (4) we consider the vector w assigning weight 1 to all variables yi` for (i, `) ∈ V × [d] and

weight 0 to all other variables. Then inw(f
(d′)
e ) = f

(d)
e for every d′ ≥ d and e ∈ E. Hence the

initial forms of the generators of LG(d′) form a regular sequence. It follows that the f
(d′)
e , e ∈ E,

form a regular sequence and hence Lk
G(d′) is a complete intersection. �

In terms of asymk(c.i., G) Theorem 2.3(4) yields the following corollary.
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Corollary 3.4. Let G = (V,E) be a graph. Then

asymk(c.i., G) = inf{d : Lk
G(d) is c.i.}.

Now we are in position to prove Theorem 2.3 (1) and (6).

Proof of Theorem 2.3 (1) and (6). First we show that (1) implies (6). From Remark 1.2 we know

that the f
(d)
e , e ∈ E, form a minimal system of generators. Thus if Lk

G(d) is a complete intersection
then these generators form a regular sequence. If a regular sequence generates a prime ideal in
a standard graded algebra or in a local ring then so does every subset of the sequence. Now (6)
follows.

To prove (1) we argue by induction on the number n of vertices. As usual we assume V = [n].
The case n ≤ 2 is trivial. We use the notation from Remark 3.2. Note, that S′/Lk

G1
(d) is an

algebra retract of S/Lk
G(d). Therefore Lk

G1
(d) = Lk

G(d)∩S′ and so Lk
G1

(d) is prime. By induction

it follows that Lk
G1

(d) is a complete intersection. Since u is the degree of the vertex n in G we have
that K1,u ⊂ G and hence, by Proposition 2.8, 1 + u < d+ 1, i.e. u < d. By virtue of Remark 3.3
we have that the minors of the matrix A are non-zero in S′/Lk

G1
(d). In particular, Iu(A) 6= 0 in

S′/Lk
G1

(d) and hence (2) in Theorem 3.1 holds. Then (1) in Theorem 3.1 holds as well, i.e. Lk
G(d)

is a complete intersection. �

As an immediate corollary of Theorem 2.3(1) we obtain.

Corollary 3.5. Let G = (V,E) be a graph. Then asymk(c.i., G) ≤ asymk(prime, G).

Before we can proceed to the proof of Theorem 2.3(2), we need another technical lemma.

Lemma 3.6. Let A be an m × n matrix with entries in a Noetherian ring R. Assume m ≤ n.
Let S = R[x] = R[x1, . . . , xm] be a polynomial ring over R and let B be the m × (n + 1) matrix
with entries in S obtained by adding the column (x1, . . . , xm)T to A. Then we have height I1(B) =
height I1(A) +m and

height It(B) ≥ min{height It−1(A),height It(A) +m− t+ 1}
for all 1 < t ≤ m.

Proof. Set u = min{height It−1(A),height It(A)+m−t+1}. Let P be a prime ideal of S containing
It(B). We have to prove that heightP ≥ u. If P ⊇ It−1(A) then heightP ≥ height It−1(A) ≥ u.
If P 6⊇ It−1(A) then we may assume that the (t−1)-minor F corresponding to the first (t−1) rows
and column of A is not in P . Hence, heightP = heightPRF [x] and PRF [x] contains It(A)RF [x]
and (xj − F−1Gj : j = t, . . . ,m) with Gj ∈ R[x1, . . . , xt−1]. Since the elements xj − F−1Gj are
algebraically independent over RF we have

heightPRF [x] ≥ height It(A)RF + (m− t+ 1) ≥ height It(A) + (m− t+ 1).

�

Now we turn to the proof of Theorem 2.3(2) and (3).

Proof or Theorem 2.3 (2) and (3). First, we show that (2) implies (3). If Lk
G(d) is prime then by

(1) Lk
G(d) is a complete intersection. Now by (2) it follows that Lk

G(d+1) is prime. This completes
the proof of (3).

For the proof of (2) we argue by induction on the number n of vertices.
If n ≤ 2 the assertion is obvious. Assume n > 2. Set G1 = G − n, U = {i ∈ [n]|{i, n} ∈ E},

u = |U |, Y = (yij)(i,j)∈U×[d+1], S = k[yij : i ∈ [n], j ∈ [d+ 1]], S′ = k[yij : i ∈ [n− 1], j ∈ [d+ 1]]

and R = S′/Lk
G1

(d+ 1). By construction, S/Lk
G(d+ 1) is the symmetric algebra of the R-module

presented as the cokernel of the map Ru → Rd+1 associated to Y .
By assumption Lk

G(d) is a complete intersection and hence Lk
G1

(d) is a complete intersection

as well. It then follows by induction that Lk
G1

(d + 1) is prime and hence R is a domain. By
Proposition 2.8 we have u ≤ d and by Remark 3.3 Iu(Y ) 6= 0 in R. Therefore, by Theorem 3.1(2)
we have

Lk
G(d+ 1) is prime ⇔ heightIt(Y ) ≥ u− t+ 2 in R for every t = 1, . . . , u.
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Equivalently, we have to prove that

height
(
It(Y ) + Lk

G1
(d+ 1)

)
≥ u− t+ 2 + g in S′ for every t = 1, . . . , u

where g = heightLk
G1

(d+ 1) = |E| − u.

Consider the weight vector w ∈ Rn×d+1 defined by wij = 1 and wi d+1 = 0 for all j ∈ [d] and
i ∈ [n]. By construction the initial terms of the standard generators of inw(Lk

G1
(d + 1)) are the

standard generators of Lk
G1

(d).
Since the standard generators of It(Y ) coincide with their initial terms with respect to inw it

follows that inw(It(Y )) ⊇ It(Y ) (indeed equality holds but we do not need this fact).
Therefore, inw(It(Y ) + Lk

G1
(d+ 1)) ⊇ It(Y ) + Lk

G1
(d) and it is enough to prove that

height
(
It(Y ) + Lk

G1
(d)
)
≥ u− t+ 2 + g in S′ for every t = 1, . . . , u

or, equivalently,

heightIt(Y ) ≥ u− t+ 2 in R′ for every t = 1, . . . , u

where R′ = S′/Lk
G1

(d).

The variables y1 d+1, . . . , yn−1 d+1 do not appear in the generators of Lk
G1

(d). Hence R′ =

R′′[y1 d+1), . . . , yn−1 d+1] with R′′ = k[yij : (i, j) ∈ [n− 1]× [d]]/Lk
G−n(d). Let Y ′ be the matrix Y

with the d + 1-st column removed. Then S/Lk
G(d) can be regarded as the symmetric algebra of

the R′′-module presented as the cokernel of

0→ (R′′)u
Y ′−→ (R′′)d.(1)

By assumption S/Lk
G(d) is a complete intersection. Hence by Theorem 3.1(1) we know

height It(Y
′) ≥ u− t+ 1 in R′′ for every t = 1, . . . , u

Since Y is obtained from Y ′ by adding a column of variables over R′′ by Lemma 3.6 we have:

height, It(Y ) ≥ min{height, It−1(Y ′),height, It(Y
′) + u− t+ 1} ≥ u− t+ 2

in R′ and for all t = 1, . . . ,m. �

Theorem 2.3(2) and (3) together with Corollary 3.5 directly imply the following.

Corollary 3.7. Let G = (V,E) be a graph.
Then

asymk(prime, G) = inf{d : Lk
G(d) is prime}

and
asymk(c.i., G) ≤ asym(prime, G) ≤ asymk(c.i., G) + 1.

The following proposition is an immediate consequence of Theorem 2.3 and Theorem 2.5.

Proposition 3.8. Let G = (V,E) be a graph. Then

asymk(radical, G) ≤ 2 |V | − 3, asymk(c.i., G) ≤ 2 |V | − 3 and asymk(prime, G) ≤ 2 |V | − 2.

If G is bipartite then

asymk(radical, G) ≤ |V | − 1, asymk(c.i., G) ≤ |V | − 1 and asymk(prime, G) ≤ |V |.
These bounds are not tight in general as the following example shows.

Example 3.9. Using CoCoA [1] or Macaulay 2 [19] one can check for fields k of characteristic 0
that Lk

K4
(2) is not a complete intersection while Lk

K4
(3) is. Hence by Theorem 2.3 (4) we have

asymk(c.i.,K4) = 3. Similarly, one can check that Lk
K4

(d) is not prime for d = 3 and hence

Theorem 2.3 implies that asymk(prime,K4) = 4. Finally, one checks that Lk
K4

(d) is radical for all
1 ≤ d ≤ 3 and hence asymk(radical,K4) = 1.

In Corollary 7.7 we will be able to analyze the asymptotic behavior of asymk(prime,Kn) for
n→∞.
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4. Obstructions to algebraic properties

In this section we prove Theorem 2.9 and study necessary and sufficient conditions for Lk
G(d)

to be radical, complete intersections or prime. First, we turn to necessary conditions which yield
lower bounds on asymk(radical, G), asymk(prime, G) and asymk(c.i., G).

We start with the proof of Proposition 2.8.

Proof of Proposition 2.8. First, we show that (1) implies (2). If Lk
G(d) is complete intersection

then by Theorem 2.3 (2) it follows that Lk
G(d + 1) is prime. Hence if G contains Ka,b with

a + b > d + 1 or Bd+1 (in case char k = 0 and d > 2) then G violates the conditions from (1) for
primeness of Lk

G(d+ 1). This implies (2).
For (1) we first prove that if Lk

G(d) is prime then G does not contain Ka,b for a+b > d. Suppose
for contradiction that Lk

G(d) is prime and G contains Ka,b for some a+ b > d. We may decrease
either a or b or both and assume right away that a+ b = d+ 1, a, b ≥ 1. In particular a, b ≤ d.

We assume that V = [n] and that Ka,b is a subgraph of G, where after renaming vertices here
Ka,b is the complete bipartite graph with edges {i, a+ j} for i ∈ [a] and j ∈ [b]. Set R = S/Lk

G(d)
and Y = (yi `) ∈ Ra×d and Z = (z`,i) ∈ Rd×b with z`,i = yi+a,`. Since Ka,b is a subgraph of G we
have Y Z = 0 in R

By assumption R is a domain and Y Z = 0 can be seen as a matrix identity over the field of
fractions of R.

Hence

rank(Y ) + rank(Z) ≤ d.
From a+ b = d+ 1 it follows that rank(Y ) < a or rank(Z) < b. This implies that any a-minor of
Y or any b-minor of Z is zero, i.e., Ia(Y ) = 0 or Ib(Z) = 0 as ideals of R.

But by Remark 3.3 none of the minors of Y and Z are in Lk
G(d). This is a contradiction and

hence Lk
G(d) is not prime.

It remains to be shown that if char k = 0 and d > 3 then G does not contain a copy of Bd.
Here, we unfortunately have to resort to Proposition 7.4 and Lemma 7.13(iii) from Section 7.

But it is easily seen that its derivation is independent of results from preceding sections.
By Theorem 2.3(6) we know that if Lk

G(d) is prime then so is Lk
Bd

(d). Then Proposition 7.4

implies that Id+1(Xgen
G ) is prime for a generic matrix X of arbitrary size and this contradicts

Lemma 7.13(iii). �

Next we provide the proof of Theorem 2.9.

Proof of Theorem 2.9 part (1). By Lemma 1.1 conditions (b) and (c) in Theorem 2.9(1) are equiv-
alent. Hence it suffices to prove the equivalence of (a) and (b).

For d = 1 the statements are obvious: Lk
G(1) is prime if and only if G has no edges set which

is equivalent to not containing K11.
For d = 2 we know by Proposition 2.8 that (a) implies (b). When (b) holds then the edges of

G are pairwise disjoint. It follows that the monomial ideal Lk
G(1) is a complete intersection. Then

by Theorem 2.3 (2) assertion (a) follows.
For d = 3 again by Proposition 2.8 condition (a) implies (b). To prove that (b) implies (a) we

may assume that k is algebraically closed. Then, since the tensor product over k of k-algebras that
are domains is a domain (see Corollary to Proposition 1 in Bourbaki’s Algebra [6, Chapter v, 17]
or [30, Prop. 5.17]) we may assume that the graph is connected. A connected graph satisfying (b)
is either an isolated vertex or a path Pn with n ≥ 2 vertices or a cycle Cn of length n 6= 4. Hence
we have to prove that Lk

G(3) is prime when G = Pn with n ≥ 2 or G = Cn with n ≥ 3 and n 6= 4.
If G = Pn then pmd(Pn) ≥ 2 (indeed pmd(Pn) ≥ 2 for n > 2). This can be seen easily form the
definition or by using Lemma 5.2(iv) to check that a maximal matching and its complement form
a positive matching decomposition. Hence by Theorem 2.5(3) it follows that Lk

Pn
(3) is prime.

Now let G = Cn be the n-cycle for n ≥ 3 and n 6= 4 and set m = n− 1. To prove that Lk
Cn

(3)
is prime we use the symmetric algebra perspective. Observe that Cn − n is Pm for m = n − 1.
Set J = Lk

Pm
(3), S = k[yij : i ∈ [m] j ∈ [3]] and R = S/J . We have already proved that J is a
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prime complete intersection of height m− 1. We have to prove that the symmetric algebra of the
cokernel of the R-linear map:

R2 Y→ R3 with Y =

(
y11 y12 y13

ym1 ym2 ym3

)
is a domain. Since by Remark 3.3 I2(Y ) 6= 0 in R, taking into consideration Remark 3.2 we may
apply Theorem 3.1. Therefore, it is enough to prove that

height I1(Y ) ≥ 3 and height I2(Y ) ≥ 2 in R.

Equivalently, it is enough to prove that

height I1(Y ) + J ≥ m+ 2 and(2)

height I2(Y ) + J ≥ m+ 1 in S.(3)

We prove first (2). Since height I1(Y ) = 6 in S then (2) is obvious for m ≤ 4. For m > 4 observe
that I1(Y ) + J can be written as I1(Y ) +H where H is the LSS-ideal of the path of length m− 2
on vertices 2, 3, . . . ,m− 1. Because I1(Y ) and H use disjoint set of variables, we have

height I1(Y ) +H = 6 +m− 3 = m+ 3

and this proves (2). Now we note, en passant, that the condition height I2(Y ) ≥ 1 holds in R
because R is a domain and I2(Y ) 6= 0. Hence we deduce from Theorem 3.1(1) that Lk

Cn
(3) is a

complete intersection for all n ≥ 3.
It remains to prove (3). Since height I2(Y ) = 3 in S the assertion in obvious for m = 2,

i.e. n = 3. Hence we may assume m ≥ 4 (here we use n 6= 4). Then let P be a prime ideal
of S containing I2(Y ) + J . We have to prove that heightP ≥ m + 1. If P contains I1(Y ) then
heightP ≥ m+2 by (2). So we may assume that P does not contain I1(Y ), say y11 6∈ P , and prove
that heightPSx ≥ m + 1 where x = y11. Since I2(Y )Sx = (ym2 − x−1ym1y12, ym3 − x−1ym1y13)
we have

f
(3)
m−1,m = ym−1,1ym1 + ym−1,2ym2 + ym−1,3ym3

= ym−1,1ym1 + ym−1,2x
−1ym1y12 + ym−1,3x

−1ym1y13

= x−1ym1f
(3)
1,m−1 mod I2(Y )Sx

Since f
(3)
m−1,m ∈ J , we have ym1f

(3)
1,m−1 ∈ PSx. Then we have that either ym1 ∈ PSx or

f
(3)
1,m−1 ∈ PSx. In the first case PSx contains ym1, ym2, ym3 and the LSS-ideal associated to the

path of length m − 2 with vertices 1, . . . ,m − 1. Hence heightPSx ≥ 3 + m − 2 = m + 1 as

desired. Finally, if f
(3)
1,m−1 ∈ PSx we have that PSx contains the ideal Lk

Cm−1
(3) associated to

the (m − 1)-cycle with vertices 1, . . . ,m − 1 and we have already observed that this ideal is a
complete intersection. Since ym2 − x−1ym1y12, ym3 − x−1ym1y13 are in PSx as well it follows that
heightPSx ≥ 2 +m− 1 = m+ 1. �

Proof of Theorem 2.9 part (2). By Lemma 1.1 conditions (b) and (c) in Theorem 2.9 (2) are equiv-
alent. Hence it suffices to prove the equivalence of (a) and (b). We prove first that (a) implies (b).
By Proposition 2.8 that (a) implies that G does not contain Ka,b with a+ b = d+1. Suppose then
by contradiction that G does contain C2m. Hence Lk

C2m
(2) is a complete intersection of height

2m. But the generators of Lk
C2m

(2) are (up to sign) among the 2-minors of the matrix:(
y11 −y22 y31 . . . y2m−1,1 −y2m,2

y12 y21 y32 . . . y2m−1,2 y2m,1

)
and the ideal of 2-minors of such a matrix has height 2m− 1, a contradiction.

Now we prove that (b) implies (a). We may assume that k is algebraically closed. Since the
tensor product over a perfect field k of reduced k-algebras is reduced [6, Thm 3, Chapter V, 15],
we may assume that G is connected. A connected graph satisfying (b) is either an isolated vertex,
or a path or an odd cycle. We have already observed that pmd(Pn) ≤ 2. By Theorem 2.5 it
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follows that Lk
Pn

(2) is a complete intersection. It remains to prove that Lk
C2m+1

(2) is a complete

intersection (of height 2m + 1). Note that Lk
P2m+1

(2) ⊂ Lk
C2m+1

(2) and we know already that

Lk
P2m+1

(2) is a complete intersection of height 2m. Hence it remains to prove that f
(2)
1,2m+1 does

not belong to any minimal prime of Lk
P2n+1

(2). The generators of Lk
P2n+1

(2) are (up to sign) the

adjacent 2-minors of the matrix:

Y =

(
y11 −y22 y31 . . . y2m−1,1 −y2m,2 y2m+1,1

y12 y21 y32 . . . y2m−1,2 y2m,1 y2m+1,2

)
The minimal primes of Lk

P2n+1
(2) are described in the proof of [15, Thm.4.3], see also [23] and

[21]. By the description given in [15] it is easy to see that all minimal primes of Lk
P2n+1

(2) with

the exception of I2(Y ) are contained in the ideal Q = (yij : 2 < i < 2m + 1 1 ≤ j ≤ 2). Clearly

f
(2)
1,2m+1 6∈ Q. Finally one has f

(2)
1,2m+1 6∈ I2(Y ) since the monomial y11y2m+1,1 is divisible by no

monomials in the support of the generators of I2(Y ). �

We proceed with the proof of Theorem 2.10. For the proof we first formulate a result that is a
special case of a more general statement. For this we need to introduce the concept of Sturmfels-
Cartwright ideals. This concept was coined in [9] inspired by earlier work in [8] and [7]. It was
further developed and applied to various classes of ideals in [10] and [11].

Consider for d1, . . . , dn ≥ 1 the polynomial ring S = k[yij : i ∈ [n], j ∈ [di]] with multigrading
degyij = ei ∈ Zn. The group G = GLd1(k) × · · · × GLdn(k) acts naturally on S as the group of
Zn-graded K-algebra automorphism. The Borel subgroup of G is B = Ud1(k)×· · ·×Udn(k) where
Ud(k) denotes the subgroup of GLd(k) of the upper triangular matrices. A Zn-graded ideal J is
Borel fixed if g(J) = J for every g ∈ B. A Zn-graded ideal I of S is called a Cartwright-Sturmfels
ideal if there exists a radical Borel fixed ideal J with the same multigraded Hilbert-series.

Theorem 4.1. For d1, . . . , dn ≥ 1 let S = k[yij : i ∈ [n], j ∈ [di]] be the polynomial ring with
Zn multigrading induced by degyij = ei ∈ Zn. and G = (V,E) be a forest (i.e. a graph without
cycles). For each e = {i, j} ∈ E let fe ∈ S be a Zn-graded polynomial of degree ei + ej. Then
I = (fe : e ∈ E) is a Cartwright-Sturmfels ideal. In particular, I and all its initial ideals are
radical.

Proof. First, we observe that we may assume that the generators fe of I form a regular sequence.
To this end we introduce new variables and add to each fe a monomial me in the new variables of
degree e so that me and me′ are coprime if e 6= e′. The new polynomials fe +me with e ∈ E form
a regular sequence by Proposition 1.4 since their initial terms with respect to an appropriate term
order are the pairwise coprime monomials me. The ideal I arises as a multigraded linear section
of the ideal (fe +me : e ∈ E) by setting all new variables to 0. By [8, Thm. 1.16(5)] the family of
Cartwright-Sturmfels ideals is closed under any multigraded linear section. Hence it is enough to
prove the statement for the ideal (fe +me : e ∈ E). Equivalently we may assume right away that
the generators fe of I form a regular sequences.

The multigraded Hilbert series of a multigraded S-module M can by written as

KM (z1, . . . , zn)∏n
i=1(1− zi)di

.

The numerator KM (z1, . . . , zn) is a Laurent polynomial polynomial with integral coefficients called
the K-polynomial of M . Since the fe’s form a regular sequence the K-polynomial of S/I is the
polynomial:

F (z) = F (z1, . . . , zn) =
∏

{i,j}∈E

(1− zizj) ∈ Q[z1, . . . , zn].

To prove that I is Cartwright-Sturmfels we have to prove that there is a Borel-fixed radical
ideal J such that the K-polynomial of S/J is F (z). Taking into consideration the duality between
Cartwright-Sturmfels ideals and Cartwright-Sturmfels∗ ideals discussed in [9], it is enough to
exhibit a monomial ideal J whose generators are in the polynomial ring S′ = k[y1, y2, . . . , yn]
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equipped with the (fine) Zn-grading deg yi = ei ∈ Zn such that the K-polynomial of J regarded
as an S′-module is F (1− z1, . . . , 1− zn), that is,∏

{i,j}∈E

(zi + zj − zizj).

We claim that, under the assumption that ([n], E) is a forest, the ideal

J =
∏

{i,j}∈E

(yi, yj)

has the desired property. In other words, we have to prove that the tensor product

TE =
⊗
{i,j}∈E

T{i,j}

of the truncated Koszul complexes:

T{i,j} : 0→ S′(−ei − ej)→ S′(−ei)⊕ S′(−ej)→ 0

associated to yi, yj resolves the ideal J . Consider a leaf {a, b} of E. Set E′ = E \ {{a, b}},

J ′ =
∏

{i,j}∈E′
(yi, yj)

and J ′′ = (ya, yb). Then by induction on the number of edges we have that TE′ resolves the

ideal J ′. Then the homology of TE is TorS
′

∗ (J ′, J ′′). Since since {a, b} is a leaf one of the two
variables ya, yb does not appear at all in the generators of J ′. Hence ya, yb forms a regular J ′-

sequence. Then TorS
′

≥1(J ′, J ′′) = 0 and hence TE resolves J ′ ⊗ J ′′. Finally, J ′ ⊗ J ′′ = J ′J ′′

since TorS
′

1 (J ′, S/J ′′) = 0. This concludes the proof that the ideal I is a Cartwright-Sturmfels
ideal. Every initial ideal of a Cartwright-Sturmfels ideal is a Cartwright-Sturmfels ideal as well
because the property just depends on the Hilbert series. In particular, every initial ideal of a
Cartwright-Sturmfels ideal is radical. �

Now we are ready to prove Theorem 2.10:

Proof of Theorem 2.10. (1) Setting d1 = · · · = dn = d and fe = f
(d)
e in Theorem 4.1 we have

that Lk
G(d) is a Cartwright-Sturmfels ideal and hence radical.

(2) If Lk
G(d) is a complete intersection then, by Proposition 2.8, G does not contain a copy

of K1,d+1 as a subgraph, that is, ∆(G) ≤ d. Vice versa if d ≥ ∆(G) one proves that
Lk
G(d) is a complete intersection by using induction on the number of vertices of G and

the symmetric algebra point of view. As G is a forest we may assume that {n− 1, n} is a
leaf. Then G1 = G− n is a forest with ∆(G1) ≤ ∆(G) ≤ d. Hence by induction Lk

G1
(d) is

a complete intersection. Set

R = k[yi,j : i ∈ [n− 1], j ∈ [d]]/Lk
G1

(d).

We may interpret Lk
G(d) as the ideal defining the symmetric algebra of the R-module

defined as the cokernel of the R-linear map R → Rd associated to the matrix A =
(yn−1,1, . . . , yn−1,d). Hence, by virtue of Theorem 3.1(1), it is enough to prove that

height (yn−1,1, . . . , yn−1,d) ≥ 1 in R

equivalently,

height (yn−1,1, . . . , yn−1,d) + Lk
G1

(d) > heightLk
G1

(d)

which is true because at most ∆(G) − 1 of the generators of Lk
G1

(d) are contained in
(yn−1,1, . . . , yn−1,d).

(3) If Lk
G(d) is prime then, by Proposition 2.8, G does not contain a copy of K1,d as a subgraph,

that is, ∆(G) ≤ d − 1. Vice versa, we know by (2) that Lk
G(d) is a complete intersection

for d ≥ ∆(G). Hence by Theorem 2.3 Lk
G(d) is prime for d ≥ ∆(G) + 1.

�
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Hence for a forest G we have a complete picture of asymptotic behaviour:

Corollary 4.2. Let G be a forest and k any field. Then: asymk(radical, G) = 1, asymk(c.i., G) =
∆(G) and asymk(prime, G) = ∆(G) + 1.

5. Positive matching decompositions

In this section we introduce the concepts of positive matchings and positive matching decom-
position and prove Theorem 2.5.

Definition 5.1. Given a hypergraph H = (V,E) a positive matching of G is a subset M ⊂ E
of pairwise disjoint sets (i.e., a matching) such that there exists a weight function w : V → R
satisfying: ∑

i∈A
w(i) > 0 if A ∈M∑

i∈A
w(i) < 0 if A ∈ E \M.

(4)

We illustrate the definition for subgraphs of K4. The edge set M = {{1, 2}, {3, 4}} is a matching
in K4 but it is not positive. Nevertheless, the matching M is positive in the graph with edge set
{{1, 2}, {1, 3}, {2, 3}, {3, 4}} with respect to the weight function w(1) = 0, w(2) = 1, w(3) = −2
and w(4) = 3.

The next lemma summarizes some elementary properties of positive matchings.

Lemma 5.2. Let H = (V,E) be a hypergraph such that E is a clutter, M ⊆ E and VM =
⋃
A∈M A.

(i) M is a positive matching for H if and only if M is a positive matching for the induced
hypergraph HVM = (VM , {A ∈ E | A ⊆ VM}).

(ii) If M is a positive matching on H and A ∈ E is such that M ∪ {A} is a matching and
there is no B ∈M with B ∩ VM 6= ∅ 6= B ∩A then M ∪ {A} is a positive matching on H.

(iii) If H is a bipartite graph with bipartition V = V1∪V2 then M is a positive matching if and
only if M is a matching and directing the edges e ∈ E from V1 to V2 if e ∈ M and from
V2 to V1 if e ∈ E \M yields an acyclic orientation.

Proof. (i) Clearly a weight function on V for which M is a positive matching restricts to VM
making M a positive matching on HVM . Conversely, setting w(i) = −max{|A| : A ∈
M} · max{w(j) : j ∈ VM} for i ∈ V \ VM extends a weight function on VM to V and
shows that M is a positive matching on H.

(ii) Let w we a weight function for which M is positive. Set T = max{1, w(`) : ` ∈ VM} > 0.
We define w′ : V → R as follow. If ` ∈ VM we set w′(`) = w(`). If ` ∈ A we set w′(`) = T
and for ` ∈ V \ (VM ∩ A) we set w′(`) = −|max{|A|, |B| : B ∈ M} · T − 1. One easily
checks that M ∪ {A} is a positive matching with respect to w′.

(iii) We change the coordinates w(i) to −w(i) for i ∈ V2 in the inequalities defining a positive
matchings. As a simple reformulation of (4) we get that in these coordinates a matching
M is positive if and only if there is a weight function such that for {i, j} ∈ E, i ∈ V1,
j ∈ V2 we have

w(i) > w(j) if {i, j} ∈M,

w(i) < w(j) if {i.j} ∈ E \M.
(5)

This is equivalent to the existence of a region in the arrangement of hyperplanes w(i) =
w(j) for {i, j} ∈ E in RV satisfying (5). But it is well known that the regions in this
arrangement are in one to one correspondence with the acyclic orientations of G (see [20,
Lemma 7.1]).

�

Now we are in position to introduce the key concept of this section.
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Definition 5.3. Let H = (V,E) be a hypergraph for which E is a clutter. A positive matching
decomposition (or pm-decomposition) of G is a partition E =

⋃p
i=1Ei into pairwise disjoint subsets

such that Ei is a positive matching on (V,E \∪i−1
j=1Ej) for i = 1, . . . , p. The Ei are called the parts

of the pm-decomposition. The smallest p for which G admits a pm-decomposition with p parts
will be denoted by pmd(H).

Note that by definition one has pmd(H) ≤ |E| because of the obvious pm-decomposition⋃
A∈E{A}. On the other hand pmd(G) is smaller than |E| for most clutters. Next we prove

the bound from Theorem 2.5(4).

Proof of Theorem 2.5(4). First, consider the case when G = (V,E) is an arbitrary graph. Set
n = |V |. We may assume that G is the complete graph Kn because any pm-decomposition of Kn

induces a pm-decomposition on its subgraphs. For ` = 1, . . . , 2n− 3 we set E` = {{i, j} : i+ j =
`+ 2}. For example, for n = 7 we have

E1 = {12}, E2 = {13}, E3 = {14, 23}, E4 = {15, 24},
E5 = {16, 25, 34}, E6 = {17, 26, 35}, E7 = {27, 36, 45}, E8 = {37, 46},
E9 = {47, 56}, E10 = {57}, E11 = {67}

where for simplicity we have written ij for the edge {i, j}.
Clearly one has E = ∪2n−3

`=1 E` and this is a pm-decomposition of Kn since when a new edge
is inserted the smallest index involved in that edge satisfies the condition of Lemma 5.2 (ii) with
respect to the current data. For example for n = 7 when we insert the edge 27 in E7 the vertex
2 satisfies the condition of Lemma 5.2 (ii) with respect to the matching {36, 45}, i.e. the edges
23, 24, 25, 26 are already used in an earlier step of the construction.

Now consider the case when G = (V,E) is a bipartite graph. Let V = V1 ∪ V2 be a the
bipartition for G. We may assume V1 = [m] and V2 = [ñ] = {1̃, . . . , ñ} for numbers m,n ≥ 1
and we may assume that G = Km,n. We show that E =

⋃p
`=1E` with p = m + n − 1 and

E` = {{i, j̃} : i+ j = `+ 1} is positive matching decomposition of Km,n. That is, we show that

E` is a positive matching on E \
⋃`−1
k=1Ek for ` = 1, . . . ,m+ n− 1.

For ` = 1 the assertion is obvious since E1 contains a single edge. Now assume ` ≥ 2. By
Lemma 5.2(iii) it suffices to show that directing the edges in E` from [m] to [ñ] and the edges in

E \
⋃`
k=1Ek in the other direction yields an acyclic orientation. Assume the resulting directed

graph has a cycle. As a cycle in a bipartite graph is of even length this cycle must contain at least
two edges of type i → j̃ for {i, j̃} ∈ E` or equivalently i + j = ` + 1. We assume {i, j̃} ∈ E` is
chosen with this property so that j is maximal. The next edge in the directed cycle is an edge
j̃ → i′. We must have i′ < i or i′ > i. If i′ < i then the following edge in the cycle i′ → j̃′ must
again satisfy i′ + j′ = `+ 1. But by i′ < i and i+ j = `+ 1 it follows that j′ > j a contradiction.
Analogously, consider the edge j̃′′ → i preceding i → j̃. Again by construction j′′ + i > ` + 1.
But then j′′ > j again a contradiction. Hence there is no cycle and E` is a positive matching on

E \
⋃`−1
k=1Ek. �

In the bipartite case, Theorem 2.6(4) shows that pmd(Km,n) = m + n − 1 and computer
experiments show that pmd(Kn) = 2n− 3 holds for small value of n.

Next we connect positive matching decompositions to algebraic properties of LSS-ideals.

Lemma 5.4. Let H = (V,E) be a hypergraph such that E is a clutter, d ≥ p := pmd(H) and
E =

⋃p
`=1E` a positive matching decomposition. Then there exists a term order < on S such that

for every ` and every A ∈ E` we have

in<(f
(d)
A ) =

∏
i∈A

yi`.(6)

Proof. To define < we first define weight vectors w1, . . . ,wp ∈ RV×[d]. For that purpose we use
the weight functions w` : V → R, associated to each matching E`, ` = 1, . . . , p. The weight vector
w` is defined as follows:

• w`(yik) = 0 if k 6= ` and
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• w`(yi`) = w`(i).

By definition the weight of the monomial
∏
i∈A yik with respect to w` is 0 if k 6= ` and∑

i∈A w`(i) if k = `. Hence, by definition, the weight of
∏
i∈A yi` is positive if A ∈ E` and

negative if A ∈ E \ ∪`v=1Ev.
It follows that:

inw1
(f

(d)
A ) =


∏
i∈A yi1 if A ∈ E1
d∑
k=2

∏
i∈A

yik if A ∈ E \ {E1}.
(7)

We define the term order < as follows: yα < yβ if

(1) |α| < |β| or
(2) |α| = |β| and w`(y

α) < w`(y
β) for the smallest ` such that w`(y

α) 6= w`(y
β) or

(3) |α| = |β| and w`(y
α) = w`(y

β) for all ` and yα <0 y
β for an arbitrary but fixed term order

<0.

A simple induction using (7) now shows that for all ` and for all A ∈ E we have in<(f
(d)
A ) =∏

i∈A yi`. �

We conclude this section with the proofs of Theorem 2.5(1)-(3) and Theorem 2.6(4) and a
simple corollary.

Proof of Theorem 2.5. Let p = pmd(H) and E =
⋃p
`=1E` a pm-decomposition of H.

Hence by Lemma 5.4 there is a term order < satisfying (6). Since each E`, ` = 1, . . . , p, is

a matching (6) implies that the initial monomials of the generators f
(d)
A , A ∈ E, of LH(d) are

pairwise coprime. Hence in<(Lk
H(d)) = (in<(f

(d)
e : e ∈ E) is a radical complete intersection. This

prove (1). Then (2) follows from (1) and Proposition 1.4 and (3) follows from Theorem 2.3. �

Now we can also complete the proof of Theorem 2.6(4).

Proof of Theorem 2.6(4). From Theorem 2.5(4) we know that pmd(Km,n) ≤ m + n − 1. From
Theorem 2.5(3) we know that Lk

Km,n
(d) is prime for d ≥ pmd(Km,n) + 1. From Theorem 2.9(3)

we know that if Lk
Km,n

(d) is prime then Km,n does not contain a subgraph Ka,b with a+b = d+1.

The latter then implies d ≥ n+m. Hence pmd(Km,n) ≥ m+ n− 1 and therefore pmd(Km,n) =
m+ n− 1. �

Using the fact Theorem 2.3(6) that primeness is inherited by subgraphs the following is an
immediate consequence of Theorem 2.5.

Corollary 5.5. (i) Let G be a subgraph of Kn then LKG (d) is a radical complete intersection
for d ≥ min{2n− 3, |E|} and prime for d ≥ min{2n− 3, |E|}+ 1.

(ii) Let G be a subgraph of Km,n then LKG (d) is a radical complete intersection for d ≥ min{m+
n− 1, |E|} and prime for d ≥ min{m+ n− 1, |E|}+ 1.

6. Determinantal rings from the point of view of invariant theory

The goal of this section is to recall some classical results in invariant theory (see for example
[34]) that have been treated in modern terms by De Concini and Procesi in [14]. In particular,
we recall how determinantal/Pfaffian rings arise as invariant ring of group actions. We assume
throughout that the base field k is of characteristic 0.

6.1. Generic determinantal rings as rings of invariants (gen). We take an n ×m matrix
of variables Xgen

m,n = (xij)(i,j)∈[m]×[n] and consider the ideal Ik
d+1(Xgen

m,n) of Sgen = k[xij : (i, j) ∈
[m]× [n]] generated by the (d+ 1)-minors of Xgen

m,n. Consider two matrices of variables Y and Z of
size m× d and d× n and the following action of G = GLd(k) on the polynomial ring k[Y,Z]: The
matrix A ∈ G acts by the k-algebra automorphism of k[Y,Z] that sends Y → Y A and Z → A−1Z.
The entries of the product matrix Y Z are clearly invariant under this action. Hence the ring of
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invariants k[Y,Z]G contains the subalgebra k[Y Z] generated by the entries of the product Y Z.
The First Main Theorem of Invariant Theory for this action says that k[Y,Z]G = k[Y Z]. We have
a surjective k-algebra map:

φ : Sgen → k[Y, Z]G = k[Y Z]

sending X to Y Z, that is xij to (Y Z)ij =
∑d
`=1 yi `z` j . Clearly the product matrix Y Z has

rank d and hence we have Ik
d+1(Xgen

m,n) ⊆ Kerφ. The Second Main Theorem of Invariant Theory

says that Ik
d+1(Xgen

m,n) = Kerφ. Hence

S/Ik
d+1(Xgen

m,n) ' k[Y Z](8)

6.2. Generic symmetric determinantal rings as rings of invariants (sym). We take an
n× n symmetric matrix of variables

Xsym
n =



x11 x12 x13 · · · x1n−1 x1n

x12 x22 x23 · · · x2n−1 x2n

x13 x23 x33 · · · x3n−1 x3n

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

x1n−1 x2n−1 x3n−1 · · · xn−1n−1 xn−1n

x1n x2n x3n · · · xn−1n xnn


and consider the ideal Ik

d+1(Xsym
n ) generated by the (d+ 1)-minors of Xsym

n in the polynomial
ring Ssym = k[xij : 1 ≤ i ≤ j ≤ n]. Consider a matrix of variables Y of size n×d and the following
action of the orthogonal group G = Od(k) = {A ∈ GLt(k) : A−1 = AT } on the polynomial ring
k[Y ] = k[yij |Yij : (i, j) ∈ [n]× [t]]: Any A ∈ G acts by the k-algebra automorphism of k[Y ] that
sends Y to Y A. The entries of the product matrix Y Y T are invariant under this action and hence
the ring of invariants contains the subalgebra k[Y Y T ] generated by the entries of Y Y T . The First
Main Theorem of Invariant Theory for this action asserts that k[Y ]G = k[Y Y T ]. Then we have a
surjective presentation:

φ : Ssym → k[Y Y T ]

sending X to Y Y T . Since the product matrix Y Y T has rank t we have Id+1(X) ⊆ Kerφ. The
Second Main Theorem of Invariant Theory then says that Id+1(X) = Kerφ. Hence

Ssym/Ik
d+1(Xsym

n ) ' k[Y Y T ].(9)

6.3. Generic Pfaffian rings as rings of invariants (skew). We take an n×n skew-symmetric
matrix of variables

Xskew
n =



0 x12 x13 · · · x1n−1 x1n

−x12 0 x23 · · · x2n−1 x2n

−x13 −x23 0 · · · x3n−1 x3n

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

−x1n−1 −x2n−1 −x3n−1 · · · 0 −xn−1n

−x1n −x2n −x3n · · · −xn−1n 0
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and consider the ideal Pfk
2t+2(X) generated by the Pfaffians of size (2d + 2) in k[xij | 1 ≤ i <

j ≤ n] of Xskew
n in the polynomial ring Sskew = k[xij : 1 ≤ i ≤ j ≤ n]. Consider a matrix of

variables Y of size n× 2d and let J2t be the 2d× 2d block matrix with d blocks(
0 1
−1 0

)
on the diagonal and 0 in the other positions. The sympletic group G = Sp2d(k) = {A ∈ GL2t(k) :
AJAT = J} acts on the polynomial ring k[Y ] = k[yij ] as follows: an A ∈ G acts on k[Y ] by
the automorphism that sends Y → Y A. The entries of the product matrix Y J2dY

T are invariant
under this action and hence the ring of invariants contains the subalgebra k[Y J2tY

T ] generated by
the entries of Y J2dY

T . The First Main Theorem of Invariant Theory for the current action says
that k[Y ]G = k[Y J2tY

T ]. Then we have a surjective presentation: φ : Sskew → k[Y Y T ] sending X

to Y JY T . The product matrix Y JY T has rank 2d and hence we have Pfk
2d+2(X) ⊆ Kerφ. The

Second Main Theorem of Invariant Theory for this action says that Pfk
2d+2(X) = Kerφ. Hence

Sskew/Pfk
2d+2(Xskew

n ) ' k[Y JY T ].(10)

7. Determinantal ideals of matrices with 0’s and their relation to LSS-ideals

The classical invariant theory point of view described in Section 6 shows that the generic
determinantal and Pfaffian ideals are prime as they are kernels of ring maps whose codomains
are integral domains. Their height is also well know (see for example [3] and the references given
there):

(gen) The height of the ideal Ik
d (Xgen

m,n) of d-minors of a m × n matrix of variables is (n + 1 −
d)(m+ 1− d).

(sym) The height of the ideal Ik
d (Xsym

n ) of d-minors of a symmetric n× n matrix of variables is(
n−d+2

2

)
.

(skew) The height of the ideal of Pfaffians Pfk
2d(X

skew
n ) of size 2d (and degree d) of an n × n

skew-symmetric matrix of variables is
(
n−2d+2

2

)
.

If one replaces the entries of the matrices with general linear forms in, say, u variables, then
Bertini’s theorem in combination with the fact that the generic determinantal/Pfaffian rings are
Cohen-Macaulay implies that the determinantal/Pfaffian ideals remain prime as long as u ≥
2+height and radical if u ≥ 1+height.

But what about the case of special linear sections of determinantal ideals of matrices? And
what about the case of coordinate sections? Are the corresponding ideals prime or radical? To
describe coordinate sections we employ the following notation.

(gen) In the generic case we take – as described in the introduction – a bipartite graph G =
([m]∪ [ñ], E) where E ⊆ [m]× [ñ] and denote by Xgen

G the matrix obtained from the m×n
matrix of variables X = (xij)(i,j)∈[m]×[n] by replacing the entries in position (i, j) with 0

for {i, j̃} ∈ E.
(sym) In the generic symmetric case we take a subgraph G = ([n], E) of Kn and denote by

Xsym
G the matrix obtained from the generic symmetric matrix Xsym

n by replacing for all
{i, j} ∈ E the entries in row i, column j and row j, column i with 0.

(skew) In the generic skewsymmetric case where we take a subgraph G = ([n], E) of Kn and
denote by Xskew

G the matrix obtained from the generic skewsymmetric matrix Xskew
n by

replacing for all {i, j} ∈ E the entries in row i, column j and row j, column i with 0.

In this terminology Ik
d (Xgen

G ) (resp. Ik
d (Xsym

G )) is the ideal of d-minors of Xgen
G resp. Xsym

G ) in

Sgen (resp. Ssym). We write Pfk
2d(X

skew
G ) for the ideal of Pfaffians of size 2d of Xskew

G in Sskew.

We ask for conditions on G that imply that Ik
d (Xgen

G ) (resp. Ik
d (Xsym

G ) or Pfk
2d(X

skew
G )) is radical

or prime.
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Simple examples show that special linear sections of relatively small height of generic determi-
nantal ideals can give non-prime and non-radical ideals. On the positive side, for maximal minors,
we have the following results:

Remark 7.1. (1) Eisenbud [17] proved that the ideal of maximal minors of a 1-generic m×n
matrix of linear forms is prime and remains prime even after modding out any set of
≤ m − 2 linear forms. In particular, the ideal of maximal minors of an m × n matrix of
linear forms is prime provided the ideal generated by the entries of the matrix has at least
m(n− 1) + 2 generators.

(2) Giusti and Merle in [18] studied the ideal of maximal minors of coordinate sections in
the generic case. One of their main results, [18, Thm.1.6.1] characterizes, in combinato-
rial terms, the subgraph graphs G of Km,n, m ≤ n, such that the variety associated to
Ik
m(Xgen

G ) is irreducible, i.e. the radical of Ik
m(Xgen

G ) is prime.
(3) Boocher proved in [5] that for any subgraph G of Km,n, m ≤ n, the ideal Ik

m(Xgen
G ) is

radical. Combining his result with the result of Giusti and Merle, one obtains a charac-
terization of the graphs G such that Ik

m(Xgen
G ) is prime.

(4) Generalizing the result of Boocher, in [8] and [9] it is proved that ideals of maximal minors
of a matrix of linear forms that is either row or column multigraded is radical.

In the generic case every non-zero minor of a matrix of type Xgen
G has no multiple factors

because its multidegree is square-free. This suggests that the determinantal ideals of Xgen
G might

always be radical. The following example shows that this is not the case:

Example 7.2. Let Xgen
G be the 6× 6 matrix associated to the graph from Example 2.2(3). That

is, in the 6× 6 generic matrix we set to 0 the entries in positions

(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 2), (3, 3), (4, 3), (4, 4), (5, 1), (5, 4).

Then Ik
4 (Xgen

G ) is not radical over a field of characteristic 0 and very likely over any field. Here
the “witness” is g = x1,5, i.e. Ik

4 (Xgen
G ) : g 6= Ik

4 (Xgen
G ) : g2. Since G is contained in K5,4 one can

consider as well Ik
4 (Xgen

G ) in the 5× 5 matrix but that ideal turns out to be radical.

Similarly for symmetric matrices we have:

Example 7.3. Let Xsym
G be the 7 × 7 generic symmetric matrix associated to the graph from

Example 2.2(1). That is, in the 7×7 generic symmetric matrix we set to 0 the entries in positions

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 6}, {3, 5}, {4, 6}

as well as in the symmetric positions. Then Ik
4 (Xsym

G ) is not radical over a field of characteristic
0 The witness here is g = x1,6. Since G is contained in K6 one can consider as well Ik

4 (Xsym
G ) in

the 6× 6 matrix but that ideal turns out to be radical.

The examples Example 2.2, Example 7.2 and Example 7.3 are indeed closely related as we now
explain.

Let G = ([m] ∪ [ñ], E) be a subgraph of the complete bipartite graph Km,n. In view of the
isomorphism (8) we have that

Sgen/
(
Ik
d+1(Xgen

G ) + (xij | {i, j̃} ∈ E)
)
' k[Y Z]/JG(d)

where Y = (yij), Z = (zij) are respectively m × d and d × n matrices of variables and JG(d)

is the ideal of k[Y Z] generated by (Y Z)i,j with {i, j̃} ∈ E. The LSS-ideal Lk
G(d) ⊂ k[Y,Z] is

indeed equal to JG(d)k[Y,Z]. Now it is a classical result in invariant theory, (derived from the
fact that linear groups are reductive in characteristic 0) that k[Y Z] is a direct summand of k[Y,Z]
in characteristic 0. This implies that

JG(d) = Lk
G(d) ∩ k[Y Z].

The next proposition is an immediate consequence.
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Proposition 7.4. Let k be a field of characteristic 0, d ≥ 1 and G = ([m] ∪ [ñ], E) be a subgraph
of Km,n. If the LSS-ideal Lk

G(d) is radical (resp. is a complete intersection, resp. is prime) then
the coordinate section Ik

d+1(Xgen
G ) of the generic determinantal ideal is radical (resp. has maximal

height, resp. is prime).

Now we start from a subgraph E ⊆ {{i, j} : 1 ≤ i < j ≤ n} of Kn. For d + 1 ≤ n we may
consider the coordinate section Ik

d+1(Xsym
G ) of Ik

d+1(Xsym
n ). Using the isomorphism (9) we obtain:

Proposition 7.5. Let k be a field of characteristic 0 and G = ([n], E) a subgraph of Kn. If the
LSS-ideal Lk

G(d) is radical (resp. is a complete intersection, resp. is prime) then the coordinate
section Ik

d+1(Xsym
G ) of the generic determinantal ideal is radical (resp. has maximal height, resp.

is prime).

Now we can go back to LSS-ideals.

Proposition 7.6. Let k be a field of characteristic 0 and n ∈ N. Let wn be the largest positive
integer such that

(
wn
2

)
≤ n. Then:

(a) Lk
Kn

(d) is not prime for d = n+
(
wn−2

2

)
− 1.

(b) Lk
Kn

(d) is not a complete intersection for d = n+
(
wn+1−2

2

)
− 2.

Proof. (a) We set hn =
(
wn
2

)
and mn = wn+d−1. The numbers are chosen so that, using the

formulas mentioned at the beginning of the section, the ideal Id+1(X) of (d + 1)-minors
of a generic symmetric mn × mn matrix X has height hn. Consider Kn as the graph

([mn],
(

[n]
2

)
) on mn vertices where the vertices n+ 1, . . . ,mn do not appear in an edge. If,

by contradiction, the ideal Lk
Kn

(d) is prime then by Proposition 7.5 the ideal Ik
d+1(Xsym

Kn
)

is prime and of height hn. But one has

Ik
d+1(Xsym

Kn
) ⊂ (x11, x22, . . . , xhnhn)(11)

which is a contradiction. To check (11) it is enough to prove that the rank of the matrix

Xsym
Kn

mod (x11, x22, . . . , xhnhn)

is at most d. That is, we have to check that the rank of an (mn ×mn)-matrix with block
decomposition (

0 A
B C

)
where 0 is the zero matrix of size (hn × n), is at most d. Since d = mn − n+mn − hn

the latter is obvious.
(b) We set hn =

(
wn+1

2

)
and mn = wn+1 + d − 1. As above, the numbers are chosen so that

the ideal Id+1(X) of (d+ 1)-minors of a generic symmetric mn×mn matrix X has height
hn.

Assume, by contradiction, that Lk
Kn

(d) is a complete intersection. From Proposition 7.5

it follows that Ik
d+1(Xsym

Kn
) has height hn. But

Ik
d+1(Xsym

Kn
) ⊂ (x11, x22, . . . , xhn−1,hn−1)(12)

which is a contradiction. As above (12) boils down to an obvious statement about the
rank of a matrix with a zero submatrix of a certain size.

�

Using this result we can now analyze the asymptotic behavior of both asymk(c.i.,Kn) and
asymk(prime,Kn).

Corollary 7.7. Let k be a field of characteristic 0. Then

lim
n→∞

asymk(c.i.,Kn)

n
= lim
n→∞

asymk(prime,Kn)

n
= 2.(13)
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Proof. By Corollary 5.5(i) we have asymk(prime,Kn) ≤ 2n− 2. By Proposition 7.6 we have

n+

(
wn+1 − 2

2

)
− 1 ≤ asymk(c.i.,Kn) ≤ asymk(prime,Kn)(14)

Hence the equalities in (13) follow from the fact that

lim
n→∞

(
wn+1−2

2

)
n

= 1.

�

Using Proposition 7.6 and Theorem 2.3 we obtain further obstructions.

Corollary 7.8. Let G be a graph on n vertices and k a field of characteristic 0. Then Lk
G(d)

is not a complete intersection for d ≤ ω(G) +
(wω(G)+1

2

)
− 2 and Lk

G(d) is not prime for d ≤
ω(G) +

(wω(G)

2

)
− 1 where wω(G) is defined as in Proposition 7.6.

To get an actual feeling of the obstruction. We list a few explicit example of new obstructions
derived from Corollary 7.8.

d obstruction to complete intersection obstruction to primeness
d ≤ 2 K4 K3

d ≤ 3 K4

d ≤ 4 K5

d ≤ 5 K6 K5

d ≤ 6 K7 K6

d ≤ 7 K8 K7

d ≤ 8 K8

d ≤ 10 K9

d ≤ 11 K11 K12

d ≤ 12 K12 K13

For 2d + 2 ≤ n we may consider the coordinate section Pfk
2d+2(Xskew

G ) of Pfk
2d+2(Xskew

n ). We

may as well consider the same graph G = ([n], E) and the associated twisted LSS-ideal L̂k
G(d)

defined as follows. For every i ∈ [n] we consider 2d indeterminates yi 1, . . . , yi 2d. For e = {i, j},
1 ≤ i < j ≤ n we set f̂

(d)
e to be the entry of the matrix Y JY T in row i and column j, i.e.

f̂ (d)
e =

d∑
k=1

(
yi 2k−1yj 2k − yi 2kyj 2k−1

)
.

Then we call

L̂k
G(d) = (f̂ (d)

e : e ∈ E).

the twisted LSS-ideal associated to G. For d = 1 the twisted LSS-ideal coincides with the
so-called binomial edge ideal defined and studied in [21, 25, 29, 32].

Remark 7.9. Assume
√
−1 ∈ k and G is bipartite with bipartition [n] = V1 ∪ V2 then the

coordinate transformation

• yi 2k−1 7→ yi 2k−1 and yi 2k 7→
√
−1yi 2k−1 for i ∈ V1,

• yj 2k 7→
√
−1 · yi 2k−1 and yj 2k−1 7→ yi 2k for j ∈ V2,

sends L̂k
G(d) to Lk

G(2d). In particular, for a bipartite graph G we have that L̂k
G(d) is radical

(resp. prime) if and only if Lk
G(2d) radical (resp. prime).

Using the isomorphism (10) we obtain:

Proposition 7.10. Let k be a field of characteristic 0 and G = ([n], E) a subgraph of Kn. If

the twisted LSS-ideal L̂k
G(d) is radical (resp. is c.i., resp. is prime) then the coordinate section

Pfk
2d+2(Xskew

G ) of the generic Pfaffian ideal is radical (resp. has maximal height, resp. is prime).
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We have:

Theorem 7.11. Let k be a field of characteristic 0.

(gen) If G is a subgraph of Km,n then the ideals Ik
2 (Xgen

G ) and Ik
3 (Xgen

G ) are radical.
(sym) If G is a subgraph of Kn then the ideals Ik

2 (Xsym
G ) and Ik

3 (Xsym
G ) are radical.

(skew) If G is a subgraph of Kn then the ideal Pfk
4(Xskew

G ) is radical.

Furthermore if G is a forest then

(1) Ik
d (Xgen

G ), Ik
d (Xsym

G ) and Pfk
2d(X

skew
G ) are radical for all d.

(2) Ik
d (Xgen

G ) and Ik
d (Xsym

G ) have maximal height if d ≥ ∆(G) + 1.
(3) Ik

d (Xgen
G ) and Ik

d (Xsym
G ) are prime if d ≥ ∆(G) + 2.

Proof. The statements for ideals of 2-minors in the cases (gen) and (sym) follow from Proposi-
tion 7.4 and Proposition 7.5 using the fact that the edge ideal of a graph is radical. Indeed these
results hold over a field of arbitrary characteristic as the corresponding ideals are “toric.”

By [22, Thm. 1.1] the ideal Lk
G(2) is radical for all graphs G. Using Proposition 7.4 and

Proposition 7.5 this implies that Ik
3 (Xgen

G ) is radical for bipartite graphs G and Ik
3 (Xsym

G ) is radical
for arbitrary graphs.

By [21, Cor. 2.2] the ideal L̂k
G(1) is radical for all graphs G. Using Proposition 7.10 this implies

the Pfk
4(Xskew

G ) is radical for arbitrary graphs.
Finally, for a forest G the results in the case of minors are derived from Proposition 7.4,

Proposition 7.5 and Theorem 2.10. In the Pfaffian case they follows using Theorem 4.1 and
Proposition 7.10. �

The following corollary is an immediate consequence of the assertion (skew) in Theorem 7.11.

Corollary 7.12. Let G(2, n) be the coordinate ring of the Graßmannian of 2-dimension subspaces
in kn equipped in its standard Plücker coordinates. Then any subset of the Plücker coordinates
generates a radical ideal in G(2, n).

We note that there are subsets of 2-minors of a generic matrix that define non-radical ideals.
For example the ideal generated by the four 2-minors [12|12], [12|23], [23|12], [23|23] of a generic
3× 3 is not radical.

A statement analogous to Corollary 7.12 for higher order Graßmannians is not true. Indeed, the
point is that a set of m-minors of a generic matrix m×n does not generate a radical ideal in general
(as it does for m = 2). For example in the Graßmannian G(3, 6) modulo [123], [124], [135], [236]
the class of [125][346] is a non-zero nilpotent.

Next we look into necessary conditions for Ik
d (Xgen

G ) and Ik
d (Xsym

G ) to be prime. The condition
tie in with Proposition 2.8.

Lemma 7.13. Let G = ([n], G) be a graph.

(i) If Ik
d+1(Xsym

G ) is prime then G does not contain a subgraph isomorphic to Ka,b for a+b > d

(i.e. Ḡ is (n− d)-connected).
(ii) Assume G is bipartite with bipartition [n] = V1 ∪ V2 and d+ 1 ≤ |V1|, |V2|. If Ik

d+1(Xgen
G )

is prime then deleting any |V1| − d− 1 vertices from V1 and |V2| − d− 1 vertices from V2

yields a connected graph.
(iii) If G = Bd with d ≥ 4 and X is the generic (d + 2) × (d + 2) matrix then Ik

d+1(Xgen
G ) is

not prime.

Proof. (i) Assume Ḡ is not (n − d)-connected. Then there are n − d − 1 vertices such that
the graph obtained from Ḡ by deleting the vertices is disconnected. This implies that
selecting in Xsym

G the rows and columns corresponding to the remaining d + 1 vertices
yields a matrix which after reordering the vertices is block-diagonal with at least two
blocks. Hence its determinant is non-zero and reducible. Since the determinant is among
a minimal generating set, it follows that Ik

d+1(Xsym
G ) cannot be prime.

(ii) One easily checks that similar arguments as for the proof of the first part of (i) verify the
assertion.
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(iii) Set Yd = Xgen
Bd

, i.e.,

Yd =



x11 0 · · · 0 x1,d+1 x1,d+2

0 x22 · · · 0 x2,d+1 x2,d+2

...
...

...
...

...
...

0 · · · 0 xdd
...

...
xd+1,1 xd+1,2 · · · · · · xd+1,d+1 xd+1,d+2

xd+2,1 xd+2,2 · · · · · · xd+2,d+1 xd+2,d+2


.

and J = Id+1(Yd) and let S be the polynomial ring whose indeterminates are the non-zero
entries of Yd. First, we prove that for every d ≥ 1 the ideal J has the expected height,
i.e. height J = 4. For d = 1, 2, 3 the ideal J is indeed prime of height 4: for d = 1 this is
obvious because Y1 is the generic 3 × 3 matrix while for d = 2 and d = 3 it follows from
the fact that the corresponding LSS-ideal is prime by virtue of Proposition 7.4. For d > 3
let P be a prime containing J . If P contains (x11, x22, x33, x44) then heightP ≥ 4. If P
does not contain (x11, x22, x33, x44) we may assume x11 6∈ P . Inverting x11 and using the
standard localization trick for determinantal ideals one sees that PSx11 contains, up to
a change of variables, Id(Yd−1). Hence heightP = heightPSx ≥ 4. Now that we know
that J has height 4 to prove that J is not prime for d ≥ 4 it is enough to observe that
J ⊂ (x11, x22, x33, x44). The latter is straightforward since mod (x11, x22, x33, x44) the
submatrix of Y consisting of the first 4-rows as rank 2.

�

8. Questions and open problems

In Corollary 3.4 and Corollary 3.4 we have seen that for the properties c.i. and prime of Lk
G(d)

there is persistence along the parameter d but Example 2.2 shows persistence need not to hold for
the property of being radical.

Question 8.1. What patterns

{d < asymk(radical, G) : Lk
G(d) radical }

can occur for graphs G?

We expect that erratic behavior can occur. For example we believe that there exists a graph G
and a number d ≥ 3 such that Lk

G(d) and Lk
G(d+ 2) are non-radical while Lk

G(d+ 1) is radical.
We have seen in Theorem 2.9, [22, Cor. 1.4] and [22, Thm 1.1] that for certain fixed d we can

combinatorially classify the graphs G for which Lk
G(d) is radical, complete intersection or prime.

These classifications are based on rather simple graph theoretic properties of G.

Question 8.2. Fix a number d. Are there a (simple) combinatorially defined classes Gradical,d,
Gc.i.,d and Gprime,d such that (say for fields k of characteristic 0):

Lk
G(d) is radical ⇔ G ∈ Gradical,d

and

Lk
G(d) is a complete intersection ⇔ G ∈ Gc.i.,d

and

Lk
G(d) is prime ⇔ G ∈ Gprime,d?

As said above, we expect that the pattern of numbers d for which Lk
G(d) is radical can be quite

erratic. Therefore, let us concentrate on the properties prime and complete intersection. Here the
fact that the property is inherited by subgraphs supports hope for the classifications asked for in
Question 8.2. After Theorem 2.9 d = 3 for complete intersection and d = 4 for primeness are the
first parameters for which the classification is open.

For d = 3 we do not even have a conjecture when Lk
G(d) is a complete intersection. The graph

G from Figure 1(1) gives a graph G for which it can be checked that Lk
G(3) is not a complete
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intersection for char k = 0 while G still satisfies the necessary conditions from Proposition 2.8, i.e.
has no subgraphs Ka,b with a+ b = 5 and B4.

For d = 4 geometric results from Lovász’s [27, Ch 9.4] book indicate that Proposition 2.8 still
carries the essential obstacles for Lk

G(4) being prime.

Question 8.3. Is it true that Lk
G(4) is prime if and only if G does not contain a subgraph

isomorphic to Ka,b for a+ b = 5 and no subgraph isomorphic to B4?

Via the fact that primeness of Lk
G(d) implies primeness of Ik

d+1(XG) a result by Giusti and
Merle [18, Thm. 1.6.1] guides the intuition behind the following question.

Question 8.4. Let G be a subgraph of Km,n graph and assume m ≤ n. Is it true that Lk
G(m−1)

is prime if and only if G does not contain a subgraph isomorphic to Ka,b for a+ b ≥ m?

By Proposition 7.4 and Proposition 7.5 we know if Lk
G(d) is radical or prime then so are

Ik
d+1(Xgen

G ) and Ik
d+1(Xsym

G ) respectively. But our general bounds for asymk(radical, G) and
asymk(prime, G) from Corollary 5.5 are not good enough to make use of this implication. In-
deed, Corollary 7.7 shows that for the properties complete intersection and prime and n large
enough there are graphs G for which Proposition 7.5 does not prove primality of an interesting
ideal. On the other hand the use of Theorem 2.10 in Theorem 7.11 shows that one can take
advantage of this connection in some cases. It would be interesting to exhibit classes different
from forests where this is possible.

Question 8.5. Are there more interesting classes of graphsG = ([n], E) for which asymk(c.i., G) ≤
n or asymk(prime, G) ≤ n− 1 ?

Despite the fact that Proposition 7.6 destroys the hope for using Theorem 7.11 for general
graphs, it would be interesting replace the asymptotic result by an actual value. By Corollary 7.7
for n large we have asymk(prime,Kn) = 2n − cn for some numbers cn ∈ o(n) which using the
notation of Proposition 7.6 satisfy n −

(
wn−2

2

)
+ 1 ≥ cn ≥ 2. But we have no conjecture for an

actual formula for cn.

Question 8.6. What is the value of asymk(prime,Kn)?

For radicality we have a concrete conjecture in the case G = Kn.

Conjecture 8.7. We conjecture that asymk(radical,Kn) = 1 (at least if char k = 0). In other
words, given a matrix of variables X of size n×d we conjecture the ideal of the off-diagonal entries
of XXT is radical for all n, d.

It would also be interesting to study the ideal generated by all the entries of XXT . We note
that the symplectic version of this problem has been investigated by De Concini in [12].

Next we turn to open problems about hypergraph LSS-ideals. We know from Theorem 2.5(2)
that for a hypergraph H = (V,E) for which E is a clutter the ideal Lk

H(d) is a radical complete
intersection for d ≥ pmd(G). But we prove in Theorem 2.5(3) that LH(k) is prime for d ≥
pmd(H) + 1 only in the case that H is a graph.

Question 8.8. Is it true that for a hypergraph H = (V,E), where E is a clutter, we have Lk
H(d)

is prime for d ≥ pmd(H) + 1?

Similarly, the persistence results from Theorem 2.3 ask for generalizations.

Question 8.9. Let H = (V,E) be a hypergraph, where E is a clutter. Is it true that if Lk
H(d) is

a complete intersection (resp. prime) then so is Lk
H(d+ 1)?

For a number r ≥ 1 we call a hypergraph H = (V,E) an r-uniform graph if every element of E
has cardinality r. In particular, E then it is a clutter. For example, graphs are 2-uniform graphs.
We say that an r-uniform graph H = (V,E) is r-partite if there is a partition V = V1 ∪ · · · ∪ Vk
such that #(A ∩ Vi) = 1 for all i ∈ [r]. For r = 2 a 2-uniform hypergraph is 2-partite if and only
if the hypergraph considered as a graph is bipartite. Now we connect the study of ideal Lk

H(d) for
r-uniform (r-partite) graphs with the study of coordinate sections of the space of tensors with a
given rank. We consider two mappings:
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(φ) Let e1, . . . , en be the standard basis vectors of kn. For vectors vi = (vi,j)j∈[d] ∈ kd, i ∈ [r],

consider the map φ that sends (v1, . . . , vr) ∈ (kd)n to the tensor

d∑
j=1

∑
σ∈Sr

vσ(i),j · · · vσ(r),j eσ(1) ⊗ · · · ⊗ eσ(r) ∈ kn ⊗ · · · ⊗ kn︸ ︷︷ ︸
r

.

We take the sums over the different tensors arising from ei1 ⊗ · · · ⊗ eir , for numbers
1 ≤ i1 ≤ · · · ≤ ir ≤ n, by permuting the positions as standard basis of the space of
symmetric tensors.

(ψ) Let n = n1 + · · · + nr for natural numbers n1, . . . , nr ≥ 1. Let e
(j)
i ∈ knj be the i-th

standard basis vector of knj , i ∈ [nj ] and j ∈ [r]. For vectors v
(j)
i = (vi,j)j∈[d] ∈ kd for

i ∈ [nj ] and j ∈ [r] consider the map ψ that sends (v
(j)
i )(i,j)∈[nj ]×[r] to∑

(i1,...,ir)∈[n1]×···×[nr]

v
(1)
i1
· · · v(r)

ir
e

(1)
i1
⊗ · · · ⊗ e

(r)
ir
∈ kn1 ⊗ · · · ⊗ knr .

We take the tensors e
(1)
i1
⊗ · · · ⊗ e

(r)
ir

for numbers ij ∈ [nj ], j ∈ [r] as the standard basis of
kn1 ⊗ · · · ⊗ knr .

Recall that a (symmetric) tensor has (symmetric) rank ≤ d it can written as a sum of ≤ d
decomposable (symmetric) tensors. For more details on tensor rank and the geometry of bounded
rank tensors we refer the reader to [26]. Let H = (V,E) be a hypergraph. We write V(Lk

H(d))
for the vanishing locus of Lk

H(d). The the definition of the maps φ and ψ immediately implies the
following proposition.

Proposition 8.10. Let H = ([n], E) be an r-uniform hypergraph and k an algebraically closed
field.

(i) Then the restriction of the map φ to V(Lk
H(d)) is a parametrization of the space of symmet-

ric tensors in kn ⊗ · · · ⊗ kn︸ ︷︷ ︸
r

of rank ≤ d which when expanded in the standard basis has zero

coefficient for the basis elements indexed by 1 ≤ i1 < · · · < ir ≤ n and {i1, . . . , ir} ∈ E.
In particular, the Zariski-closure of the image of the restriction is irreducible if Lk

H(d) is
prime.

(ii) If H is r-partite with respect to the partition V = V1∪· · ·∪Vr where |Vi| = ni, i ∈ [r]. Then
the restriction of the map ψ to V(Lk

H(d)) is a parametrization of the space of tensors in
kn1⊗· · ·⊗knr of rank ≤ d which when expanded in the standard basis have zero coefficient
for the basis elements indexed by i1, . . . , ir where {i1, . . . , ir} ∈ E. In particular, the
Zariski-closure of the image of the restriction is irreducible if Lk

H(d) is prime.

Proposition 8.10 gives further motivation to Question 8.8. Indeed, it suggests to strengthen
Question 8.5.

Question 8.11. Let k be an algebraically closed field. Can one describe classes of r-uniform
hypergraphsH for which Lk

H(d) is prime for some d bounded from above by the maximal symmetric
rank of a symmetric sensor in kn ⊗ · · · ⊗ kn︸ ︷︷ ︸

r

.

An analogous question can be asked for r-partite r-uniform hypergraphs and tensors of bounded
rank.
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[32] M.Ohtani, Graphs and ideals generated by some 2-minors, Comm. Alg. 39 (2011) 905–917.

[33] A.Tchernev, Universal complexes and the generic structure of free resolutions, Michigan Math. J. 49 (2001)
65–96.

[34] H.Weyl, The Classical Groups, their Invariants and Representations, Princeton Univ. Press, Princeton, N.J.,
1939.
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