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POSET FIBER THEOREMS

ANDERS BJÖRNER1, MICHELLE L. WACHS2, AND VOLKMAR WELKER3

Abstract. Suppose that f : P → Q is a poset map whose fibers f−1(Q≤q)
are sufficiently well connected. Our main result is a formula expressing the
homotopy type of P in terms of Q and the fibers. Several fiber theorems
from the literature (due to Babson, Baclawski and Quillen) are obtained as
consequences or special cases. Homology, Cohen-Macaulay, and equivariant
versions are given, and some applications are discussed.

1. Introduction

In an influential paper Quillen [18] presented several “fiber theorems” for posets
(i.e., partially ordered sets). They have the general form: given a poset map f : P →
Q certain properties can be transferred from Q to P if only the fibers f−1(Q≤q) are
sufficiently well-behaved. The best known of these results (often referred to as “the
Quillen fiber lemma”) says that if the fibers are contractible then P has the same
homotopy type as Q. Another one says that if Q and all fibers are homotopy Cohen-
Macaulay (and some other conditions are met), then so is P . The corresponding
fiber theorem for transferring ordinary Cohen-Macaulayness from Q to P was given
around the same time by Baclawski [2].

The Quillen fiber lemma has become a fundamental tool in topological com-
binatorics, frequently used to determine homotopy type or compute homology of
combinatorial complexes. In this paper we present a generalization which subsumes
several of the known fiber theorems.

We now proceed to state the main result. Then we comment on the contents of
the rest of the paper and on some related work. First, however, a few definitions
are given.

All posets in this paper are assumed to be finite. For any element x of a poset
P we let P>x := {y ∈ P | y > x} and P≥x := {y ∈ P | y ≥ x}. The subsets P<x
and P≤x are defined similarly. Define the length `(P ) to be the length of a longest
chain of P , where the length of a chain is one less than its number of elements.
In particular, the length of the empty poset is −1. Given two posets P and Q, a
map f : P → Q is called a poset map if it is order preserving, i.e., x ≤P y implies
f(x) ≤Q f(y).
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The order complex ∆(P ) of a poset P is defined to be the abstract simplicial
complex whose faces are the chains of P . Usually we do not distinguish notationally
between an abstract simplicial complex ∆ and its geometric realization ‖∆‖. The
distinction should be understood from the context. Clearly, dim ∆(P ) = `(P ). The
join of simplicial complexes (or topological spaces) is denoted by ∗ and wedges are
denoted by ∨.

A topological space X is said to be r-connected (for r ≥ 0) if it is nonempty
and connected and its jth homotopy group πj(X) is trivial for all j = 1, . . . , r.
A nonempty space X is said to be r-acyclic if its jth reduced integral homology
group H̃j(X) is trivial for all j = 0, 1, . . . , r. We say that X is (−1)-connected and
(−1)-acyclic when X is nonempty. It is also convenient (for later use) to define
that every space is r-connected and r-acyclic for all r ≤ −2.

We use the notation ' to denote homotopy equivalence and ∼= to denote group
or vector space isomorphism. The jth reduced simplicial integral homology of the
order complex of a poset P is denoted by H̃j(P ).

The following is the basic version of our main result. More general versions
appear in Theorems 2.5 and 2.7.

Theorem 1.1. Let f : P → Q be a poset map such that for all q ∈ Q the fiber
∆(f−1(Q≤q)) is `(f−1(Q<q))-connected. Then

∆(P ) ' ∆(Q) ∨
{
∆(f−1(Q≤q)) ∗∆(Q>q) | q ∈ Q

}
,(1.1)

where ∨ denotes the wedge (of ∆(Q) and all ∆(f−1(Q≤q)) ∗ ∆(Q>q)) formed by
identifying the vertex q in ∆(Q) with any element of f−1(Q≤q), for each q ∈ Q.
Consequently, if ∆(Q) is connected then

∆(P ) ' ∆(Q) ∨
∨
q∈Q

∆(f−1(Q≤q)) ∗∆(Q>q).(1.2)

We will refer to a poset map f : P → Q such that for all q ∈ Q the fiber
∆(f−1(Q≤q)) is `(f−1(Q<q))-connected as being well-connected. Note that the
connectivity condition implies that each fiber f−1(Q≤q) is nonempty.

For clarity, let us remark that if ∆(Q) is connected then the space described on
the right-hand side of (1.1), which has |Q| wedge-points, is homotopy equivalent to
a one-point wedge, where arbitrarily chosen points of f−1(Q≤q), one for each q ∈ Q,
are identified with some (arbitrarily chosen) point of Q. Thus (1.1) can be restated
as (1.2) in this case. For general Q one needs at least as many wedge-points as
there are connected components of Q. So (1.1) can be restated as,

∆(P ) '
k⊎
i=1

∆(Q(i)) ∨
∨

q∈Q(i)

∆(f−1(Q≤q)) ∗∆(Q>q)

 ,

where Q(1), . . . , Q(k) are the connected components of Q and
⊎

denotes disjoint
union.

The definition of the join operation used here also needs clarification. The usual
definition of X ∗ Y as a quotient of X × Y × I (see e.g. [10, p. 468]) implies
that the join is empty if either of X or Y is empty. However, we use another
definition in that case, namely X ∗ ∅ = ∅ ∗X = X, which agrees with the standard
simplicial definition of the join operation. We should also point out that we use the
conventions that the empty set is a member of every abstract simplicial complex



POSET FIBER THEOREMS 3

and that any simplicial map takes the empty set to the empty set. If P is the empty
poset then ∆(P ) = {∅}.

Example 1.2. Let f : P → Q be the poset map depicted in Figure 1. For the two
top elements of Q the fiber ∆(f−1(Q≤q)) is a 1-sphere. For the bottom element of
Q the fiber ∆(f−1(Q≤q)) is a 0-sphere, and ∆(Q>q) is a 0-sphere too. So in either
case ∆(f−1(Q≤q)) ∗∆(Q>q) is homeomorphic to a 1-sphere. Hence the simplicial
complex on the right side of (1.1) has a 1-sphere attached to each element of Q.
Thus Theorem 1.1 determines ∆(P ) to have the homotopy type of a wedge of three
1-spheres. One can see this directly by observing that ∆(P ) is homeomorphic to
two 1-spheres intersecting in two points.

f
21

5 6

3 4

QP

Figure 1. A well-connected poset map.

The paper is organized as follows. We prove some generalizations of Theorem 1.1
in Section 2 using the “diagram of spaces” technique. Several corollaries are deduced
in Section 3, including generalizations of two results due to Quillen and one due to
Babson.

Section 4 gives the homology version of the main result. For an Euler character-
istic (Möbius function) version, see Walker [29, Corollary 3.2].

In Section 5 we discuss the non-pure version of the Cohen-Macaulay property,
and we prove (based on Theorem 1.1) the generalization to this setting of the
Cohen-Macaulay fiber theorems of Baclawski and Quillen.

Section 6 is devoted to an application concerning so called “inflated” simplicial
complexes. In Section 7 we discuss how the Ziegler-Živaljević formula [33] for
the homotopy type of the singularity link of an arrangement can be conveniently
deduced via Theorem 1.1.

The last two sections are devoted to group equivariant versions of Theorem 1.1.
In Section 8 we discuss this on the level of equivariant homotopy, and in Section 9
we derive equivariant versions of the homology results.

The need for a fiber result such as Theorem 1.1 arose in the work of the authors.
In [27] Wachs uses the results on inflated complexes to compute homotopy type
and homology of multigraph matching complexes and wreath product analogues of
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chessboard complexes (see also [26]). These inflation results have led to other inter-
esting developments such as the work of Pakianathan and Yalçin [16], Shareshian
[19] and Shareshian and Wachs [20] on complexes related to the Brown complex
and the Quillen complex of the symmetric group.

In [9] Björner and Welker use results from this paper to show that certain con-
structions on posets (the so called weighted Segre and Rees products, both in-
spired by ring theoretic constructions in commutative algebra) preserve the Cohen-
Macaulay property, homotopically and over a field.

In [28] Theorem 1.1 is used to express the homology of rank selected Dowling
lattices in terms of the homology of rank selected partition lattices. This results
in the lifting of a recent result of Hanlon and Hersh [11] on the multiplicity of
the trivial representation of the symmetric group in the rank selected homology of
partition lattices, to the rank selected homology of Dowling lattices.

We are grateful to Vic Reiner, Günter Ziegler and a referee for useful comments
on a preliminary version of this paper.

2. The proof

In order to prove Theorem 1.1 we need some tools from the theory of diagrams
of spaces. This theory was developed in the 60’s and 70’s by homotopy theorists.
Most of the results we need here were originally obtained in this context, however
we take their formulation from [31] since that suits our applications best. We refer
the reader to [31] for the original references.

The first combinatorial application of the theory of diagrams of spaces was in
the work of Ziegler and Živaljević [33], continued in Welker, Ziegler and Živaljević
[31]. Our work is closely related to [33] and [31], and could be said to follow in
their footsteps.

A diagram of spaces over a finite poset Q is a functor D : Q→ Top from Q into
the category of topological spaces. Here we consider Q as a small category with
a unique arrow pointing from x to y if x ≤ y. This means that to each x ∈ Q
we associate a topological space Dx and to any pair x ≤ y in Q we associate a
continuous map dx,y : Dx → Dy such that dx,x = idDx and dx,z = dy,z ◦ dx,y for
x ≤ y ≤ z. A simplicial Q-diagram is a functor from Q to the category of simplicial
complexes. By considering the geometric realization it is clear that a simplicial
diagram can be viewed as a diagram of spaces.

There are two constructions of a limit-space associated to a diagram of spaces
D.

• colimD: The colimit of the diagram D is the quotient of the disjoint union⊎
x∈Q Dx modulo the equivalence relation generated by a ∼ b if dx,y(a) = b

for some x ≤ y such that a ∈ Dx and b ∈ Dy.
• hocolimD: The homotopy colimit of the diagram D is the quotient of the

disjoint union
⊎
x∈Q ∆(Q≥x)×Dx modulo the equivalence relation generated

by (c, a) ∼ (c, b) if dx,y(a) = b for some x ≤ y such that a ∈ Dx, b ∈ Dy and
c ∈ ∆(Q≥y).

A diagram map α : D → E is a collection of continuous maps αx : Dx → Ex,
x ∈ Q, such that αy ◦dx,y = ex,y ◦αx for all x ≤ y in Q. A diagram map α : D → E
induces a continuous map from hocolimD to hocolim E in a natural way.
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We need three lemmas from [31]. The first of these is proved in a more general
form at the end of this section (Lemma 2.8) and the other two are quoted without
proof.

Lemma 2.1 (Homotopy Lemma [31, Lemma 4.6]). Let D and E be Q-diagrams.
Suppose α : D → E is a diagram map such that αx : Dx → Ex is a homotopy
equivalence for all x ∈ Q. Then α induces homotopy equivalence,

hocolimD ' hocolim E .
Lemma 2.2 (Wedge Lemma [31, Lemma 4.9] [33, Lemma 1.8]). Let Q be a poset
with a minimum element 0̂ and let D be a Q-diagram. Assume that for each y > 0̂
in Q there exists a point cy ∈ Dy such that dx,y(a) = cy for all x < y and a ∈ Dx.
Then

hocolimD '
∨
x∈Q

(Dx ∗∆(Q>x)) ,

where the wedge is formed by identifying cx ∈ Dx ∗∆(Q>x) with x ∈ D0̂ ∗∆(Q>0̂)
for all x > 0̂.

A continuous map α : X → Y is said to be a cofibration if for all continuous
maps f0 : Y → Z and homotopies gt : X → Z such that f0 ◦ α = g0 there exists
a homotopy ft : Y → Z such that gt = ft ◦ α. It is closed if it sends closed sets
to closed sets. For example, if Y has a triangulation such that X is triangulated
by a subcomplex (one says that (Y, X) is a simplicial pair), then the inclusion map
X ↪→ Y is a closed cofibration [10, p. 431].

Lemma 2.3 (Projection Lemma [31, Proposition 3.1]). Let D be a Q-diagram and
for each y ∈ Q, let D<y denote the restriction of D to Q<y. Suppose that the induced
map colimD<y → Dy is a closed cofibration for all y in Q. Then

hocolimD ' colimD.

The following example of a diagram of spaces is similar to one that appears in
Definition 1.2 of [33]. An arrangement of subspaces A = {A1, . . . , Am} is a finite
collection of closed subspaces of a topological space U such that

1. A, B ∈ A implies that A ∩B is a union of subspaces in A, and
2. for all B ∈ A, the inclusion map⋃

A ∈ A
A ( B

A ↪→ B

is a cofibration.
Let Q be the inclusion poset (A,⊆). There is an associated Q-diagram D(A),
called the subspace diagram of A, which is defined as follows: For each x ∈ Q,
let Dx = x, and for x ≤ y let dx,y be the inclusion map x ↪→ y. Since the
intersection of any pair of subspaces in A is a union of subspaces in A, it follows
that colimD(A) is homeomorphic to

⋃
A∈AA. On the other hand, by the Projection

Lemma hocolimD(A) ' colimD(A). Hence, we get:

Corollary 2.4 (to Projection Lemma). Let A be an arrangement of subspaces. Then

hocolimD(A) '
⋃
A∈A

A.
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We are now ready to prove Theorem 1.1, which we restate in a slightly more
general form.

Theorem 2.5. Let f : P → Q be a poset map such that for all q ∈ Q the
fiber f−1(Q≤q) is nonempty, and for all non-minimal q ∈ Q the inclusion map
∆(f−1(Q<q)) ↪→ ∆(f−1(Q≤q)) is homotopic to a constant map which sends ∆(f−1(Q<q))
to cq for some cq ∈ ∆(f−1(Q≤q)). Then

∆(P ) ' ∆(Q) ∨
{
∆(f−1(Q≤q)) ∗∆(Q>q) | q ∈ Q

}
,

where the wedge is formed by identifying the vertex q in ∆(Q) with cq, for each
q ∈ Q.

Proof. Let A = {∆(f−1(Q≤q)) | q ∈ Q}. We claim that A is an arrangement of
subspaces of ∆(P ). For all x, y ∈ Q, we have

∆(f−1(Q≤x)) ∩∆(f−1(Q≤y)) =
⋃

z:z≤x,y
∆(f−1(Q≤z)).

Let B ∈ A. Since (B,
⋃

A ∈ A
A ( B

A) is a simplicial pair, the inclusion map⋃
A ∈ A
A ( B

A ↪→ B is a cofibration. Hence A is indeed an arrangement of subspaces.

Clearly
⋃
A∈AA = ∆(P ). Hence by Corollary 2.4

∆(P ) ' hocolimD(A).(2.1)

Now let Ey = ∆(f−1(Q≤y)) for all y ∈ Q. For all x < y, let ex,y : Ex → Ey
be the constant map ex,y(a) = cy for all a ∈ Ex. The spaces Ey and the maps
ex,y form a Q-diagram E . Let Q̂ be the poset obtained from Q by attaching a
minimum element 0̂ to Q and let Ê be the Q̂-diagram obtained by including E0̂ = ∅
in E . Clearly hocolim E = hocolim Ê . It therefore follows from the Wedge Lemma
(Lemma 2.2) that

hocolim E ' ∆(Q) ∨
{
∆(f−1(Q≤q)) ∗∆(Q>q) | q ∈ Q

}
,

where the wedge is formed by identifying cq ∈ ∆(f−1(Q≤q)) ∗ ∆(Q>q) with q ∈
∆(Q), for all q ∈ Q.

It remains to show that

hocolimD(A) ' hocolim E .
We use the Homotopy Lemma (Lemma 2.1).

Suppose that y is not minimal in Q. Consider the homotopy from the inclusion
map ∆(f−1(Q<y)) ↪→ ∆(f−1(Q≤y)) to the constant map which sends ∆(f−1(Q<y))
to cy. By the homotopy extension property for simplicial pairs [10, pp. 430–431],
such a homotopy can be extended to a homotopy equivalence

αy : ∆(f−1(Q≤y))→ ∆(f−1(Q≤y))

which takes ∆(f−1(Q<y)) to cy. For minimal y ∈ Q, let αy be the identity mapping
on ∆(f−1(Q≤y)). The Homotopy Lemma applies to the diagram map α : D(A)→ E
and completes the proof.

Proof of Theorem 1.1. The connectivity condition implies that each fiber is nonempty.
Since all maps from a triangulable space of dimension r to an r-connected space
are homotopic, the connectivity condition also implies that the inclusion map



POSET FIBER THEOREMS 7

∆(f−1(Q<y)) ↪→ ∆(f−1(Q≤y)) is homotopic to any constant map. Hence we can
apply Theorem 2.5.

Remark 2.6. In the corollaries and homology versions of Theorem 1.1 that appear
in the following sections, the fiber connectivity condition (or its homology version)
can be replaced by the weaker fiber condition (or its homology version) given in
Theorem 2.5. For simplicity, we have chosen to use the simpler (albeit stronger)
connectivity assumption throughout the paper.

One of Quillen’s poset fiber results [18, Proposition 7.6] states that if all the
fibers of a poset map f : P → Q are t-connected then ∆(P ) is t-connected if and
only if ∆(Q) is t-connected. A more general result stating that if all the fibers
are t-connected then f induces isomorphism of homotopy groups πr(∆(P ), b) ∼=
πr(∆(Q), f(b)) for all r ≤ t and all basepoints b, was obtained by Björner [4, p.
1850] [5]. Since this does not follow from Theorem 1.1, we ask whether there is a
stronger version of Theorem 1.1 which implies these fiber results. We have been
able to obtain the following partial answer to this question.

A t-equivalence is a continuous map ψ : X → Y such that the induced map
ψ∗ : πr(X, b) → πr(Y, ψ(b)) is an isomorphism for all r < t and all basepoints b,
and is a surjection for r = t and all basepoints b. By Whitehead’s theorem [10, p.
486], the following result implies Theorem 1.1 when t is large.

Theorem 2.7. Let f : P → Q be a poset map and let t be a nonnegative inte-
ger. If each fiber ∆(f−1(Q≤q)) is min{t, `(f−1(Q<q))}-connected then there is a
t-equivalence

ψ : ∆(P )→ ∆(Q) ∨
{
∆(f−1(Q≤q)) ∗∆(Q>q) | q ∈ Q

}
.

Proof. The proof follows the lines of the proof of Theorem 1.1. The diagram map
α : D(A) → E in the proof of Theorem 2.5 is modified so that αy is the constant
map to cy when t < `(f−1(Q<y)). Using the fact that αy is a t-equivalence for all
y, we complete the proof by applying the following strong version of the homotopy
lemma.

Lemma 2.8 (Strong Homotopy Lemma). Let D and E be Q-diagrams. Suppose
α : D → E is a diagram map such that for each y ∈ Q the map αy : Dy → Ey is
a t-equivalence, where t is some fixed nonnegative integer. Then the induced map
from hocolimD to hocolim E is a t-equivalence.

Proof. The proof of the homotopy lemma given in the appendix of [33] is modified
by using [32, Corollary 2] instead of [33, Corollary 4.2].

We use induction on the size of Q. If |Q| = 1 the result is trivial. Let |Q| > 1.
Case 1: Q has a unique maximum y. The natural collapsing maps hocolimD →

Dy and hocolim E → Ey are deformation retractions which commute with the ap-
propriate maps. So the result holds.

Case 2: Q has more than one maximal element. Let y be one of the maximal
elements. Let D(< y),D(≤ y) and D(6= y) be the restrictions of D to the posets
Q<y, Q≤y and Q \ {y}, respectively. Let

X = hocolimD and X0 = hocolimD(≤ y).

We view X0 as the mapping cylinder of the natural map hocolimD(< y) → Dy.
So X0 is hocolimD(< y) × [0, 1] glued to Dy as a mapping cylinder. Now view
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hocolimD(6= y) as a space that contains hocolim D(< y)× {0} and set

X1 = hocolimD(6= y) ∪ (hocolimD(< y)× [0, 1/2]).

We have
X2 := X0 ∩X1 = hocolimD(< y)× [0, 1/2].

Clearly hocolimD(6= y) is a deformation retract of X1, hocolimD(< y) is a defor-
mation retract of X2, and

◦
X0 ∪

◦
X1= hocolimD(≤ y) ∪ hocolimD(6= y) = hocolimD = X,

where
◦
Xi denotes interior of Xi in X. Define Y and Yi, i = 0, 1, 2, analogously for E .

Since by induction, we have that the maps Xi → Yi induced by α are t-equivalences,
we can apply [32, Corollary 2] to conclude that the induced map X → Y is also a
t-equivalence.

3. Corollaries

The following is a direct consequence of Theorem 1.1. It is a minor generalization
of “the Quillen fiber lemma” [18, Proposition 1.6].

Corollary 3.1. Let f : P → Q be a poset map, and suppose that for all q ∈ Q
either the fiber ∆(f−1(Q≤q)) is contractible or else it is `(f−1(Q<q))-connected and
∆(Q>q) is contractible. Then

∆(P ) ' ∆(Q).

Another result of Quillen’s [18, Theorem 9.1] can be generalized as follows.

Corollary 3.2. Let f : P → Q be a poset map. Fix t ≥ 0. Suppose for all
q ∈ Q that the fiber ∆(f−1(Q≤q)) is `(f−1(Q<q))-connected and that ∆(Q>q) is
(t− `(f−1(Q<q))− 2)-connected. Then

πr(∆(P ), b) ∼= πr(∆(Q), f(b))

for all r ≤ t and all basepoints b. Consequently, ∆(P ) is t-connected if and only if
∆(Q) is t-connected.

Proof. Using the fact that the join of an i-connected simplicial complex with a j-
connected simplicial complex is (i+j+2)-connected, we find that all components of
the wedge on the right-hand side of equation (1.1) are t-connected with the possible
exception of ∆(Q). We claim that the t-connectivity of these components implies
that for all r ≤ t and all b ∈ P ,

πr(∆(Q), f(b)) ∼= πr(Γ, f(b)),

where Γ is the simplicial complex on the right-hand side of (1.1). To establish this
claim we use the following homotopy theory fact which can be proved by using [14,
Theorem 6.2], [12, Exercise 4.1.15] and Van Kampen’s theorem: If X is a connected
CW-complex and Y is a t-connected CW-complex then πr(X ∨ Y ) ∼= πr(X) for all
r ≤ t.

Remark 3.3. After this paper was finished G. Ziegler pointed us to the recent paper
[15], which contains two results (Theorem 3.8 and Theorem 3.6) very similar to our
Corollary 3.2 and its homology version.
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In his thesis, Babson [1] (see also [22, Lemma 3.2]) presented a fiber lemma for
posets involving fibers of the form f−1(q). It can be generalized as follows. (Bab-
son’s lemma is the special case where condition (i) is sharpened to “∆(f−1(q))
is contractible”, condition (ii) to “∆(f−1(q) ∩ P≥p) is contractible for all p ∈
f−1(Q≤q)” and the conclusion to “∆(P ) ' ∆(Q)”.)

Corollary 3.4. Let f : P → Q be a poset map. Suppose that for every q ∈ Q:
(i) ∆(f−1(q)) is `(f−1(Q<q))-connected,
(ii) ∆(f−1(q) ∩ P≥p) is contractible or else it is `(f−1(q) ∩ P>p)-connected and

∆(P<p) is contractible, for all p ∈ f−1(Q≤q).
Then

∆(P ) ' ∆(Q) ∨
{
∆(f−1(q)) ∗∆(Q>q) | q ∈ Q

}
,(3.1)

where the wedge is formed by identifying the vertex q ∈ ∆(Q) with any element of
f−1(q), for each q ∈ Q.

Proof. By Theorem 1.1 and condition (i) it suffices to show that the poset inclusion
map

g : f−1(q)→ f−1(Q≤q)
induces homotopy equivalence of order complexes. But this follows from Corollary
3.1 and condition (ii), since g−1((f−1(Q≤q))≥p) = f−1(q)∩P≥p, g−1((f−1(Q≤q))>p) =
f−1(q) ∩ P>p and f−1(Q≤q)<p = P<p.

A simplicial complex version of Theorem 1.1 follows from the poset version.
Given a face F of a simplicial complex ∆, let Ḟ denote the subcomplex of faces
contained in F and let lk∆ F denote the link of F , i.e.,

lk∆ F = {G ∈ ∆ | G ∩ F = ∅ and G ∪ F ∈ ∆}.

Corollary 3.5. Let f : Γ → ∆ be a simplicial map. If the fiber f−1(Ḟ ) is
dim f−1(Ḟ \ {F})-connected for all nonempty faces F of ∆, then

Γ ' ∆ ∨
{

f−1(Ḟ ) ∗ lk∆ F | F ∈ ∆ \ {∅}
}

,

where the wedge is formed by identifying a vertex of f−1(Ḟ ) with a vertex of F for
each nonempty face F of ∆.

Proof. We view f as a poset map from the poset of nonempty faces of Γ to the
poset of nonempty faces of ∆. Since the barycentric subdivision of a complex is
homeomorphic to the complex, f is a well-connected poset map. Hence by Theo-
rem 1.1

sd Γ ' sd ∆ ∨
{

sd f−1(Ḟ ) ∗ sd lk∆ F | F ∈ ∆ \ {∅}
}

,

where sd denotes the barycentric subdivision. Passing from the barycentric subdi-
vision to the original complexes yields the result.

4. Homology fiber theorem

This section is devoted to the homology version of Theorem 1.1 and its corollaries.
For the proofs we again rely on the theory of diagrams of spaces. Homology versions
of the tools of Section 2 were used by Sundaram and Welker [23], and we refer to
their paper for further details.

We use the notation H̃∗(∆) = ⊕i∈Z H̃i(∆).
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Theorem 4.1. Fix an integer t ≥ 0. Let f : P → Q be a poset map such that
for all q ∈ Q the fiber ∆(f−1(Q≤q)) is min{t, `(f−1(Q<q))}-acyclic and either
H̃∗(f−1(Q≤q)) or H̃∗(Q>q) is free. Then for all r ≤ t,

H̃r(P ) ∼= H̃r(Q)⊕
⊕
q∈Q

r⊕
i=−1

(
H̃i(f−1(Q≤q))⊗ H̃r−i−1(Q>q)

)
.

The same result holds for homology taken over any field.

For the proof we use a slight generalization of a homology version of the Wedge
Lemma due to Sundaram and Welker [23]. It will be proved later in this paper as
a special case of Proposition 9.8, see also Remark 9.9.

Proposition 4.2 ([23, Proposition 2.3]). Let D be a simplicial Q-diagram for which
each Dx 6= {∅}. Let t be a nonnegative integer. Assume that for all nonminimal y
in Q and r ≤ t, the induced map

(∪x<ydx,y)∗ : H̃r(
⊎
x<y

Dx)→ H̃r(Dy)

is trivial. Assume also that either H̃∗(Dx) or H̃∗(Q>x) is free for all x. Then for
all r ≤ t,

H̃r(hocolimD) ∼= H̃r(Q)⊕
⊕
x∈Q

r⊕
i=−1

(
H̃i(Dx)⊗ H̃r−i−1(Q>x)

)
.

The same result holds for homology taken over any field.

Proof of Theorem 4.1. Let D(A) be the simplicial Q-diagram described in the proof
of Theorem 2.5. The map

(∪x<ydx,y)∗ : H̃r(
⊎
x<y

f−1(Q≤x))→ H̃r(f−1(Q≤y))

induced by the inclusion map is trivial for all r ≤ t, since H̃r(
⊎
x<y f−1(Q≤x)) = 0

if r > `(f−1(Q<y)) for dimensional reasons, and H̃r(f−1(Q≤y)) = 0 for all r ≤
min{t, `(f−1(Q<y))} by the acyclicity assumption. Thus we can apply Proposi-
tion 4.2 to D(A). The result now follows from equation (2.1).

Homology versions of Corollaries 3.1 – 3.5 follow straightforwardly. We state two
of them.

Corollary 4.3. Let f : P → Q be a poset map. Suppose that for all q ∈ Q either
the fiber ∆(f−1(Q≤q)) is t-acyclic or else it is `(f−1(Q<q))-acyclic and ∆(Q>q) is
t-acyclic. Then

H̃r(P ) ∼= H̃r(Q)
for all r ≤ t. The same result holds for homology taken over any field.

Corollary 4.4. Let f : Γ→ ∆ be a simplicial map. Suppose that the fiber f−1(Ḟ )
is min{t, dim f−1(Ḟ \ {F})}-acyclic and either H̃∗(f−1(Ḟ )) or H̃∗(lk∆ F ) is free
for all nonempty faces F of ∆. Then for all r ≤ t,

H̃r(Γ) ∼= H̃r(∆)⊕
⊕

F∈∆\{∅}

r⊕
i=−1

(
H̃i(f−1(Ḟ ))⊗ H̃r−i−1(lk∆ F )

)
.

The same result holds for homology taken over any field.
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5. Cohen-Macaulay fiber theorem

Since the late 1970’s two very similar fiber theorems for transferring the Cohen-
Macaulay property of posets are known, one for the homology version and one for
the homotopy version, due to Baclawski [2] and Quillen [18], respectively. Sev-
eral years later Stanley [21] introduced the more general property of “sequential
Cohen-Macaulayness”. In this section we introduce a homotopy version of the se-
quential Cohen-Macaulay property by considering a characterization of sequential
Cohen-Macaulayness due to Wachs [25]. We show how the homology and homo-
topy versions of the sequential Cohen-Macaulay property can be transferred via
certain poset maps, thereby reproving and generalizing the results of Baclawski
and Quillen.

Let ∆ be a simplicial complex, and for 0 ≤ m ≤ dim ∆ let ∆〈m〉 be the
subcomplex generated by all facets (i.e. maximal faces) of dimension at least
m. We say that ∆ is sequentially connected if ∆〈m〉 is (m − 1)-connected for all
m = 0, 1, . . . ,dim ∆. Similarly, we say that ∆ is sequentially acyclic over k if
H̃r(∆〈m〉; k) = 0 for all r < m ≤ dim ∆, where k is the ring of integers or a field.

A simplicial complex is said to be pure if all facets are of equal dimension. Clearly
a pure d-dimensional simplicial complex is sequentially connected if and only if it
is (d− 1)-connected, and it is sequentially acyclic if and only if it is (d− 1)-acyclic.
Cohen-Macaulay (CM) complexes (see [21]) are pure. The notion of sequentially
Cohen-Macaulay (SCM) simplicial complexes is a nonpure generalization due to
Stanley [21, Chap. III, Sec. 2]. In Wachs [25, Theorem 1.5] the following char-
acterization is given: a simplicial complex is SCM over k if and only if the link
of each of its faces is sequentially acyclic over k. (The term “vanishing homology
property” was used in place of “sequentially acyclic” in [25].) A simplicial complex
is CM if and only if it is SCM and pure.

One can formulate a homotopy version of the SCM property as follows. We say
that ∆ is sequentially homotopy Cohen-Macaulay (SHCM) if the link of each of
its faces is sequentially connected. For pure simplicial complexes, SHCM reduces
to the notion of homotopy Cohen-Macaulay (HCM). The following sequence of
implications holds:

(nonpure) shellable =⇒ SHCM =⇒ SCM over Z =⇒ SCM over k, for all fields k.

For more information about S(H)CM complexes, see [8]
A poset is said to be CM (SCM, HCM or SHCM) if its order complex is. A poset

P is said to be semipure if all closed principal lower order ideals P≤x are pure. The
rank, rk(x), of an element x in a semipure poset P is defined to be `(P≤x). Finally,
P 〈m〉 denotes the lower order ideal of P generated by elements of rank at least m.

In the pure case part (i) of the following result specializes to the homotopy Cohen-
Macaulay fiber theorem of Quillen [18, Corollary 9.7], and part (ii) specializes to
Baclawski’s Cohen-Macaulay fiber theorem [2, Theorem 5.2].

Theorem 5.1. Let P and Q be semipure posets and let f : P → Q be a surjective
rank-preserving poset map.

(i) Assume that for all q ∈ Q the fiber ∆(f−1(Q≤q)) is HCM. If Q is SHCM,
then so is P .

(ii) Let k be a field or Z, and assume that for all q ∈ Q the fiber ∆(f−1(Q≤q)) is
CM over k. If Q is SCM over k, then so is P .
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(iii) If the conditions of (i) or (ii) are fulfilled, then

βi(P ) = βi(Q) +
∑
q∈Q〈i〉

βrk(q)(f−1(Q≤q))βi−rk(q)−1(Q>q).

[Here βi(·) = rank H̃i( · ), or βi(·) = dimk H̃i( · ; k) if k is a field.]

Proof. We begin with part (i). First we show that P is sequentially connected;
that is, ∆(P )〈m〉 is (m− 1)-connected for all m = 0, . . . , `(P ). Since P 6= ∅ we may
assume that m > 0. Note that ∆(P )〈m〉 = ∆(P 〈m〉). We will show that Corollary
3.2 (with t = m − 1) applies to the map f 〈m〉 : P 〈m〉 → Q〈m〉, where f 〈m〉 is the
restriction of f .

We claim that for all q ∈ Q〈m〉,

(f 〈m〉)−1(Q〈m〉≤q ) = f−1(Q≤q),(5.1)

where Q
〈m〉
≤q := (Q〈m〉)≤q. To see this, first observe that Q

〈m〉
≤q = Q≤q and

(f 〈m〉)−1(Q〈m〉≤q ) = f−1(Q≤q) ∩ P 〈m〉.

Hence to establish (5.1) it suffices to show that f−1(Q≤q) ⊆ P 〈m〉. Let x ∈
f−1(Q≤q). Since q ∈ Q〈m〉, there is some z ∈ Q such that rk(z) ≥ m and q ≤ z. It
follows from the fact that f is surjective and rank-preserving that f−1(Q≤z) has a
maximal element of rank rk(z). Since f−1(Q≤z) is pure, all maximal elements have
rank rk(z). It follows that x is less than or equal to some element of rank rk(z).
Hence x ∈ P 〈m〉 and (5.1) holds. A similar argument yields

(f 〈m〉)−1(Q〈m〉<q ) = f−1(Q<q)(5.2)

for all q ∈ Q〈m〉.
Since f is rank-preserving and surjective, we have

`((f 〈m〉)−1(Q〈m〉<q )) = `(f−1(Q<q)) = `(f−1(Q≤q))− 1 = rk(q)− 1(5.3)

for all q ∈ Q〈m〉. It follows that ∆(f−1(Q≤q)) is `(f−1(Q<q))-connected, since it is
HCM. Hence by (5.1) and (5.2), ∆((f 〈m〉)−1(Q〈m〉≤q )) is

`((f 〈m〉)−1(Q〈m〉<q ))-connected for all q ∈ Q〈m〉.
On the other hand, note that (Q〈m〉)>q = (Q>q)〈m−rk(q)−1〉 for all q ∈ Q〈m〉.

Since ∆(Q>q) is the link of a face of ∆(Q) we have that ∆(Q>q) is sequentially
connected. Hence ∆((Q>q)〈m−rk(q)−1〉) is (m− rk(q)− 2)-connected. Therefore by
(5.3), ∆((Q〈m〉)>q) is (m− `((f 〈m〉)−1(Q〈m〉<q ))− 3)-connected.

We have shown that Corollary 3.2 applies. Therefore ∆(P )〈m〉 = ∆(P 〈m〉) is
(m− 1)-connected, since ∆(Q)〈m〉 = ∆(Q〈m〉) is.

Next we check that all open intervals and principal upper and lower order ideals
of P are sequentially connected. From this it will follow that the link of every face of
∆(P ) is sequentially connected, since the join of sequentially connected complexes
is sequentially connected. (This fact is easy to verify when at most one of the
complexes is nonpure, which is the situation here. It is proved in general in [8].)

Let (a, b) be an open interval in P . Then (a, b) is an open interval in the fiber
f−1(Q≤f(b)). Since the fiber is HCM, it follows that (a, b), which is the link of
a face of the fiber, is sequentially connected. The same argument works for open
principal lower order ideals in P .
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To show that all open principal upper order ideals P>x are sequentially connected
we show that the restriction of f to P>x is a surjective rank-preserving poset map
onto Q>f(x) whose fibers are HCM. It will then follow by induction that P>x is
SHCM (and hence sequentially connected) since Q>f(x) is. The restriction is clearly
rank-preserving. The fibers have the form f−1(Q≤q) ∩ P>x where q > f(x). Since
f−1(Q≤q)∩P>x is an open principal upper order ideal of the HCM poset f−1(Q≤q),
it is HCM. Since f is rank preserving and surjective and f−1(Q≤q) is pure, we
have that all the maximal elements of f−1(Q≤q) map to q. One of these maximal
elements must be greater than x. Hence there is an element in P>x which maps to
q. It follows that the restriction of f to P>x is surjective onto Q>f(x).

Part (ii) is proved the same way, using Theorem 4.1 instead of Corollary 3.2.
The statement about βi(P ) in part (iii) is implied by Theorem 4.1 and the fact
that `(Q>q) < i− rk(q)− 1 for q /∈ Q〈i〉.

We have the following partial converse to (i) and (ii) of Theorem 5.1. Its proof
is similar to that of Theorem 5.1 and is left as an exercise.

Theorem 5.2. Let P and Q be semipure posets and let f : P → Q be a surjective
rank-preserving poset map. Assume for all q ∈ Q that the fiber f−1(Q≤q) is HCM
(alt. CM) and that f−1(Q>q) = P>p for some p ∈ P . If P is SHCM (alt. SCM)
then so is Q.

Corollary 5.3. Let f : Γ→ ∆ be a surjective dimension-preserving simplicial map
such that for all faces F of ∆ the fiber f−1(Ḟ ) is HCM (alt. CM). If ∆ is SHCM
(alt. SCM) then so is Γ. Conversely, suppose also that for each face F of ∆ the
complex f−1(lk∆ F ) is the link of some face of Γ. If Γ is SHCM (alt. SCM) then
so is ∆.

Proof. This follows from the fact that a simplicial complex is SHCM (alt. SCM) if
and only if its barycentric subdivision is.

6. Inflated simplicial complexes

Let ∆ be a simplicial complex on vertex set [n] := {1, 2, . . . , n} and let m =
(m1, . . . , mn) be a sequence of positive integers. We form a new simplicial complex
∆m, called the m-inflation of ∆, as follows. The vertex set of ∆m is {(i, c) |
i ∈ [n], c ∈ [mi]} and the faces of ∆m are of the form {(i1, c1), . . . , (ik, ck)} where
{i1, . . . , ik} is a k element face of ∆ and cj ∈ [mij ] for all j = 1, . . . , k. We can
think of cj as a color assigned to vertex ij and of {(i1, c1), . . . , (ik, ck)} as a coloring
of the vertices of face {i1, . . . , ik}. A color for vertex i is chosen from mi colors.

Example 6.1. Let P and Q be the posets depicted in Figure 1 of Section 1. We
have that ∆(P ) is the (2, 2, 2)-inflation of ∆(Q).

Inflated simplicial complexes arose in work of Wachs [27] on bounded degree
digraph and multigraph complexes, where the following consequence of Theorem 1.1
is used. This result, for the special case that m = (2, . . . , 2), first appeared in
Björner [3, pp. 354–355] in connection with subspace arrangements.

Theorem 6.2. Let ∆ be a simplicial complex on vertex set [n] and let m be a
sequence of n positive integers. If ∆ is connected then

∆m '
∨
F∈∆

(susp|F |(lk∆ F ))∨ν(F,m),
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where ν(F, m) =
∏
i∈F (mi − 1). For general ∆,

∆m '
k⊎
i=1

∨
F∈∆(i)

(susp|F |(lk∆(i) F ))∨ν(F,m),

where ∆(1), . . . ,∆(k) are the connected components of ∆.

Proof. Let f : ∆m → ∆ be the simplicial map that sends each vertex (i, c) of
∆m to vertex i of ∆. We call this map the deflating map and show that it is
well-connected. We claim that each fiber f−1(Ḟ ) is a wedge of ν(F, m) spheres of
dimension dimF . First observe that the fiber f−1(Ḟ ) is a matroid complex. Since
all matroid complexes are (pure) shellable [17], the fiber is a wedge of spheres of
dimension dimF (cf. [7]). To determine the number of spheres in the wedge we
compute the reduced Euler characteristic. The number of (k−1)-dimensional faces
in f−1(Ḟ ) is

∑
A∈(Fk)

∏
i∈A mi. Hence the reduced Euler characteristic of f−1(Ḟ )

is
χ̃(f−1(Ḟ )) =

∑
A⊆F

(−1)|A|−1
∏
i∈A

mi =
∏
i∈F

(1−mi).

Therefore the number of spheres in the wedge is |χ̃(f−1(Ḟ ))| = ν(F, m).
We may assume ∆ is connected since the general case follows from this case. By

Corollary 3.5,
∆m '

∨
F∈∆

(SdimF )∨ν(F,m) ∗ lk∆ F.

The result now follows from the fact that the join operation is distributive over the
wedge operation.

Let k be a field or the ring of integers.

Corollary 6.3. For all r ∈ Z,

H̃r(∆m; k) =
⊕
F∈∆

ν(F, m) H̃r−|F |(lk∆ F ; k).

Corollary 6.4. For any simplicial complex ∆ on [n] and n-sequence of positive
integers m, the inflated simplicial complex ∆m is CM over k (SCM over k, HCM
or SHCM) if and only if ∆ is.

Proof. This follows from the fact that all the fibers of the deflating map given in
the proof of Theorem 6.2 are homotopy Cohen-Macaulay and Corollary 5.3.

Remark 6.5. A poset P is said to be obtained by replicating elements of a poset Q
if there is a surjective poset map f : P → Q such that (1) f(x1) < f(x2) if and only
if x1 < x2 and (2) f−1(y) is an antichain for all y ∈ Q. For example, the poset P
of Figure 1 is obtained by replicating elements of Q. This operation was shown by
Baclawski [2, Theorem 7.3] to preserve CMness. It is easy to see that for any posets
P and Q, the order complex ∆(P ) is an inflation of the order complex ∆(Q) if and
only if P is obtained by replication of elements of Q. Thus, Baclawski’s result can
be extended to this special case of Corollary 6.4:

Let P be obtained by replicating elements of Q. Then P is CM
over k (SCM over k, HCM or SHCM) if and only if Q is.

For the case that P and Q are semipure this also follows from Theorems 5.1 and
5.2.
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7. Subspace arrangements

The tools from the theory of diagrams of spaces discussed in Section 2 were used
by Ziegler and Živaljević [33] to prove results about the homotopy type of various
spaces connected to subspace arrangements. In particular, they proved a result (see
Theorem 7.3 below) which can be considered a homotopy version and strengthening
of the Goresky-MacPherson formula on subspace arrangements.

Since the tools used in [33] are the same as those used to prove Theorem 1.1, it
is natural to ask whether one result can be obtained from the other. In this section
we show that the Ziegler-Živaljević formula and a related result of Herzog, Reiner
and Welker [13] can be viewed as consequences of Theorem 1.1. This does however
not amount to new proofs, since the methods used are essentially the same.

Let Γ be a regular cell complex and let Γ1, . . . ,Γn be a collection of subcomplexes
whose union is Γ. For each nonempty subset I = {i1, . . . , it} ⊆ {1, 2, . . . , n}, let
ΓI = Γi1 ∩ · · · ∩ Γit . The semilattice of intersections is defined as

L(Γ1, . . . ,Γn) := {‖ΓI‖ | ∅ 6= I ⊆ {1, . . . , n}}
ordered by inclusion.

Lemma 7.1. [13, Lemma 6.1] Assume that for all nonempty I, J ⊆ {1, . . . , n} the
proper inclusion ΓI ( ΓJ implies dim ΓI < dim ΓJ , and that each ΓI is (dim ΓI−1)-
connected. Let L = L(Γ1, . . . ,Γn) \ {∅}. Then

Γ ' ∆(L) ∨ {T ∗∆(L>T ) | T ∈ L} ,

where the wedge is formed by identifying each vertex T in the simplicial complex
∆(L) with a point in the topological space T ∗∆(L>T ).

Proof. The face poset F(Γ) of a regular cell complex Γ is the set of closed cells
ordered by inclusion. Let f : F(Γ) → L send a closed cell σ to ‖ΓI‖, where ΓI is
the intersection of all Γi containing σ. Clearly f is order preserving. We claim that
f is well-connected.

Observe that
f−1(L≤‖ΓI‖) = F(ΓI).

Since a regular cell complex is homeomorphic to the order complex of its face poset
[6, Proposition 4.7.8], we have that ∆(f−1(L≤‖ΓI‖)) is homeomorphic to ‖ΓI‖,
which (by assumption) is (dim ΓI − 1)-connected. Since

f−1(L<‖ΓI‖) =
⋃

ΓJ(ΓI

F(ΓJ)

and `(F(ΓJ)) = dim ΓJ , we also have that `(f−1(L<‖ΓI‖)) < dim ΓI . It follows that
∆(f−1(L≤‖ΓI‖)) is `(f−1(L<‖ΓI‖))-connected. Hence f is indeed well-connected,
and the result follows from Theorem 1.1.

Remark 7.2. By using the stronger Theorem 2.5 rather than Theorem 1.1, the
conditions in the hypothesis of Lemma 7.1 can be weakened. This results in a
stronger form of Lemma 7.1 which is stated in [13, Lemma 6.1].

Let A be a linear subspace arrangement, i.e., a finite collection of linear subspaces
in Euclidean space Rd. The singularity link V o

A is defined as

V o
A = Sd−1 ∩

⋃
X∈A

X,



16 BJÖRNER, WACHS, AND WELKER

where Sd−1 is the unit (d− 1)-sphere in Rd. The intersection lattice LA of A is the
collection of all intersections of subspaces in A ordered by reverse inclusion. See [3]
for a survey of the theory of subspace arrangements.

Theorem 7.3 (Ziegler & Živaljević [33]). Let A be a linear subspace arrangement.
If A is essential, i.e., ∩A = {0}, then

V o
A ' ∆(LA \ {0̂, 1̂}) ∨

{
suspdim x(∆(0̂, x)) | x ∈ LA \ {0̂, 1̂}

}
,(7.1)

where the wedge is formed by identifying each vertex x in ∆(LA \ {0̂, 1̂}) with any
point in suspdim x(∆(0̂, x)). If A is not essential then

V o
A '

∨
x∈LA\{0̂}

suspdim x(∆(0̂, x)).

Proof. Suppose A = {X1, . . . , Xn}. Let H be an essential hyperplane arrangement
in Rd such that each Xi is the intersection of a subcollection of hyperplanes in
H. The hyperplane arrangement H determines a regular cell decomposition of the
singularity link Sd−1∩

⋃
X∈HX (see e.g. [6, Section 2.1]). Let Γ be the subcomplex

whose geometric realization is V o
A, and for each i, let Γi be the subcomplex of Γ

whose geometric realization is Sd−1∩Xi. Since the intersection of any r-dimensional
linear subspace of Rd with Sd−1 is an (r − 1)-sphere, ‖ΓI‖ is a dim ΓI -sphere and
is therefore (dim ΓI − 1)-connected, for each I. Since LA \ {0̂} is isomorphic to the
dual of L(Γ1, . . . ,Γn), the result is obtained by applying Lemma 7.1.

8. Group actions on homotopy

In this section we derive group equivariant versions of Theorem 1.1 and its corol-
laries. We begin with a review of some definitions.

Let G be a group. A G-poset is a poset on which G acts as a group of poset
automorphisms. A G-poset map f : P → Q is a poset map from G-poset P to
G-poset Q which commutes with the G-action (i.e., f(gx) = gf(x) for all g ∈ G
and x ∈ P ). A G-simplicial complex is a simplicial complex on which G acts as a
group of simplicial automorphisms. A G-simplicial map f : ∆ → Γ is a simplicial
map from G-simplicial complex ∆ to G-simplicial complex Γ which commutes with
the G-action. A G-space is a topological space on which G acts as a group of
homeomorphisms. A G-continuous map f : X → Y from G-space X to G-space Y
is a continuous map that commutes with the G-action.

Clearly, the order complex of a G-poset is a G-simplicial complex and a G-
poset map induces a G-simplicial map. Also if ∆ is a G-simplicial complex then
the induced action of G on the geometric realization ‖∆‖ is a G-space and a G-
simplicial map induces a G-continuous map.

Let f, f ′ : X → Y be G-continuous maps. We say that f and f ′ are G-homotopic
if there is a homotopy F : X × [0, 1] → Y between f and f ′ such that gF (x, t) =
F (gx, t) for all g ∈ G, x ∈ X and t ∈ [0, 1]. Two G-spaces X and Y are said to be
G-homotopy equivalent if there are G-continuous maps α : X → Y and β : Y → X
such that α ◦ β and β ◦ α are G-homotopic to the respective identity maps on Y
and X. We denote the G-homotopy equivalence by X 'G Y .

A G-space X is said to be G-contractible if X is G-homotopy equivalent to
a point. Given a G-poset (G-space) X, let XG denote the subposet (subspace) of
elements (points) fixed by G. For r ≥ −1, a G-space X is said to be (G, r)-connected
if XG is nonempty and for each G-simplicial complex ∆ such that dim ∆ ≤ r, all



POSET FIBER THEOREMS 17

G-continuous maps from ‖∆‖ to X are G-homotopic. Clearly a G-contractible
space is (G, r)-connected for all r. An example of an r-connected space that is not
(G, r)-connected is as follows. Let X be a 1-sphere and let G be the cyclic group
generated by the reflection about the line spanned by a pair of antipodal points a
and b. Although X is 0-connected it is not (G, 0)-connected. Indeed the inclusion
map from the 0-sphere consisting of a and b is not G-homotopic to the constant
map which takes a and b to a.

Now let f : P → Q be a G-poset map. Assume that f−1(Q≤q)StabG(q) is
nonempty for all q ∈ Q and choose cq ∈ f−1(Q≤q)StabG(q) so that gcq = cgq for all
g ∈ G. This can be done by first choosing the cq’s for the orbit representatives in
Q. With a fixed choice of cq’s we can form the G-simplicial complex

Γ(f, {cq}q∈Q) := ∆(Q) ∨
{
∆(f−1(Q≤q)) ∗∆(Q>q) | q ∈ Q

}
,

where the wedge is formed by identifying each q ∈ Q with cq ∈ f−1(Q≤q). The
action of G on the vertex set

⊎
q∈Q(f−1(Q≤q) ] Q>q) of Γ(f, {cq}q∈Q) can be

described as follows: If x ∈ f−1(Q≤q)]Q>q then g ∈ G takes x to gx in f−1(Q≤gq)]
Q>gq.

Theorem 8.1. Let f : P → Q be a G-poset map such that for all q ∈ Q the fiber
f−1(Q≤q) is (StabG(q), `(f−1(Q<q)))-connected. Then

∆(P ) 'G ∆(Q) ∨
{
∆(f−1(Q≤q)) ∗∆(Q>q) | q ∈ Q

}
,(8.1)

where the wedge is formed by identifying each q ∈ Q with cq ∈ f−1(Q≤q) where the
cq are chosen so that gcq = cgq.

The proof of Theorem 8.1 goes along the lines of the proof of Theorem 1.1 using
an equivariant version of a Q-diagram (see Definition 9.7) and equivariant versions
of the Projection Lemma, Homotopy Lemma, Wedge Lemma (see for example [30])
and the Homotopy Extension Property.

Theorem 8.1 generalizes the equivariant Quillen fiber lemma which was first
proved and applied by Thévenaz and Webb [24].

Corollary 8.2 ([24]). Let f : P → Q be a G-poset map such that for all q ∈ Q the
fiber ∆(f−1(Q≤q)) is StabG(q)-contractible. Then ∆(P ) and ∆(Q) are G-homotopy
equivalent.

Equivariant versions of all the corollaries in Section 3 follow from Theorem 8.1.
We state the equivariant version of Corollary 3.5.

Corollary 8.3. Let f : Γ → ∆ be a G-simplicial map. If the fiber f−1(Ḟ ) is
(StabG(F ),dim f−1(Ḟ \ {F}))-connected for all nonempty faces F of ∆ then

Γ ' ∆ ∨
{

f−1(Ḟ ) ∗ lk∆ F | F ∈ ∆ \ {∅}
}

,

where the wedge is formed by identifying a vertex cF in f−1(Ḟ ) with a vertex of F
and the cF are chosen so that gcF = cgF for all g ∈ G.

It is clear from the proof of Theorem 8.1 that the equivariant connectivity
assumption can be replaced by the weaker assumption that the inclusion map
∆(f−1(Q<q)) ↪→ ∆(f−1(Q≤q)) is StabG(q)-homotopic to the constant map. Even
this assumption seems to be very strong and we do not see an application of the
result in its full strength. The following example shows that an equivariant con-
nectivity assumption is needed.
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Example 8.4. Let f : P → Q be the well-connected poset map discussed in
Example 1.2. Let G be the cyclic group of order 2 whose non-identity element
acts by (1 2)(3 4) on P and trivially on Q. Note that if q is one of the maximal
elements of Q then the fiber f−1(Q≤q) is G-homeomorphic to a circle with (1 2)(3 4)
acting by reflecting the circle about the line spanned by a pair of antipodal points.
As was previously observed this G-space is not (0, G)-connected. We now see that
(8.1) does not hold. Clearly, ∆(P ) is G-homeomorphic to two circles intersecting
in two points such that these two points are the only fixed points and (1 2)(3 4)
reflects each circle about the line spanned by the fixed points. The G-complex on
the right side of (8.1) has a circle attached to each element of Q. One of the circles
is fixed by (12)(34) and each of the other two circles is reflected about the line
spanned by the wedge point and its antipode. Although the simplicial complexes
are homotopy equivalent they fail to be G-homotopy equivalent. To be G-homotopy
equivalent the subcomplexes of points that are fixed by the action of G must be
homotopy equivalent. The fixed point subcomplex of ∆(Q) consists of two isolated
points and the fixed point subcomplex of the right side of (8.1) has the homotopy
type of the wedge of a 1-sphere and two 0-spheres.

9. Group actions on homology

Although the strong assumptions dilute the applicability of Theorem 8.1, it is
possible to prove a result for the G-module structure of the homology groups with-
out such restrictions. The action of G on a simplicial complex ∆ induces a repre-
sentation of G on reduced simplicial homology H̃∗(∆; k), where k is any field. For
the remainder of this paper we assume that k is a field of characteristic 0.

Given a subgroup H of G and a kH-module V , let V ↑GH denote the induction
of V to G.

Theorem 9.1. Fix a nonnegative integer t. Let f : P → Q be a G-poset map such
that for all q ∈ Q the fiber ∆(f−1(Q≤q)) is min{t, `(f−1(Q<q))}-acyclic over the
field k. Then for all r ≤ t, we have the following isomorphism of kG-modules

H̃r(P ; k) ∼=G

H̃r(Q; k) ⊕
⊕

q∈Q/G

r⊕
i=−1

(
H̃i(f−1(Q≤q); k)⊗ H̃r−i−1(Q>q; k)

)
↑GStabG(q) .

Before proving the theorem we consider an example and some consequences.

Example 9.2. Theorem 9.1 can be applied to the poset map given in Example 8.4.
View G as the symmetric group S2. The conclusion is that H̃r(P ; k) is 0 unless
r = 1 in which case the S2-module H̃1(P ; k) decomposes into S2⊕S12⊕S12

, where
Sλ denotes the irreducible representation of Sn indexed by λ. The first summand
comes from the bottom element of Q and the other two summands come from the
top elements.

The following “equivariant homology Quillen fiber lemma” is a direct conse-
quence of the theorem.

Corollary 9.3. Let f : P → Q be a G-poset map. If the fiber ∆(f−1(Q≤q)) is
t-acyclic over k for all q ∈ Q then as G-modules

H̃r(P ; k) ∼=G H̃r(Q; k),

for all r ≤ t.
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Equivariant homology versions of all the consequences of Theorem 1.1 discussed
in previous sections follow from Theorem 9.1. We state two of these equivariant
homology results here.

Corollary 9.4. Let f : Γ → ∆ be a G-simplicial map. If the fiber f−1(Ḟ ) is
min{t, dim f−1(Ḟ \ {F})}-acyclic over k for all nonempty faces F of ∆, then for
all r ≤ t,

H̃r(Γ; k) ∼=G

⊕
F∈∆/G

r⊕
i=−1

(
H̃i(f−1(Ḟ ); k)⊗ H̃r−i−1(lk∆ F ; k)

)
↑GStabG(F ) .

Corollary 9.5. Let ∆ be a G-simplicial complex on vertex set [n] and let m be
an n-sequence of positive integers. If G acts on the inflation ∆m and this action
commutes with the deflating map, then for all r ∈ Z,

H̃r(∆m; k) ∼=G

⊕
F∈∆/G

(
H̃|F |−1(Ḟm(F ); k)⊗ H̃r−|F |(lk∆ F ; k)

)
↑GStabG(F ),

where m(F ) is the subsequence (mi1 , . . . , mit) of m = (m1, . . . , mn) for F = {i1 <
· · · < it}.

The following is a homology version of a generalization of [4, Lemma 11.12] and
[24, Proposition 1.7].

Corollary 9.6. Let P be a G-poset and A a G-invariant induced subposet of P
such that ∆(P<x) is t-acyclic for all x ∈ P \A. Then

H̃r(A) ∼=G H̃r(P ),

for all r ≤ t.

Proof. The proof is similar to that of [24, Proposition 1.7]. We use the embedding
map f : P \M → P , where M is the set of maximal elements of P \A.

The proof of Theorem 9.1 follows the lines of the proof of Theorem 4.1 using
an equivariant version of Corollary 2.4 (cf. [23]) and the equivariant version of
Proposition 4.2 given in Proposition 9.8 below.

Definition 9.7. Given a G-poset Q, a (simplicial) Q-diagram D is said to be a
(simplicial) (G, Q)-diagram if ]q∈QDq is a G-space (simplicial complex) satisfying
• gDq = Dgq for all g ∈ G and q ∈ Q, and
• gdx,y(a) = dgx,gy(ga) for all x ≤Q y, a ∈ Dx and g ∈ G.

The action of G on ]q∈QDq induces natural actions of G on colimD and hocolimD.

Proposition 9.8 ([23, Proposition 2.3]). Let D be a simplicial (G, Q)-diagram for
which each Dx 6= {∅}. Let t be a nonnegative integer. Assume that for all nonmin-
imal y in Q and r ≤ t, the induced map

(∪x<ydx,y)∗ : H̃r(
⊎
x<y

Dx; k)→ H̃r(Dy; k)(9.1)

is trivial. Then for all r ≤ t,

H̃r(hocolimD; k) ∼=G

H̃r(Q; k) ⊕
⊕

x∈Q/G

r⊕
i=−1

(
H̃i(Dx; k)⊗ H̃r−i−1(Q>x; k)

)
↑GStabG(x) .
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Proof. Let (Cr(hocolimD; k), δr)r=0,...,d, where d = dim(hocolimD), denote the
cellular chain complex of the CW-complex hocolimD. The cells of hocolimD are of
the form

α× ({x} ∗ β),

where x ∈ Q, α ∈ Dx\{∅} and β ∈ ∆(Q>x). Let minβ denote the smallest element
of the chain β. The differential is given by

δ(α× ({x} ∗ β)) = A + B + C,(9.2)

where

A =

{
∂(α)× ({x} ∗ β) if dimα > 0
0 otherwise,

B =

{
(−1)`(α)−1dx,min β(α)× β if dim dx,min β(α) = dimα

0 otherwise,
(9.3)

C = (−1)`(α)α× ({x} ∗ ∂(β)),(9.4)

and ∂ is the simplicial boundary map. We use the theory of spectral sequences to
compute the homology of the cellular chain complex (Cr(hocolimD; k), δr)r=0,...,d.
For r, m = 0, . . . , d, let Fr,m be the subspace of Cr(hocolimD; k) spanned by the
r-dimensional cells for which the chain β has length at most m − 1. Clearly the
Fr,m are G-invariant and δrFr,m ⊆ Fr−1,m. So

Fr,−1 ⊆ Fr,0 ⊆ · · · ⊆ Fr,r = Cr(hocolimD; k)

is a filtration of the complex of kG-modules (Cr(hocolimD; k), δr). In the spectral
sequence associated with this filtration, the E1 component is given by E1

r,m =
Hr(Fr,m, Fr−1,m−1; k). It is clear that if α× (x ∗ β) ∈ Fr,m then B and C of (9.2)
are in Fr−1,m−1. It follows that E1

r,m is generated by elements of the form

α× ({x} ∗ β)(9.5)

where x ∈ Q, α ∈ Hr−m(Dx; k) and β is a chain of length m − 1 in Q>x. The
differential δ1 : E1

r,m → E1
r−1,m−1 is given by

δ1(α× ({x} ∗ β)) = B∗ + C

where B∗ is like B in (9.3) except that dx,min β is replaced by the induced map
d∗x,min β and C is given by (9.4).

If m < r ≤ t and α ∈ Hr−m(Dx; k), then α is also in the reduced homology
H̃r−m(Dx; k). Hence d∗x,min β(α) = 0 by (9.1). It follows that B∗ = 0 and so

δ1(α× ({x} ∗ β)) = (−1)`(α)α× ({x} ∗ ∂(β)).(9.6)

We can see that as G-modules

E1
r,m
∼=G

⊕
x∈Q/G

(H̃r−m(Dx, k)⊗ C̃m−1(Q>x; k)) ↑GStabG(x),

and that E2
r,m, the homology of the complex (E1

r,m, δ1
r,m), is isomorphic to the

G-module ⊕
x∈Q/G

H̃m−1

(
Q>x; H̃r−m(Dx; k)

)
↑GStabG(x) .
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By the Universal Coefficient Theorem we have the G-module isomorphism

E2
r,m
∼=G

⊕
x∈Q/G

(
H̃m−1(Q>x; k)⊗ H̃r−m(Dx; k)

)
↑GStabG(x)

Now we compute E2
r,m for r = m. For each x that is minimal in Q set

mx :=
1

|V (Dx)|
∑

v∈V (Dx)

[v] ∈ H0(Dx; k),

where V (Dx) denotes the vertex set of the simplicial complex Dx and [·] denotes
(nonreduced) homology class. Note that we are using the fact that k has charac-
teristic 0 here. It is clear that gmx = mgx for all minimal x and g ∈ G. Now, let y
be a non-minimal element of Q. Let

dy :=
⋃
x<y

dx,y.

It follows from the fact that d∗y is trivial on the reduced homology H̃0(
⊎
x<y Dx; k)

that if a and b are points in
⊎
x<y Dx then

d∗y([a]) = d∗y([b]).(9.7)

(Here d∗y is the induced map on nonreduced homology and reduced homology
is viewed as a submodule of nonreduced homology.) It follows from (9.7) that
d∗y(mx1) = d∗y(mx2) for all minimal elements x1, x2 < y. This allows us to define
my to be the common value of d∗y(mx) for all minimal x < y. Note that this
construction also implies

d∗y(mx) = my(9.8)

for all x < y, not just the minimal x. We also need to note that gmy = mgy for all
y ∈ Q and g ∈ G.

For each x ∈ Q we can decompose H0(Dx; k) into the direct sum of the subspace
H̃0(Dx; k) and the subspace generated by mx. This enables us to decompose E1

r,r

into G-invariant subspaces Ur and Vr. The subspace Ur is generated by elements
of the form α × ({x} ∗ β) where x ∈ Q, α ∈ H̃0(Dx; k) and β is a chain of length
r− 1 in Q>x. The subspace Vr is generated by elements of the form mx× ({x} ∗β)
where x ∈ Q and β is a chain of length r − 1 in Q>x. Let Hr(U) be the homology
of the complex (Ur, δ1

r). Just as for the case r > m, we have

Hr(U) ∼=G

⊕
x∈Q/G

(
H̃r−1(Q>x; k)⊗ H̃0(Dx; k)

)
↑GStabG(x) .

Let φr : Vr → Cr(Q; k) be the G-isomorphism defined by

φr(mx × ({x} ∗ β)) = {x} ∗ β.

It follows from the fact that d∗min β(mx) = mmin β (cf. (9.8)) that φr commutes with
the differentials δ1

r and ∂r. Hence, the homology Hr(V ) of the complex (Vr, δ1
r) is

given by
Hr(V ) ∼=G H̃r(Q; k).

We now have

E2
r,r
∼=G H̃r(Q; k)⊕

⊕
x∈Q/G

(
H̃r−1(Q>x; k)⊗ H̃0(Dx; k)

)
↑GStabG(x) .
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It is easily seen that δ2 = 0, and thus the result follows.

Remark 9.9. Proposition 9.8 is a slight generalization of Proposition 2.3 of Sun-
daram and Welker [23]. The proof given above is essentially that of Sundaram and
Welker [23] with some details filled in. We include this proof in order to account for
the term H̃r(Q; k), which is missing from their decomposition (a correct statement
is given in [30, Theorem 8.11]). Note that if there is no group action involved then
it is not necessary to assume that k has characteristic 0, because one can simply
define mx, for minimal x, to be the homology class of any point in Dx.

Sundaram and Welker [23] use Proposition 9.8 to derive an equivariant homol-
ogy version of the Ziegler-Živaljević formula (7.1). The Sundaram-Welker formula
can also be viewed as a consequence of Theorem 9.1, just as the Ziegler-Živaljević
formula was viewed as a consequence of Theorem 1.1 in Section 6.
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