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Abstract. The lth partial barycentric subdivision is defined for a (d − 1)-dim-
ensional simplicial complex ∆ and studied along with its combinatorial and geo-
metric aspects. We analyze the behavior of the f - and h-vector under the lth

partial barycentric subdivision extending previous work of Brenti and Welker on
the standard barycentric subdivision – the case l = d. We discuss and provide
properties of the transformation matrices sending the f - and h-vector of ∆ to the
f - and h-vector of its lth partial barycentric subdivision. We conclude with open
problems.

1. Introduction

For a (d− 1)-dimensional simplicial complex ∆ on the ground set V the barycentric
subdivision sd(∆) of ∆ is the simplicial complex on the ground set ∆ \ {∅} with
simplices the flags A0 ⊂ A1 ⊂ · · · ⊂ Ai of elements Aj ∈ ∆ \ {∅}, 0 ≤ j ≤ i.
For 0 ≤ l ≤ d, we define the lth partial barycentric subdivision of ∆. This is
a geometric subdivision, in the sense of [7], such that sdl(∆) is a refinement of
sdl−1(∆), sd0(∆) = ∆ and sdd(∆) = sd(∆). Roughly speaking, the lth partial
barycentric subdivision arises when only the simplices of dimension ≥ d − l are
stellarly subdivided. In the paper, we provide a detailed analysis of the effect of the
lth barycentric subdivision operation on the f - and h-vector of a simplicial complex.
Most enumerative results will be related to refinements of permutation statistics for
the symmetric group. Our results extend the results from [1] for the case l = d. We
refer the reader also to [2] and [6] for more detailed information in this case.

The paper is organized as follows. We start in Section 2 with geometric and com-
binatorial descriptions of the lth partial barycentric subdivision. In Section 3 we
study the enumerative combinatorics of the lth partial barycentric subdivision. In
particular, we relate in Lemma 3.1 and Theorem 3.4 the effect of the lth barycentric
subdivision on the f - and h-vector of the simplicial complex ∆ to a permutation
statistics refining the descent statistics. In Section 4 we analyze the transformation
matrices sending the f - and h-vector of the simplicial complex ∆ to the corre-
sponding vector for the lth barycentric subdivision. We show that both maps are
diagonalizable and provide the eigenvalue structure. Note that by general facts the
two matrices are similar. The main result of this section, Theorem 4.10, shows that
the eigenvector corresponding to the highest eigenvalue of the h-vector transforma-
tion can be chosen such that it is of the form (0, b1, . . . , bd−1, 0) for strictly positive
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numbers bi, 1 ≤ i ≤ d − 1. In Section 5 we present some open problems. We ask
for explicit descriptions of the eigenvectors and then shift the focus to the local
h-vector which has been introduced by Stanley [7]. The local h-vector is a mea-
sure for the local effect of a subdivision operation. In particular, general results by
Stanley predict that the local h-vector for the lth partial barycentric subdivision is
non-negative. For l = d the local h-vector was computed by Stanley in terms of the
excedance statistics on derangements. We exhibit some computations and possible
approaches to the local h-vector for the lth barycentric subdivision in general.

2. The lth partial barycentric subdivision

2.1. Geometric definition. We first give a geometric definition of the lth par-
tial barycentric subdivision. For that we recall some basic facts about the reflec-
tion arrangement of the symmetric group Sd permuting the d letters from [d] :=
{1, 2, . . . , d}. The reflection arrangement Bd in Rd of the symmetric group Sd con-
sists of the hyperplanes Huv = {(x1, . . . , xd) ∈ Rd : xu − xv = 0}, 1 ≤ u < v ≤ d.
To each permutation w = w1 · · ·wd ∈ Sd there corresponds a region (i.e. connected
component of the complement) Rw of Bd given by

Rw = {(λ1, . . . , λd) ∈ Rd : λw1 > λw2 > · · · > λwd
}.

Hence the number of regions of Bd is d!. We write Rw,+ for the intersection of Rw

with Rd
≥0. It is easily seen that geometrically the closure of Rw,+ is a simplicial cone.

The intersection of the closures of the conesRw,+, w ∈ Sd, and the standard (d−1)-
simplex ∆d−1 = {(λ1, . . . , λd) ∈ Rd | λ1 + · · · + λd = 1, λu ≥ 0, 1 ≤ u ≤ d} induces
a simplicial decomposition of ∆d−1. This decomposition is called the barycentric
subdivision of ∆d−1 and is denoted by sd(∆d−1).

We generalize this decomposition in the following way. Consider a permutation
w ∈ Sd as an injective word of length d on the alphabet [d]. Recall that an injective
word over an alphabet is a word in which every letter from the alphabet appears at
most once. For 0 ≤ l ≤ d we denote by Sl

d the set of injective words of length l over
the alphabet d. For w = w1 . . . wl ∈ Sl

d we denote by free(w) := [d] \ {w1, . . . , wl}
the set of letters not occurring in w. Note that for notational convenience we will
later index injective words from Sl

d as wd+1−l · · ·wd. We define the cone Rl
w of a

word w = w1 · · ·wl ∈ Sl
d to be

Rl
w = {(λ1, . . . , λd) ∈ Rd : λu > λw1 > · · · > λwl

for all u ∈ free(w) }.

If l = 0 then w is the empty word and Rl
w = Rd. We write Rl

w,+ for the intersection

of Rl
w with Rd

≥0. Again the closure of Rl
w,+ is a simplicial cone which is the union

of all closures of the Rv,+ for v ∈ Sd such that w coincides with the last l letters
of v. For 0 ≤ l ≤ d we call the simplicial decomposition of ∆d−1 induced by the
collection of all Rl

w,+ for w ∈ Sl
d the lth partial barycentric subdivision of ∆d−1 and

denote it by sdl(∆d−1). Obviously, we have that sd0(∆d−1) = ∆d−1, sdd(∆d−1) =
sd(∆d−1) and sdl(∆d−1) is a refinement of sdl−1(∆d−1) for 1 ≤ l ≤ d. For a (d− 1)-
dimensional simplicial complex ∆ on the vertex set V = [n] its lth partial barycentric
subdivision is the complex sdl(∆) which is the subdivision of ∆ obtained by replacing
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Figure 1. First and second partial barycentric subdivision of the 2-simplex

each simplex by its lth partial subdivision. Roughly speaking sdl(∆) is obtained by
stellarly subdividing all k-faces of dimension d− l ≤ k ≤ d− 1 in decreasing order
of dimension. In Figure 1 we see the first and second barycentric subdivision of the
2-simplex.

By construction the number of cones Rl
w, w ∈ Sl

d, is d!
(d−l)!

= d·(d−1) · · · (d−l+1).

Next, we want to get a better understanding of the facial structure of sdl(∆d−1).
We have already seen that the (d− 1)-dimensional faces of sdl(∆d−1) are in bijec-

tion with the injective words in Sl
d. We turn this description of (d− 1)-dimensional

faces into a description by combinatorial objects that are more suitable for studying
all faces of sdl(∆d−1).

We start by identifying the faces of ∆d−1 with the subsets of [d]. In sdl(∆d−1) faces
from ∆d−1 of dimension ≤ d−l−1 are not subdivided. The non-subdivided faces can
still be represented by subsets of [d] of cardinality ≤ d−l. Let F be a face that arises
when passing from the (l − 1)st subdivision to the lth subdivision. Thus there is a
face F1 of ∆d−1 of dimension d− l represented by a set B′1 of cardinality d− l+1 such
that the barycenter of F1 is a vertex of F . The other vertices of F either are vertices
of a single non-subdivided face G ⊂ F1 of dimension < d − l represented by a set
B ⊂ B′1 of cardinality ≤ d−l or are barycenters of faces F2, . . . , Fr of ∆d−1 such that
F1 ⊂ F2 ⊂ · · · ⊂ Fr. In particular, F has #B+ r vertices and hence is of dimension
#B+r−1. Let B′2 ⊂ · · · ⊂ B′r be the sets representing the faces F2, . . . , Fr of ∆d−1.
In case there is no vertex from a face G we set B = ∅. Now turn the description of
the face by B|B′1| · · · |Br into a description by B,B1 = B′1 \ B, · · · , Br = B′r \ B′r−1

(see Figure 2 for the corresponding identification of faces in sd1(∆2)).
This leads to the following definition:
Let J ⊆ [d] be some subset. For numbers i ≥ 1 and 0 ≤ l ≤ d we call a tuple
|B|B1|...|Br| of pairwise disjoint subsets, B, B1, . . . , Br of J ⊆ [d] satisfying

• B ∪B1 ∪ · · · ∪Br = J
• B1, . . . , Br 6= ∅
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Figure 2. Face identification in sd1(∆2)

a pointed ordered set partition of J . We refer to B, B1, . . . , Br as the blocks and
to B as the special block of |B|B1|...|Br|. Note that we allow r = 0, i.e. pointed
ordered set partition consisting of the special block only. In [3, Sec. 3] our pointed
ordered set partitions |B|B1|...|Br|, written in a slightly different way, are called
ordered set partitions. Since in the literature the term ordered set partition often
has yet another meaning, we adopt in our terminology the point of view from [3,
Sec. 2] where pointed (unordered) set partitions are introduced.

By the discussion above an (i−1)-dimensional face of sdl(∆d−1) is represented by
a pointed ordered set partition |B|B1|...|Br| of J ⊆ [d], if and only if

(P1) #B ≤ d− l.
(P2) If r ≥ 1 then #(B ∪B1) ≥ d− l + 1
(P3) #B + r = i.

Let us discuss the implications of (P1)-(P3):

• For i = 1, by (P3) we must have either #B = 1 or B = ∅ and r = 1. This
resembles the fact that vertices in sdl(∆d−1) are either vertices of the original
simplex, the case #B = 1, or barycenters of faces B1 of the original simplex,
where by (P2) #B1 ≥ d− l + 1.
• For i = d, (P3) implies that either r ≥ 1 and all blocks B1, . . . , Br are

singletons or r = 0 and B = [d]. In particular, we have J = [d]. In case
r = 1 condition (P2) also implies that #B ≥ d − l. Thus we can identify
an injective word w = w1 · · ·wr where #free(w) ≥ d − l with the pointed
ordered set partition free(w)|w1| · · · |wr for the parameters i = d, J = [d] and
l.
• For l = 0 by (P2) we must have #(B ∪ B1) ≥ d − l + 1 = d + 1 for r ≥ 1

and hence r = 0 and |B|B1|...|Br| = |B| is some subset B of [d]. This
4



corresponds to the fact that in sd(∆d−1)0 no faces is subdivided and hence
faces correspond to subsets of [d].
• For l = d by (P1) we must have #B ≤ 0 and hence B = ∅. Thus r = i and
|B1| · · · |Bi| is a usual ordered set partition of the j-element set B1∪· · ·∪Bi =
J into i (non-empty) blocks. This is the usual description of faces of the full
barycentric subdivision of ∆d−1.

Geometrically, the face of sdl(∆d−1) corresponding to the pointed ordered set
partition |B|B1| · · · |Br| of J ⊆ [d] is given as the set of points (λ1, . . . , λd) in the
geometric realization of ∆d−1 for which

(i) We have λu = λv if u, v ∈ Bs for some 1 ≤ s ≤ r.
(ii) We have λu > λv if u ∈ Bs and v ∈ Bt for some 1 ≤ s < t ≤ r.

(iii) We have λu > λv for u ∈ B and v ∈ B1.
(iv) We have λu = 0 if and only if u 6∈ B ∪B1 ∪ · · · ∪Br.

Thus in geometric terms a face corresponding to the pointed ordered set partition
|B|B1| · · · |Br| arises as the join of the face corresponding to B in the original simplex
with the face corresponding to the chain B ∪ B1 ⊂ · · · ⊂ B ∪ B1 ∪ · · · ∪ Br of the
full barycentric subdivision.

Clearly, the number of pointed ordered set partitions of J only depends on j = #J .
and hence we write poSd(j, i, l) for the number of pointed ordered set partitions of a
j-element set J satisfying (P1)-(P3) and call poSd(j, i, l) the pointed ordered Stirling
number for the parameters d,j,i,l. Note, by the discussion above poSd(j, i, d) is just
the number of usual ordered set partitions of a j-element set into i blocks. Hence
poSd(j, i, d) = i!S(j, i) where S(j, i) is the usual Stirling number of the second kind
counting the number of (unordered) set partitions of a j-element set into i blocks.
For i = j = d the discussion above also shows that get poSd(d, d, l) = d!/(d− l)! is
the number of injective words in Sl

d.

3. f-vector and h-vector transformations

In this section we study the transformation sending the f - and h-vector of a
simplicial complex ∆ to the f - and h-vector of the lth partial barycentric subdivision
of ∆.

Recall that the f -vector f∆ = (f∆
−1, . . . , f

∆
d−1) of a (d − 1)-dimensional simplicial

complex is the vector with its ith entry f∆
i counting the i-dimensional faces of ∆.

Using this notation, the arguments from the preceding section immediately imply
the following lemma generalizing [1, Lem. 1].

Lemma 3.1. Let ∆ be a (d−1)-dimensional simplicial complex with f -vector f∆ =
(f∆
−1, . . . , f

∆
d−1). Then

f
sdl(∆)
i−1 =

d∑
j=0

f∆
j−1 · poSd(j, i, l).

Next we study the transformation of the h-vector. Recall that the h-vector of a
(d − 1)-dimensional simplicial complex ∆ is the integer vector h∆ = (h∆

0 , . . . , h
∆
d )
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defined by

h∆
v =

v∑
i=0

(
d− i
v − i

)
(−1)v−if∆

i−1,(1)

0 ≤ v ≤ d. Conversely, the f -vector can be computed from the h-vector by

f∆
j−1 =

d∑
u=0

(
d− u
d− j

)
h∆

u ,(2)

0 ≤ j ≤ d. For a permutation w = w1 · · ·wd ∈ Sd we denoted by

D(w) = {i ∈ [d− 1] | wi > wi+1}

its decent set and write des(w) := # D(w) for its number of descents. Following [1]
for d ≥ 1 and integers i and j we denote by Ad(j, i) the number of permutations
w ∈ Sd such that wd = d − i and des(w) = j. In particular, Ad(j, i) = 0 if i ≤ −1
or i ≥ d.

In the sequel, we define a refinement of the preceding statistics suitable for the
study of our h-vector transformation.

Let w = wd−l+1 · · ·wd ∈ Sl
d be an injective word of length l and let free(w) =

{w1 < · · · < wd−l}. We define the descent set D(w) of w as follows:

Definition 3.2. A number i ∈ [d − 1] belongs to the descent set D(w) of w =
wd−l+1 · · ·wd ∈ Sl

d, if i satisfies one of the following two conditions.

(1) 1 ≤ i ≤ d− l and wi > wd−l+1 or
(2) d− l + 1 ≤ i ≤ d− 1 and wi > wi+1.

We write des(w) = # D(w) for the number of descents of an injective word w ∈ Sl
d.

Note that for l = d condition (1) is never satisfied and and therefore D(w) is just
the usual descent set of the permutation w ∈ Sd.

Example 3.3. Let w1 = 65, w2 = 34, w3 = 51 ∈ S2
6 , then

D(w1) = {5}, D(w2) = {3, 4}, D(w3) = {4, 5},
des(w1) = 1, des(w2) = 2, des(w3) = 2.

For all d ≥ 1, 1 ≤ l ≤ d, and all integers i and j we denote by Ad(j, i, l) the number
of all injective words wd−l+1 · · ·wd ∈ Sl

d such that des(w) = j and wd = d− i. Then
Ad(j, i, d) = Ad(j, i) and Ad(j, i, l) = 0 if i ≤ −1 or i ≥ d+ 1.

The following is our first main result. The case l = d was treated in [1, Thm. 1].

Theorem 3.4. Let ∆ be a (d− 1)-dimensional simplicial complex. Then

hsdl(∆)
v =

d∑
u=0

Ad+1(v, u, l + 1)h∆
u

for 0 ≤ l ≤ d and 0 ≤ v ≤ d.
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Proof. For all 0 ≤ v ≤ d, we have

hsdl(∆)
v

(1)
=

v∑
i=0

(
d− i
v − i

)
(−1)v−if

sdl(∆)
i−1

Lemma 3.1
=

v∑
i=0

(
d− i
v − i

)
(−1)v−i

d∑
j=0

f∆
j−1poSd(j, i, l)

(2)
=

v∑
i=0

d∑
j=0

(
d− i
v − i

)
(−1)v−ipoSd(j, i, l)

j∑
u=0

(
d− u
d− j

)
h∆

u

=
d∑

u=0

( d∑
j=0

v∑
i=0

(−1)v−i

(
d− i
v − i

)(
d− u
d− j

)
poSd(j, i, l)

)
h∆

u .

Hence it remains to show that

Ad+1(v, u, l + 1) =
d∑

j=0

v∑
i=0

(−1)v−i

(
d− i
v − i

)(
d− u
d− j

)
poSd(j, i, l).(3)

We write S ⊆l [d] if S ⊆ {d − l + 1, . . . , d} or S = {s1 = d − l + 1 − p < · · · <
sp = d− l < sp+1 < · · · < si} for some 1 ≤ p ≤ d− l. For this we first show:

∑
S⊆l[d],#S=i

#

{
w ∈ Sl+1

d+1

∣∣∣ D(w) ⊆ S,
wd+1 = d+ 1− u

}
=

d∑
j=i

(
d− u
d− j

)
poSd(j, i, l)(4)

The left hand side counts pairs of words w ∈ Sl+1
d+1 with wd+1 = d + 1 − u and

i-element sets S ⊆l [d] such that D(w) ⊆ S. We then consider the right hand side
as counting pairs of subsets J ⊆ [d+ 1] such that d+ 1− u is the maximal element
of [d + 1] \ J , j = #J ≥ i and pointed ordered set partitions of J counted by
poSd(j, i, l). Note that there are

(
d−u
d−j

)
choices for J . We give an bijection between

the objects counted on the left hand side and the ones counted on the right hand
side.

Consider an injective word w = wd+1−(l+1)+1 · · ·wd+1 ∈ Sl+1
d+1. Let free(w) =

{w1 < · · · < wd−l} and D(w) ⊆ S for S = {s1 < · · · < si} ⊆l [d] counted
in the sum on the left hand side. To this word we associate the pointed or-
dered set partition |B|B1| · · · |Bi−p| of J = {w1, . . . , wsi

}, defined as follows. Let
p = max{q > 0 | sq < d − l + 1} where we treat the maximum over an empty
set as 0. Set B = {wd−l−p+1, . . . , wsp=d−l} if p > 0 and B = ∅ otherwise. Set
B1 = {w1, . . . , wd−l−p, wd−l+1, . . . , wsp+1}, B2 = {wsp+1+1, . . . , wsp+2}, . . ., Bi−p =
{wsi−1+1, . . . , wsi

}. Then for r = i− p this partition satisfies the following:

(P1) #B = p ≤ d− l.
(P2) If r ≥ 1 then #(B ∪B1) ≥ d− l + 1
(P3) #B + r = p+ i− p = i.

The number of such pointed ordered set partitions is given by poSd(si, i, l). Note
that w and S can be reconstructed from |B|B1| · · · |Br|. For this set p = #B. Define
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free(w) as the union of B and the d− l −#B = d− l − p smallest elements of B1.
Then obtain w by first writing down from left to right the remaining elements of
B1 in increasing order, then the elements of B2 in increasing order, etc. . The set
S = {s1 < · · · < si} is obtained by setting s1 = d− l+ 1−p, . . . , sp = d− l for p > 0
and setting sp+q = d− l+ |B1|+ · · ·+ |Bq| for 1 ≤ q ≤ i−p. By construction S ⊆l [d]

and D(w) ⊆ S. Since there are
(

d−u
d−si

)
possibilities for choosing an si elements subset

J of [d+ 1] such that max [d+ 1] \ J = d+ 1− u it follows that we have a bijective
mapping from the objects counted by the left hand side of (4) to the objects counted
on the right hand side of (4). This proves (4)

Since poSd(j, i, l) = 0 for j < i we can actually sum from j = 0 to d on the right
hand side of (4).

Therefore,

d∑
j=0

v∑
i=0

(−1)v−i

(
d− i
v − i

)(
d− u
d− j

)
poSd(j, i, l)

(4)
=

v∑
i=0

(−1)v−i

(
d− i
l − i

) ∑
{S⊆l[d],#S=i}

#

{
w ∈ Sl+1

d+1

∣∣∣ D(w) ⊆ S,
wd+1 = d+ 1− u

}

=
∑

{S⊆l[d],#S≤v}

(−1)v−#S

(
d−#S

v −#S

)
#

{
w ∈ Sl+1

d+1

∣∣∣ D(w) ⊆ S,
wd+1 = d+ 1− u

}

=
∑

{S⊆l[d],#S≤v}

(−1)v−#S

(
d−#S

v −#S

) ∑
T⊆S,T⊂l[d]

#

{
w ∈ Sl+1

d+1

∣∣∣ D(w) = T,
wd+1 = d+ 1− u

}

=
∑

{T⊆l[d],#T≤v}

#

{
w ∈ Sl+1

d+1

∣∣∣ D(w) = T,
wd+1 = d+ 1− u

} ∑
{[d]⊇lS⊇T,#S≤j}

(−1)v−#S

(
d−#S

v −#S

)

=
∑

{T⊆l[d],#T≤v}

#

{
w ∈ Sl+1

d+1

∣∣∣ D(w) = T,
wd+1 = d+ 1− u

} v∑
i=#T

(−1)v−i

(
d− i
v − i

)(
d−#T

i−#T

)
.

But

v∑
i=#T

(−1)v−i

(
d− i
v − i

)(
d−#T

i−#T

)
=

(
d−#T

i−#T

) v∑
i=#T

(−1)j−i

(
v −#T

i−#T

)
= δv,#T .

Hence

d∑
j=0

v∑
i=0

(−1)v−i

(
d− i
v − i

)(
d− u
d− k

)
poSd(j, i, l)
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=
∑

{T⊆[d],#T=v}

#

{
w ∈ Sl+1

d+1

∣∣∣ D(w) = T,
wd+1 = d+ 1− u

}

= #

{
w ∈ Sl+1

d+1

∣∣∣ des(w) = v,
wd+1 = d+ 1− u

}
.

= Ad+1(v, u, l + 1)

This shows (3) and completes the proof. �

We note that for a (d − 1)-dimensional simplicial complex ∆ and 1 ≤ l ≤ d, the
subdivision operation sdl(•) non-trivially subdivides each face in top dimension. It
follows from Theorem 5.5. in [2] that iterated application of sdl(•) will lead to a
convergence phenomenon for the f -vector. More precisely, for a (d− 1)-dimensional

simplicial complex ∆, set ∆(n,l) := sdl(· · · sdl︸ ︷︷ ︸
n

(∆) · · · ) and f (n,l)(t) =
∑d

i=0 f
∆(n,l)

i−1 td−i

then for n → ∞ one root of f (n,l)(t) will go to −∞ and the others converge to
complex numbers independent of ∆, only depending on d. This phenomenon was
first observed in [1, Thm. 4.2] for the special case of classical barycentric subdivision
sdd(•) = sd(•). In addition, in [1, Thm. 3.1] it is shown that for simplicial complexes
∆ with non-negative h-vector and l = d the polynomial f (1,d)(t) has only real roots.
Simple examples show that this is not the case for general l.

4. The Transformation Matrices

For a (d−1)-dimensional simplicial complex ∆ we denote by Hd−1 = (h
(d−1)
ij )

0≤i,j≤d
∈

R(d+1)×(d+1) the matrix of the linear transformation that sends the h-vector of ∆ to
the h-vector of sd(∆) and Hl

d−1 = (h
(d−1,l)
ij )

0≤i,j≤d
∈ R(d+1)×(d+1) the matrix of the

transformation of the h-vector of ∆ to the h-vector of sdl(∆). Thus Hd
d−1 = Hd−1.

By [1, Thm. 1] we know h
(d−1)
ij = Ad+1(j, i) and more generally by Theorem 3.4 we

know h
(d−1,l)
ij = Ad+1(j, i, l + 1).

As an illustration we present the matrices Hl
d for d = 4 and l = 1 and l = 2.

H1
3 =


1 0 0 0 0
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
0 0 0 0 1

 H2
3 =


1 0 0 0 0
5 5 3 2 1
5 5 6 5 5
1 2 3 5 5
0 0 0 0 1


The following lemma follows immediately from the definition of Ad+1(j, i, l).

Lemma 4.1. The sum of all entries of Hl
d−1 is given by:

∑
0≤i,j≤d

h
(d−1,l)
ij =

(d+ 1)!

(d− l)!
,

9



and the sum of all entries of each column is given by:∑
0≤j≤d

h
(d−1,l)
ij =

d!

(d− l)!
, 0 ≤ i ≤ d.

The next simple lemma gives an explicit formula for H1
d−1 which will serve as the

induction base for the proof of monotonicity of the h-vector under partial barycentric
subdivision in Corollary 4.5.

Lemma 4.2. The entries of H1
d−1 are given by:

h
(d−1,1)
ij =

 0, i = 0, j 6= 0 or i = d, j 6= d;
2, i = j = 1, . . . , d− 1;
1, otherwise.

and hence

H1
d−1 =



1 0 0 · · · 0 0
1 2 1 · · · 1 1
1 1 2 · · · 1 1
...

...
...

...
...

1 1 1 · · · 2 1
0 0 0 · · · 0 1


Proof. We prove the lemma by describing the entries of an arbitrary row. Let
(Ad+1(j, i, 2))0≤i≤d ∈ R(d+1) be the jth row of H1

d−1. Then by definition the entries
Ad+1(j, i, 2) count the d injective words w = wdwd+1 ∈ S1

d+1 such that wd+1 = d+1−j
according to their number of descents. Let wd = d + 1 − j′ and distinguish cases
according to the relative size of j and j′:

• j < j′ ≤ d: Then there are j′ − 1 elements larger then wd in free(w) and
hence des(wdwd+1) = j′ − 1.
• 0 ≤ j′ < j: Then there are j′ elements larger than wd in free(w) and there

is a descent from wd to wd+1. Thus des(wdwd+1) = j′ + 1.

As a consequence the entries of (Ad+1(j, i, 2))0≤i≤d are determined:

• j = 0: For 0 ≤ i ≤ d− 1 there is a unique word with i descents and there is
no word with d descents.
• j = d: For 1 ≤ i ≤ d there is a unique word with i descents and there is no

word with 0 descents.
• 1 ≤ j ≤ d − 1: For 0 ≤ i ≤ j − 1 and for j + 1 ≤ i ≤ d there is a unique

word with i descents. In addition, there are two words with j descents.

�

The examples above and the preceding lemma suggest some relations among the
entries of Hl

d−1 that we verify in the next lemmas.

Lemma 4.3. For 0 ≤ i, j, l ≤ d,

Ad+1(j, i, l + 1) = Ad+1(d− j, d− i, l + 1).
10



Proof. Let us denote by Sl
d+1(j, i) the set of injective words w ∈ Sl

d+1 such that
des(w) = j and wd+1 = d+ 1− i. Thus Ad+1(j, i, l) = #Sl

d+1(j, i). To complete the

proof it is enough to provide a bijection between Sl+1
d+1(j, i) and Sl+1

d+1(d − j, d − i).
Let

ϕ : Sl+1
d+1(j, i)→ Sl+1

d+1(d− j, d− i)
be the map that sends w = wd+1−l · · ·wd+1 ∈ Sl+1

d+1(i, j) to

ϕ(w) := d+ 2− wd+1−l · · · d+ 2− wd+1

Let free(w) = {w1 < · · · < wd−l}.
By definition d+ 2−wd+1 = d+ 2− (d+ 1− j) = d+ 1− (d− j). Thus to show

ϕ(w) ∈ Sl
d+1(d − i, d − j) it remains to verify that the number of descents of ϕ(w)

is d− i.
We show that m ∈ [d] is a descent of w if and only if m is not a descent of ϕ(w). If

m ∈ [d− l] then wj > wd+1−l if and only if d+ 2−wj < d+ 2−wd+1−l. Analogously,
if m ∈ {d− l+ 1, . . . , d} then wm > wm+1 if and only if d+ 2−wm < d+ 2−wm+1.

Therefore, the number of descents of ϕ(w) is d− i. This completes the proof since
ϕ is clearly a bijection. �

Proposition 4.4. For 0 ≤ i, j ≤ d and 1 ≤ l ≤ d,

Ad+1(j, i, l) ≤ Ad+1(j, i, l + 1).(5)

Proof. As before we denote by Sl
d+1(j, i) the set of injective words w ∈ Sl

d+1 such
that des(w) = j and wd+1 = d+ 1− i. In the sequel, by “̂” we mean that the entry
below the hat is missing in the permutation. We construct a map

ψ : Sl
d+1(j, i)→ Sl+1

d+1(j, i)

as follows:
Let w ∈ Sl

d+1(j, i) be an injective word for which p is the number of descents in
the first d + 1 − l positions and j − p descents in the remaining positions for some
0 ≤ p ≤ j. Let w = wd+2−l · · ·wd+1 ∈ Sl

d+1(j, i) and free(w) = {w1 < · · · < wd−l <
wd+1−l} and wd+1 = d+ 1− i.

Since w has p descents in the first d+ 1− l positions it follows that

w1 < · · · < wd+1−l−p < wd+2−l < wd+2−l−p < · · · < wd+1−l if p > 0(6)

w1 < · · · < wd−l < wd+1−l < wd+2−l if p = 0(7)

.
We define

ψ(w) :=

{
wd+2−l−pwd+2−lwd+2−l+1 · · ·wd+1 if p > 0

wd+1−lwd+2−lwd+2−l+1 if p = 0

If p > 0 then ψ(w) has by (6) p− 1 descents in positions 1 to d− l and j − (p− 1)
in positions d − l + 1 to d + 1. If p = 0 then ψ(w) has by (7) p = 0 descents in
positions 1 to d − l and j in positions d − l + 1 to d + 1. Since the last letter of
ψ(w) is wd+1 = d + 1− i it then follows that ψ(w) ∈ Sl+1

d+1(j, i). It is easily checked

that ψ is injective. Hence ψ : Sl
d+1(j, i) ↪→ Sl+1

d+1(j, i) which implies Ad+1(j, i, l) ≤
Ad+1(j, i, l + 1).

11



�

As a consequence of Theorem 3.4 and Proposition 4.4 we can deduce a result on
the growth of the h-vector under lth partial barycentric subdivision.

Corollary 4.5. Let ∆ be a d-dimensional simplicial complex such that h∆
i ≥ 0 for

all 0 ≤ i ≤ d. Then

(i) h∆
i ≤ h

sdl(∆)
i for 0 ≤ l ≤ d and 0 ≤ i ≤ d,

(ii) h∆
i < h

sdl(∆)
i for 1 ≤ l ≤ d and 1 ≤ i ≤ d− 1,

Proof. It is easy to see that h
sdl(∆)
0 = h∆

0 and h
sdl(∆)
d = h∆

d , thus we are left with the

case 1 ≤ i ≤ d−1. Since by Theorem 3.4 h
sdl(∆)
i is a non-negative linear combination

of the h∆
j it suffices to show that the entries of the submatrix (h

(d−1,l)
ij )

1≤i≤d−1, 0≤j≤d

are strictly positive. Again, by Equation (5) it is enough to consider the case l = 1.
Now Lemma 4.2 completes the proof. �

The consequence of the preceding corollary for the smaller class of Cohen-Macaulay
simplicial complexes also follows from a very general result by Stanley [7, Theorem
4.10] using the fact that lth partial barycentric subdivision is a quasi-geometric sub-
division. Note that h∆

i ≥ 0 for Cohen-Macaulay simplicial complexes.
Let Fd−1 be the matrix of the transformation that sends the f -vector of ∆ to

the f -vector of sd(∆). We denote by Fl
d−1 the matrix of the transformation from

the f -vector of ∆ to the f -vector of sdl(∆). Both matrices Fd−1 and Fl
d−1 are

square matrices of order d + 1, with Fd
d−1 = Fd−1. By Theorem 3.1 the entries of

Fl
d−1 = (f

(d−1,l)
ij )

0≤i,j≤d
are given by f

(d−1,l)
ij = poSd(j, i, l).

The following lemma shows that the matrices Fl
d−1 and Hl

d−1 are diagonalizable.

Proposition 4.6. For 1 ≤ l ≤ d− 1:

(1) The matrices Fl
d−1 and Hl

d−1 are similar.
(2) The matrices Fl

d−1 and Hl
d−1 are diagonalizable with eigenvalues

1,
(d− l + 1)!

(d− l)!
, . . . ,

d!

(d− l)!
.

For 0 ≤ l ≤ d − 1 the eigenvalues (d−l+1)!
(d−l)!

, . . . , d!
(d−l)!

have multiplicity 1 and

the eigenvalue 1 has multiplicity d+1− l. For l = d the eigenvalues 2!, . . . , d!
have multiplicity 1 and the eigenvalue 1 has multiplicity 2.

Proof. • Since by (1) and (2) the transformation sending the f -vector of a
simplicial complex to the h-vector of a simplicial complex is an invertible
linear transformation, the first assertion follows.
• Clearly, Fl

d−1 is an upper triangular matrix with diagonal entries

1, . . . , 1︸ ︷︷ ︸
(d+1−l)−times

,
(d− l + 1)!

(d− l)!
, . . . ,

d!

(d− l)!
.

Let (Fl
d−1)⊥ be the transpose of Fl

d−1.
12



– 0 ≤ l ≤ d − 1: The first (d − l + 1) unit vectors are eigenvectors of
(Fl

d−1)⊥ for the eigenvalue 1.
– l = d: The first 2 unit vectors are eigenvectors of (Fl

d−1)⊥ for the eigen-
value 1.

The eigenvalues (d−l+1)!
(d−l)!

, . . . , d!
(d−l)!

are pairwise different. This implies that

(Fl
d−1)⊥ is diagonalizable. But then Fl

d−1 is diagonalizable.
�

Lemma 4.7. Let ν = (ν0, . . . , νd) be an eigenvector of the matrix Hl
d−1 for the

eigenvalue λ such that λ 6= d!
(d−l)!

. Then
∑d

i=0 νi = 0.

Proof. Since Hl
d−1ν = λν it follows that

(1, . . . , 1)Hl
d−1ν = (1, . . . , 1)λν.

But by Lemma 4.1, (1, . . . , 1)Hl
d−1 = d!

(d−l)!
(1, . . . , 1). Therefore, either λ = d!

(d−l)!
or∑d

i=0 νi = 0. Since λ 6= d!
(d−l)!

we are done. �

Next we try to gain a better understanding of the eigenvectors of Hl
d−1.

Lemma 4.8. Let d ≥ 2 and ν
(1)
1 , . . . , ν

(d−l+1)
1 , νd−l+2, . . . , νd+1 be a basis of eigen-

vectors of the matrix Fl
d−1, where ν

(1)
1 , . . . , ν

(d−l+1)
1 are eigenvectors for the eigen-

value 1 and νl+1, . . . , νd+1 are eigenvectors for the eigenvalues { (d−l+1)!
(d−l)!

, . . . , d!
(d−l)!
},

respectively. Then (ν
(1)
1 , 0), . . . , (ν

(d−l+1)
1 , 0), (νl+1, 0), . . . , (νd, 0) are eigenvectors of

the matrix Fl
d for the eigenvalues { 1, . . . , 1︸ ︷︷ ︸

(d−l+1)times

, (d−l+1)!
(d−l)!

, . . . , d!
(d−l)!
}.

Proof. Since both Fl
d−1 and Fl

d are upper triangular matrices and Fl
d−1 is obtained

by deleting the (d+ 2)nd column and row from Fl
d the assertion follows. �

Let Ĥl
d−1 be a matrix obtained be deleting the first and last rows and columns of

Hl
d−1. Thus Ĥl

d−1 is a d− 1 by d− 1 square matrix.

Lemma 4.9. The matrix Ĥl
d−1 is diagonalizable.

Proof. By definition and Theorem 3.4 the first row of Hl
d−1 is the first unit vector and

the last row of Hl
d−1 is the (d+ 1)st unit vector. Thus the characteristic polynomial

of Hl
d−1 splits into (1 − t)2 times the characteristic polynomial of Ĥl

d−1. Therefore,

Ĥl
d−1 has for 0 ≤ l ≤ d− 2 the eigenvalues

1, . . . , 1︸ ︷︷ ︸
(d−l−1)−times

,
(d− l + 1)!

(d− l)!
, . . . ,

d!

(d− l)!
.

and for l = d− 1, d the eigenvalues

2!, . . . , d!.
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To show that the matrix Ĥl
d−1 is diagonalizable, it is enough to show that for 0 ≤

l ≤ d− 2 the eigenspace for the eigenvalue 1 is of dimension d− l − 1.
Let 0 ≤ l ≤ d − 2. We again consider the full matrix Hl

d−1. Since Hl
d−1 is

diagonalizable there is a basis ω
(1)
1 , . . . , ω

(d−l+1)
1 , ωd−l+2, . . . , ωd+1 of Rd+1 consisting

of eigenvectors of Hl
d−1. We can choose the numbering such that ω

(i)
1 , 1 ≤ i ≤ d−l+1

are eigenvectors for the eigenvalue 1 and ωj is an eigenvector for the eigenvalues
(d+1−j)!

(d−l)!
, 0 ≤ j ≤ l, respectively.

Again, since the first and last row of Hl
d−1 are the first and (d + 1)st unit vector

we can choose the eigenvectors of Hl
d−1 for the eigenvalue λ = 1 as follows: ω

(1)
1 and

ω
(2)
1 can be chosen such that

ω
(1)
1 = (1, k11, . . . , k1(d−1), 0) and ω

(2)
1 = (0, k21, . . . , k2(d−1), 1),

and ω
(i)
1 can be chosen such that ω

(i)
1 = (0, ki1, . . . , ki(d−1), 0) for 3 ≤ i ≤ d + 1 − l.

Clearly, this implies that deleting the leading and trailing 0 form the ω
(i)
1 for 3 ≤ i ≤

d+1− l yields eigenvectors ω̂1
(i) = (ki1, . . . , ki(d−1)) of Ĥl

d−1 for the eigenvalue λ = 1.

Obviously, the set of vectors {ω̂1
(3), . . . , ω̂1

(l+1)} is linearly independent. Hence we

have shown that the dimension of the eigenspace for the eigenvalue 1 of Ĥl
d−1 is

d− l − 1. �

The above lemma is a key ingredient in proving the following theorem.

Theorem 4.10. Let d ≥ 2 and let ω
(1)
1 , . . . , ω

(d−l+1)
1 , ωd−l+2, . . . , ωd+1 be a basis of

eigenvectors of the matrix Hl
d−1, where ω

(i)
1 , 1 ≤ i ≤ d− l+1 are eigenvectors for the

eigenvalue 1 and ωj is an eigenvector for the eigenvalue (j−1)!
(d−l)!

, for d− l+ 2 ≤ j ≤ d.

(1) Let ∆ be a (d−1)-dimensional simplicial complex. If we expand h-vector of ∆
in terms of eigenvectors of the matrix Hl

d−1, the coefficient of the eigenvector

for the eigenvalue d!
(d−l)!

is non-zero.

(2) The first and the last coordinate entry in ω
(3)
1 , . . . , ω

(l+1)
1 , ωl+1, . . . , ωd is zero.

(3) The vectors ω
(1)
1 and ω

(2)
1 can be chosen such that

ω
(1)
1 = (1, i1, . . . , id−1, 0) and ω

(2)
1 = (0, j1, . . . , jd−1, 1).

(4) The vector ωd+1 can be chosen such that ωd = (0, b1, . . . , bd−1, 0) for strictly
positive rational numbers bi, 1 ≤ i ≤ d− 1.

Proof. Let us expand the f -vector of ∆ in terms of a basis of eigenvectors of the
matrix Fl

d−1. Since f∆
d−1 6= 0 from Lemma 4.8 we deduce that the coefficient of the

eigenvector for the highest eigenvalue is non-zero. Since Fl
d−1 and Hl

d−1 are similar
so (1) follows.

Assertions (2) and (3) immediately follow from the proof of Lemma 4.9.

For (4) consider the matrix Ĥl
d−1 as defined above. It is easily seen (and also

follows Lemma 4.2 and Proposition 4.4) that the entries of Ĥl
d−1 are strictly positive

numbers. Therefore, by the Perron-Frobenius Theorem [5] it follows that there is an
14



eigenvector ω̂l
d for the eigenvalue d!

(d−l)!
with strictly positive entries. Hence (0, ω̂l

d, 0)

is the required eigenvector. �

5. Open Problems

In this section we discuss a few open problems related to the above work.
Lemma 4.7 describes properties of the eigenvectors of the matrix Hl

d−1 for the

eigenvalue λ such that λ 6= d!
(d−l)!

. For the eigenvalue λ = d!
(d−l)!

we were able

to deduce its non-negativity in Theorem 4.10 (4) but were not able to give more
structural results or even provide an explicit description. By [2] when applying lth

partial barycentric subdivision iteratively the limiting behavior of the h-vector is
determined by this eigenvector. Hence some information can be read off from [2].
Nevertheless complete information about that eigenvector would be desirable.

For example, for d = 4 we have following eigenvectors, corresponding to the
eigenvalues 4!

3!
, 4!

2!
, 4!

1!
, for l = 1, 2, 3 respectively.

0
1
1
1
0

 ,


0
1
5
3
1
0

 ,


0
1
7
2
1
0

 .

For d = 5 we have the following eigenvectors, corresponding to the eigenvalues
5!
4!
, 5!

3!
, 5!

2!
, 5!

1!
, for l = 1, 2, 3, 4 respectively.

0
1
1
1
1
0

 ,


0
1
12
7
12
7
1
0

 ,


0
1
46
11
46
11
1
0

 ,


0
1
17
2
17
2
1
0

 .

Similarly, for d = 6 we have following eigenvectors, corresponding to the eigenvalues
6!
5!
, 6!

4!
, 6!

3!
, 6!

2!
, 6!

1!
, for l = 1, 2, 3, 4, 5 respectively.

0
1
1
1
1
1
0


,



0
1
7
4
7
4
7
4
1
0


,



0
1

1941
437
2146
437
1941
437
1
0


,



0
1

5431
527
8906
527
5431
527
1
0


,



0
1

586
33

5459
132
586
33
1
0


.

Thus the following problem appears to be interesting.

Problem 5.1. Give a description of eigenvectors of the matrices Fl
d−1 and Hl

d−1 for

the eigenvalue d!
(d−l)!

.
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The h-polynomial h(sd(∆d−1), x) =
∑d

i=0 h
sd(∆)
i xd−i of the barycentric subdivision

of ∆d−1 has the following combinatorial interpretation.

(8) h(sd(∆d−1), x) =
∑
w∈Sd

xdes(w) =
∑
w∈Sd

xex(w),

where ex(w) denotes the number of excedances of w = w1 · · ·wd, defined by

ex(w) = #{i | wi > i},

The first equality follows from [8, Theorem 3.13.1] (it is also a consequence of [1,
Thm 1] and Theorem 3.4), and the second is a consequence of [8, Proposition 1.4.3].
In [7], the local h-polynomial `V (Γ, x) of an arbitrary subdivision (subject to mild
conditions) Γ of ∆d−1 has been defined. For Γ = sd(∆d−1) it is given as:

(9) `V (sd(∆d−1), x) =
∑

w∈Derd

xex(w),

where Derd denotes the set of all derangements in Sd. We suggest the following:

Problem 5.2. Give an interpretation of local h-polynomial for the lth partial barycen-
tric subdivision similar to (9) in terms of a suitably defined l-excedance statistic on
a newly defined set of l-derangements satisfying an analog of (8).

To approach the problem it seems useful to find a statistic on Sl
d fulfilling a

statement analogous to (8). Already this task appears to be hard and challenging.

Problem 5.3. Define an l-excedance statistic on Sl
d such that the l-excedance and

descent statistic on Sl
d are equally distributed; i.e. satisfy an analog of (9).

For Problem 5.3, we tried different approaches. Despite not yielding a solution
to the problem the following idea resulted in some interesting data. We define
an injective map say χ : Sl

d → Sd in the following way. Let w ∈ Sl
d such that

w = wd−l+1 · · ·wd and free(w) = {w1 < · · · < wd−l}. Then:

χ(w) =


w1 · · ·wd−1wd−l+1 · · ·wd, if wd−l+1 > wd−l

wd−l−p+1 · · ·wd−lw1 · · ·wd−l−pwd−l+1 · · ·wd, if wd−l−p+1 > wd−l+1

and wd−l−p < wd−l+1.

Now define the number of excedances ex(w) of w ∈ Sl
d to be number of usual

excedances of χ(w), i.e.

ex(w) := #{i | χ(ω)(i) > i}.

We apply this definition for different values of d and l. For a fixed d, the descent
and excedance statistic are equally distributed on Sl

d for l = 1 and l = 2. But for
other values of l the two statistics appear to be different. Nevertheless, the obtained
data has some surprising and unexplained symmetry. For example, for Sl

5 we have
following tables for the number of descents,
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l =
4 3 2

# of descents =
0 1 1 1
1 1 6 16
2 1 6 26
3 1 6 16
4 1 1 1

and the following table for the number of l-excedances.

l =
4 3 2

# of l-excedances =
0 1 1 1
1 1 6 14
2 1 6 30
3 1 6 14
4 1 1 1

Similarly, for Sl
6 the number of descents are shown in the following table,

l =
5 4 3 2

# of descents =
0 1 1 1 1
1 1 7 22 42
2 1 7 37 137
3 1 7 37 137
4 1 7 22 42
5 1 1 1 1

and the number of l-excedances are shown in the following table.

l =
5 4 3 2

# of l-excedances =
0 1 1 1 1
1 1 7 17 33
2 1 7 42 146
3 1 7 42 146
4 1 7 17 33
5 1 1 1 1
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