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Abstract. We present a new and algebraic approach to the optimal damping
of servo axes during commissioning. The approach is based on control of root
loci of the denominator of the transfer function using Gröbner bases techniques.
The results are either explicit formulas for simple systems or descriptions of
the optima via roots of univariate polynomials. The power of the result is
demonstrated in examples.

1. Introduction

1.1. Servo controller commissioning. Servo axis commissioning is one of the
main issues for the setup procedure of production machines and machine tools.
In feedback control theory, very few practically applicable commissioning rules for
servo axes have been developed up to now (see [1, 7, 11]). The heuristic commis-
sioning procedures proposed by the automation system manufacturers [6] require
multiple measurements and � especially for axes with �exible mechanical structure
� are quite time consuming. Due to the lack of commissioning time, most of the
production machines operate with de�cient servo axis performance with disadvan-
tageous e�ects on productivity and utilization of energy.

The main parameter for position controlled servo drives is the velocity feedback
proportional gain KP [13]. On one hand, the velocity control loop has to be fast
enough (i.e. high KP) to achieve a satisfactory feedback control performance in
the position control loop. On the other hand, the velocity control loop is essential
for vibration damping of the �exible mechanical structure. From the engineering
point of view, it is highly desirable to assess the velocity control gain KP directly
from formulas or through a mathematical description that allows a simple analysis
of its dependency on the parameters. These rules should be based on the control
topology as well as on plant parameters that are easy to identify. In this paper
we propose a method to derive rules of this type using elimination methods from
polynomial algebra, in particular we apply Gröbner bases techniques.

As an example we describe the engineering problem in the mathematically least
complex standard case of a servo motor with �exible load shown in Figure 1a. The
plant parameters [15], complete inertia Θ, inertia ratio λ and resonant frequency ω0

can be identi�ed e.g. by a measured drive frequency response [12, 15]. The transfer
function for the velocity control loop of the physical model in Figure 1b is given by
(see [14]):

(1) G(s) =
ϕ̇M(s)
α̇set(s)

κ=
KP
Θ=

κ
λ · s

2 + ω2
0 · κ

s3 + κ
λ · s2 + ω2

0 · s+ ω2
0 · κ
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(a) Test bench (machine tool lab-
oratory of the Swiss Federal In-
stitute of Technology)
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(b) Physical model of the velocity control loops
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(c) Root locus for the feedback controller gain KP

Figure 1: Rotary servo axis (C-axis) with �exible load

The root locus for that transfer function in Figure 1c elucidates the optimization
problem for the gainKP. LowKP values result in a slow system with poor damping,
very high KP values decrease the damping of the complex poles too. The optimum
setting will have minimum damping angle σ. Although a numerical optimization
of KP for optimum damping is quite simple to implement, e.g. in Matlab [12,
15], a rigorous analytic solution Kp,opt(Θ, λ, ω0) for this engineering problem is
desirable, since it avoids non-trivial numerical approximations but also allows an
understanding to the behavior of the optimum in terms of the system parameters.

1.2. Previous work. The commissioning of PI or state space velocity feedback
control loops has been discussed since decades [1, 3, 5, 7, 9, 11]. Up to now,
the commissioning rules are almost exclusively based on root locus optimization as
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shown in Figure 1c. In the known approaches the root locus analysis requires either
engineering tools that are well suited for research laboratories and educational test
benches, but not for the dirty and noisy manufacturing environment or numerical
optimization which does not yield insight in the dependency of the optimum on the
system parameters and raises questions on convergence and feasibility. Rules based
on explicit analytic formulas or simple numerical algorithms, such as �nding root
loci of polynomials in one variable, seem more suitable. A �rst attempt described for
speci�c cases in [15] and [2] derives rules of thumb out of intensive parameter studies
by rough and intuitive engineering approximations from data provided by numerical
optimization (for the case described in Figure 1). Although these �rst rules of thumb
are only empirical approximations, their practical use for the axis commissioning
at di�erent industrial partners was quite encouraging. A �rst thorough analytic
solution for the case treated in Figure 1 was given in [2]. This work was already
based on Gröbner bases techniques, but the actual derivation and method were not
presented in [2]. It was the starting point for research on a more re�ned use of
Gröbner bases for this purpose. This paper presents the results of these e�orts.

It is a contribution to the development of rigorous rules for dominating pa-
rameters in system topologies (as given in Section 4) which together with system
parameter identi�cation (e.g. by measured plant frequency response interpretation)
is the crucial precondition for (semi-)automatic servo axis controller commissioning
and optimization.

1.3. Outline of the paper. In Section 1 we introduce the basic engineering setting
and provide a concrete example. We outline the contribution made by the paper
and survey the existing approaches. Then in Section 2.1 the mathematical model is
introduced and in Section 2.2 the algebraic tools of Gröbner bases and resultants are
brie�y explained without going into much detail. In Section 2.3 a �rst application
of the algebraic approach is given. Here a Gröbner technique for the extraction of
the transfer function from physical descriptions of the system is outlined. Then in
Section 3 our principal method is described concretely in case of systems of degree
3, 4 and 5. Then in Section 4 the results of the method for several concrete systems
are provided. Finally in Section 5 the contribution of the paper is validated and
discussed and an outlook is given.

2. Mathematical Models

2.1. Our Model. We consider a mechanical system whose state at time t can be
described by a state vector x(t) = (x1(t), . . . , xn(t)) ∈ Rn. Moreover, we have a real
valued input function u(t) which models our control of the system and a real valued
output function y(t). The dynamics of the system is then given by the following
equations of motion:

d

dt
x(t) = Ax(t) + bu(t)(2)

y(t) = ctx(t)(3)

Here A ∈ Rn×n is the state matrix, b ∈ Rn is the control vector and c ∈ Rn is the
output vector. In the literature, one often considers systems with more than one
input and one output variable. In that case b and c are replaced by matrices of
the appropriate size. However, in this paper we restrict ourselves to the case of one
input variable and one output variable.
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In general, solutions x(t) to (2) are a superposition of solutions of the homo-
geneous system d

dtx(t) = Ax(t) and a �xed special solution of (2). The solutions
xhom(t) of the homogeneous system are all of the form

xhom(t) = e(x+iy)tx0 ,

where x, y ∈ R and i is the imaginary unit. In practice, it is desirable that for
t→∞ the solutions to the homogeneous system approach zero as fast as possible,
as they represent transient behaviour of the system. In particular, we should have
that x < 0. The occurring exponents x+ iy are the eigenvalues of A and thus the
zeros of the characteristic polynomial

PA(s) = det(sE−A)

where E ∈ Rn×n denotes the identity matrix. We write σ = y
x for the ratio of

the imaginary and real part of a non-real zero. Since we consider a minimization
problem we chose the negative imaginary part y from the pair of conjugate roots.
Then we can write

xhom(t) = e(1+iσ)xtx0 .

Thus, σ determines the shape of the function, while x is a time constant.
In our case, the state matrix A depends on a parameter a. Our goal is to

determine a value of a, such that the zeros of PA(s) are �optimally� located in the
complex plane. Experimental data suggests that the optimal location is achieved
when minimizing the value of σ. Hence for our purposes we need to solve the
following optimization problem:

Let P(s; a) = sr + c1(a)sr−1 + · · · + cr(a) be a polynomial in the variable s
whose coe�cients ci(a) are real functions depending on a real variable a. Let
x1(a)(1 + iσ1(a)), . . . , xr(a)(1 + iσr(a)) be the complex zeros of P(s; a).

Determine a value of a that minimizes the maximum of the σi(a), with respect to
the constraint xi(a) ≤ 0 for 1 ≤ i ≤ r

Indeed, in our application the ci(a) will also depend on additional parameters
q1, . . . , qm. It will be a polynomial in a and a rational function in q1, . . . , qm.

Another interpretation of the characteristic polynomial can be given in terms of
the transition function. For this we consider the Fourier transformation of (2):

iωx̂(ω) = Ax̂(ω) + bû(ω)

ŷ(ω) = ctx̂(ω)

We can eliminate x̂(ω) from this system and write ŷ(ω) = ct(iωE − A)−1bû(ω)
where E ∈ Rn×n denotes the identity matrix. The transition function of the system
is then de�ned by

G(s) := ct(sE−A)−1b .
This is a rational function in s which describes the dependence of the output u(t)
from the input y(t). In general, its denominator is a divisor of the characteristic
polynomial. However, in most cases of practical relevance, these two polynomi-
als are equal. If they are not equal, then the additional zeros of the characteristic
polynomial correspond to homogeneous solutions that cannot appear with the given
input vector b. For example, for a Master-Slave drive (see Case 3 below), there are
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two additional zeros of the characteristic polynomial. They correspond to asym-
metric oscillations which are suppressed by the symmetry of the model. In this
situation, we will consider the denominator of the transition function rather than
the characteristic polynomial.

2.2. Eliminations Methods. In this subsection, we shortly recall the two elim-
inations methods used in this paper, Gröbner Bases and resultants; see [4, Chap.
3] for a more detailed treatment. Consider a system of polynomial equations

(4) p1(x1, . . . , xn) = p2(x1, . . . , xn) = · · · = pm(x1, . . . , xn) = 0

for polynomials p1, . . . , pm ∈ C[x1, . . . , xn]. In our applications we will be interested
in a subset of the coordinates of the solutions of the system in Cn. Say we are
interested in the coordinates x1, . . . , xl for some l ≤ n.
Gröbner Bases: Computing a Gröbner Basis with respect to an elimination ordering

gives a new polynomial system

(5) p̃1(x1, . . . , xn) = p̃2(x1, . . . , xn) = · · · = p̃m̃′(x1, . . . , xn) = 0

such that the solution sets of (4) and (5) coincide. After suitable numbering the
new system now is divided into two subsystems:

(6) p̃1(x1, . . . , xn) = p̃2(x1, . . . , xn) = · · · = p̃m̃′′(x1, . . . , xn) = 0

and

(7) p̃m̃′′+1(x1, . . . , xn) = p̃m̃′′+2(x1, . . . , xn) = · · · = p̃m̃′(x1, . . . , xn) = 0

where (6) contains the (possibly empty) set of polynomials from (5) which lie in
C[x1, . . . , xl]. The crucial property of the two systems is:

Almost every solution of (6) can be extended to a solution of (5) or equivalently
(4); see [4, Chap. 3, Theorem 3]. In other words, we have eliminated the variables
xl+1, . . . , xn.
Resultant: First consider the special case where we have only two polynomials
p1, p2 and we want to eliminate only one variable xn. The resultant Resxn(p1, p2)
is a polynomial that depends on the same set of variables as p1 and p2 except
xn. Similar to the Gröbner basis method we have the property that almost every
zero of Resxn

(p1, p2) can be extended to a common zero of p1 and p2 (under certain
assumptions). We refer to [4, Chap. 3, ¶6] for exact de�nitions and basic properties
of resultants. For the elimination of several variables from a set of polynomials the
resultant method can be applied iteratively, but this can easily lead to an explosion
of the polynomial degrees.

In our application, the resultant turned out to be faster than Gröbner Basis
elimination for the elimination of a single variable. Nevertheless, since we also need
to eliminate several variables at once Gröbner bases methods are essential for our
work.

2.3. Extracting the polynomial equations using Gröbner Bases. In prac-
tice, the equations of a system are sometimes given in a form di�erent from our
standard form (2). For instance, they may be given by some basic relations between
the state variables and some additional relations describing e�ect of the input on
the system. Even though in general it is mathematically not too di�cult to man-
ually transform these equations into the standard from (2), it is tedious and fault
prone. Therefore, it is convenient to replace the manual derivation by computer
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algebra tools which will be our �rst use of the elimination methods from Section
2.2. Next we describe an algorithm to determine the transition function:

We �rst substitute every di�erential d
dt in the equations by a new variable s;

this amounts to performing a Laplace transformation. Then we add the additional
equation y = Gu to the system, where we treat G as a variable. Before we can solve
this system of equations for G, we need to exclude the case that u = 0, because
this corresponds to a trivial solution. This can be done by saturating with respect
to u, see Chap. 2.2 of [10]. Next we use the elimination methods from Section 2.2
(and a computer algebra system) to eliminate u, y and the state variables from the
system to get an expression for G in terms of s. Then solving for G = G(s) yields
the transition function.

As an example, we derive (1) from the physical relations of the velocity control
loop on Figure 1b. The (Laplace transformed) equations of motion are the following:

JM · ϕM · s2 = −k(ϕM − ϕL) +M(8a)

JL · ϕL · s2 = k(ϕM − ϕL)(8b)

In addition, we have the equation of the velocity control and for the transition
function:

M = KP(αset − ϕMs)(8c)

ϕM · s = G · αset(8d)

Saturation with respect to αset yields two additional equations:

JL ·KP · s2 + kKP = (JMJLs
3 + JLKPs

2 + (JM + JL)ks+ kKP)G(8e)

0 = G · s(ϕMJM + ϕLJL) + (G− 1) · ϕM ·KP(8f)

We eliminate the variables ϕM, ϕL,M and αset from the equations (8a) � (8f) and
solve for G to obtain

G =
JL ·KP · s2 + k ·KP

JM · JL · s3 + JL ·KP · s2 + k(JM + JL)s+ k ·KP
.

By the substitutions indicated in Figure 1b, this is equivalent to (1). The reader may
notice that in this example one could have read o� the expression for G from (8e)
without using elimination. Unfortunately, this coincidence happens in this basic
example. More complicated examples do not bear this feature but are technically
too involved to serve as an example for the principle approach.

3. Our Method

Let P = P(s, a; q1, . . . , qm) denote the characteristic polynomial. Here, s is
the polynomial variable, a is the parameter to optimize and q1, . . . , qm are fur-
ther parameters. In our algebraic approach we consider the additional parameters
q1, . . . , qn as variables. We distinguish the case when the characteristic polynomial
P has degree 3 in s and the case of degree 4 or 5 in s.

3.1. Degree 3. Consider a general characteristic polynomial of degree 3:

s3 + c1s
2 + c2s+ c3

Since P has degree 3, we generically expect one real solution and a pair of complex
conjugated solutions. Thus, there is only one σ to minimize. We consider the
problem over the reals, so at �rst we substitute s = x(1 + iσ) for variables x and
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σ in P. Since algebraic equations cannot force x and σ to be real, by doing so, we
increase the number of solutions of the system. Thus at the end we have to discard
the irrelevant � non-real � solutions. Separating the real and imaginary parts of P
we obtain two polynomials p1, p2:

p1 = (1− 3σ2)x3 + (1− σ2)c1x2 + c2x+ c3

p2 = (3σ − σ3)x3 + 2σc1x2 + σc2x

Now eliminate x from those two polynomials using the resultant to get a third
polynomial p3. We substitute σ̃ = (σ2 +1)/4 to get a more succinct representation.
Note that this is a monotone transformation, so a minimum of σ̃ corresponds to a
minimum of σ. After removing trivial factors we get

p3 = (c1c2 − c3)2σ̃3 + (c1c2c3 − 3c23 − c31c3 − c32)σ̃2 + (3c3 + c1c2)c3σ̃ − c23
We want to minimize σ̃ over the real curve p3 = 0 in the (σ̃, a)-plane. For this we
employ the method of Lagrange multipliers. This yields a system of equations:

p3(σ̃, a) = 0(9)

λ
∂

∂a
p3(σ̃, a) = 0(10)

λ
∂

∂σ̃
p3(σ̃, a) = 1(11)

Here, λ is the Lagrange multiplier. It is easy to see that (11) only determines
the value of λ. Thus we can safely ignore this equation and concentrate on the
remaining two. Of course we can eliminate λ from (10) by division. So we are
left with two equations in two variables. Hence we can compute the resultant
p4 := Resσ̃(p3,

∂
∂ap3) to eliminate σ̃. Now we have one polynomial p4 = p4(a) and

the optimal value of a can be computed by solving p4 = 0.

3.2. Degrees 4 and 5. Polynomials of degree 4 or 5 generically have two pairs of
complex roots. Our objective function is then the maximum of the two ratios of
real and imaginary parts. We distinguish two cases: In the �rst case, the root with
the higher imaginary/real ratio attains a minimum in a region of the parameter
space where the second root uniformly has a lower ratio. In this case one can apply
a method analogous to the one described for degree 3. However, the occurring
polynomials tend to be very complicated.

In the second case, one pair has an increasing ratio, the other one has a decreasing
ratio, and the minimum is obtained in the point where the ratios are equal. In the
case that P is of degree 4 we pursue the following Ansatz: Consider the general
polynomial

(12) p = (s− x1(1 + iσ))(s− x1(1− iσ))(s− x2(1 + iσ))(s− x2(1− iσ))

of degree 4 for which the two pairs of roots to have the same ratio σ. We compare its
coe�cients with the actual P to get a system of 4 equations in the indeterminates
x1, x2, σ and a. For the optimal value of a, P can be written in the form (12).
Hence, the optimal a = a0 is part of a solution (x1,0, x2,0, σ0, a0) of this system of
equations. Using Gröbner bases we can eliminate all indeterminates but a. Since
the polynomial ring in one indeterminate is a principal ideal domain, this results in
exactly one polynomial p1 = p1(a). Moreover, p1(a) is not constant, because there
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exists an optimal a, but not all values for a are optimal. Again, we can compute
the optimal value of a by solving p1(a) = 0.

For a polynomial of degree 5, we include an additional factor (s − x3) in our
Ansatz and eliminate x3 in the elimination step. Otherwise we proceed analogous
to the degree 4 case.

We are currently working in applying the method for degrees ≥ 6.

3.3. Remarks. Let us add some technical remarks.

• We note that the ratio σ is invariant under a scaling transformation s 7→ γs
for any γ 6= 0. The γ may even depend on a. Using this, we were in some
cases able to simplify the dependence of P on a.

• In our second method we do not need to single out a from the other pa-
rameters. Instead, we can freely reparametrize P, thus greatly simplifying
the elimination step. Only in the end we need to substitute back to obtain
the optimal value of a. We see this as the reason for the fact that in exper-
iments for degree 5 the second method is computationally more tractable
than the �rst one.

• In general, for polynomials of degrees 4 and 5 it is not obvious which case
applies. The answer may even depend on the region of the parameter space.

• The computation time needed for the elimination step in the second method
depends strongly on the order the variables are eliminated. Our experi-
ments suggest that it is advantageous to eliminate x3 (in degree 5) �rst,
then x1 and x2, and σ last.

4. Concrete cases

In this section we demonstrate the applicability of the method described in Sec-
tion 3 in several concrete engineering settings.

Case 1: P-velocity control with structural �exibility. The case given in
Figure 1 and Equation (1) represents a complete class of structural �exibilities at
machine tools and robots; see [12, p.35]. The optimum damping can be derived by
the methods described in Section 3.1. It is given by

(13) κ =
KP

Θ
= ω0λ

0.75 .

Case 2: State space velocity control with delayed input generation. An-
other dominating in�uence is the delayed servo motor input generation (i.e. force or
torque) due to the inductance and the dead time in the current control loop as well
as by input variable �lters for noise suppression. As shown in Figure 2, this input
delay can be considered by an equivalent delay time constant T , that is displayed
on the commissioning software of modern servo drives and control systems.

For typical servo motor delay times (T = 0.5 − 2 ms), the e�ect on the P-
velocity control is negligible in comparison to the �exible structure. For state
control extensions as shown in Figure 2, the delay time is the dominating restriction
for the control performance [12]. Velocity state space controller commissioning
is based on the pole placement method following Schröder [9] with one tuning
parameter Ω that represents the cut-o� frequency of the velocity control loop. The
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(a) Root locus for the tuning parameter Ω (here T = 0.3ω−1
0 )

Figure 2: Delayed input generation

resulting transfer function denominator is

s4 +
1
T
s3 +

(
2Ω
T

+ ω2
0

)
s2 +

2Ω2

T
s+

Ω3

T
.

Optimum damping angle for all poles is reached for

(14) Ω =
1

4T
.

Case 3: Multi drive control. Very large machine tool applications require dis-
tributed drives for one axis degree of freedom. Figure 3 shows such a swivelling
axis for a large milling machining centre.

Although the physical model in Figure 3b represents a 5th-order system for the
velocity control loop, the symmetric velocity control of master and slave drive
results in a 3rd-order transfer function:

G(s) =
ϕ̇L(s)
α̇set(s)

κ=
KP
Θ=

2ω2
01κ

1−2λ

s3 + κ
λs

2 + ω2
01

1−2λs+ 2ω2
01κ

1−2λ

The optimization task shown in Figure 3c is similar to Case 1. Optimum velocity
control loop damping is achieved for

(15) κ =
KP

Θ
=

ω01λ
0.75

4
√

2
√

1− 2λ
.

Also here, state space control and delayed input variables result in additional cases
for multi drive control. Furthermore, servo axes with two dominating �exible eigen-
modes (resonant frequencies), that can be considered as 5th order systems for the
velocity control, can be optimized concerning the feedback controlled damping per-
formance. However, in these cases our method does not yield a closed formula for
the optimal damping parameter. Instead, we obtain a univariate polynomial of
degree 5 or higher, whose real positive zero corresponds to the optimum damping
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(a) Milling machine setup (cour-
tesy Rückle GmbH, Römerstein,
Germany)

Motor

Load

Slave

αset = ωset

KP

KP

Θ = 2JM + JL

ω2
01 = k

JM

λ = JM

Θ

ϕ̇M

−

ϕ̇S

−

ϕM

ϕL

ϕS

k

k

JM = λΘ

JL = (1− 2λ)Θ

JM = λΘ

MS

(b) Physical model of the velocity control loops
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(c) Root locus for the feedback controller gain KP

Figure 3: Swivelling axis (B-axis) with master-slave control [8]
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Case, Axis KP in Nms/rad
Analytical rule Simulation Measurement

1, C-Axis [12] with P-
velocity control

Θ = 2.9 kg m2

λ = 0.51

ω0 = 75rad/s

Eq. (13):
KP = 131 Nms/rad

KP =
120− 150 Nms/rad

KP = 125 Nms/rad

2, C-Axis [12] with state
space control

Θ = 2.9 kg m2

λ = 0.51

ω0 = 75rad/s

T = 1.8 ms

Eq. (14):
Ω = 139 1/s

Ω = 125− 140 1/s Ω = 135 1/s

3, B-Axis [8] with
master-slave control

Θ = 806 kg cm2

λ = 0.33

ω01 = 125rad/s

Eq. (15):
KP = 6.23 Nms/rad

KP = 6− 7 Nms/rad KP = 6.7 Nms/rad

Table 1: Examples of realistic Servo Axis

parameter. We display the leading term and the constant term of the polynomial
for one of the cases we have worked out.

p(Ω) = σ5
LΩ12 + . . .+ γω12

0 (γ + 1− σL)3(γ + 1− σL + 4λγσ − 4λσL)2

Since a full presentation of the case covered by the polynomial and a full presen-
tation this degree 12 polynomial would explode the size of this paper, we refrain
from a detailed presentation.

5. Discussion of the results and Outlook

The analytic rules given in Section 4 have been tested at several dozen servo
axis commissioning procedures. Table 1 shows three examples of realistic servo
axes, that elucidate the fact that the rules yield good starting values for the axis
setup. It should be noted that although the analytic rules yield one precise control
gain value based on the identi�ed system parameters, there is a certain range of
suitable gains in practice. When simulating or measuring the step response of
a servo axis velocity controller in the time domain, the commissioning results of
di�erent experienced practitioners will vary in the range of 20�40%. Besides the
conservatism of the commissioner, the audible drive performance in�uences the real
controller gain adjustment.

We would like to stress two main advantages of the approach presented in this
paper.

On the one hand, analytic estimation of the achievable controller gains can re-
place numerical simulation in the design phase of a new machine tool or robot
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servo axis. For numerical simulation, a suitable engineering tool (e.g. MAT-
LAB/Simulink, ANSYS CT, PERMAS etc.) as well as thoroughgoing modelling of
the system is required, that can consume hours or days. Also an expensive software
license is needed. Although numerical simulation of servo axes is the engineering
state of the art, partial replacement of simulation by estimation will make the de-
velopment process more e�ective in the design phase. Thus the axis performance
can be evaluated based on a numerical modal analysis even if a machine tool only
exists as CAD sketch.

On the other hand, analytic controller gain estimation simpli�es the commis-
sioning procedure of a servo axis because the required system parameters can be
identi�ed by frequency response measurements (as explained in Chapter 1), that
can be considered as standard feature for modern servo controllers. Actual (semi-)
automatic controller commissioning tools are based on phase and gain margin [6].
Due to the noisy measurement environment at real servo axes, the discrimination
of these margins can be quite di�cult. However, the detection of the system pa-
rameters for the rules of thumb derived in this paper is much easier, even for noisy
frequency response measurement displays. The development of a practical auto-
matic commissioning tool for servo axes and its intensive application at several
industrial partners is the future focus for the applied research in this project.
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