
BIOINFORMATICS Vol. 20 no. 10 2004, pages 1522–1526
doi:10.1093/bioinformatics/bth113

Efficient similarity search in protein structure
databases by k -clique hashing

Nils Weskamp1,2, Daniel Kuhn2, Eyke Hüllermeier1,∗ and
Gerhard Klebe2

1Department of Mathematics and Computer Science, University of Marburg,
Hans-Meerwein-Straße, 35032 Marburg, Germany and 2Institute of Pharmaceutical
Chemistry, University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany

Received on October 12, 2003; accepted on February 3, 2004

ABSTRACT
Motivation: Graph-based clique-detection techniques are
widely used for the recognition of common substructures in
proteins. They permit the detection of resemblances that are
independent of sequence or fold homologies and are also able
to handle conformational flexibility. Their high computational
complexity is often a limiting factor and prevents a detailed
and fine-grained modeling of the protein structure.
Results: We present an efficient two-step method that signific-
antly speeds up the detection of common substructures, espe-
cially when used to screen larger databases. It combines the
advantages from both clique-detection and geometric hashing.
The method is applied to an established approach for the com-
parison of protein binding-pockets, and some empirical results
are presented.
Availability: Upon request from the authors.
Contact: eyke@mathematik.uni-marburg.de

INTRODUCTION
Most ambitious among the competing techniques for the struc-
tural comparison of proteins are those that operate completely
independent of sequence and fold information. These tech-
niques are capable of revealing functional relations among
proteins that are not due to phylogenetic dependency.

Unfortunately, such approaches are computationally very
complex and require a reduction of the problem size, which
is usually achieved by considering only the secondary struc-
ture elements of the protein (Harrisonet al., 2002; Kochet al.,
1996; Grindleyet al., 1993). Our approach is instead based on
a recent method for the automatic extraction and description
of protein binding sites by Schmittet al. (2002). Follow-
ing the idea that the function of a protein is determined by
the shape and the physicochemical properties of the binding
pocket, we assign pseudocenters—as three-dimensional (3D)-
descriptors—to the cavity-flanking amino acids to represent
their interaction properties. Two binding sites are regarded as

∗To whom correspondence should be addressed.

similar if they share a common spatial arrangement of assigned
pseudocenters and expose similar physicochemical properties
into the binding site. The binding site-composing amino acids,
the attributed pseudocenters and a cavity surface are stored in
the database Cavbase (Schmittet al., 2002).

The original approach by Schmittet al. (2002) uses a clique-
detection method that interprets the pseudocenters as nodes
of a graph. Typically, this results in graphs of the size 50–150
(yet graphs with more than 1000 nodes do exist). The physico-
chemical properties of the centers are modeled as a coloring of
the nodes. An edge is inserted between two nodes, weighted
with the geometric distance between the adjacent nodes. To
reduce the complexity, an edge is inserted only if its length
does not exceed 12.0 Å. A standard algorithm (Bron and
Kerbosch, 1973) is used to detect connected maximal com-
mon substructures in the graph representations, applying the
modifications suggested in the study of (Kochet al., 1996).
The size of the common substructures is our measure of sim-
ilarity. Additionally, the common substructures may be used
to calculate a geometric superimposition of the structures and
to perform more complex similarity measurements based on
mutual surface–surface matches of common cavity patches.
Although both these measures do not formally fulfill the prop-
erties of a metric, they were subjected to empirical validation
and usually revealed good results. The implications for clus-
tering are not in the scope of this paper and will be discussed
elsewhere.

Due to the comparatively fine-grained and therefore large
graph representations, the runtime complexity of the method
is relatively high. To allow efficient similarity searches in
large datasets and all-against-all comparisons as a basis for
clustering, we developed an improved hybrid method for
the detection of common substructures in binding sites. This
method combines advantages from both, graph-based clique-
detection and geometric hashing, as will be detailed in the
following. Before that we recall the standard clique-detection
approach and point out some of its drawbacks. Finally, we
shall present some empirical results.

1522 Bioinformatics 20(10) © Oxford University Press 2004; all rights reserved.



Efficient similarity search in structure databases

METHODS
Standard clique-detection techniques
Clique-detection is a well-known strategy for the structural
comparison of proteins or drug-sized organic molecules.
Given two labeled input graphsG1 andG2, the first step is the
construction of a so-called product graphP (cf. Fig. 1). Each
node ofP consists of a pair of nodes with identical labels
from the input graphs, thus representing an ‘isomorphism’
(matching) of size 1 between the two graphs. Two nodes(u,v)

and(u′,v′) of P are connected by an edge if the respective
matchings are compatible, i.e. the edge connectingu andu′
in G1 (if any) has the same label as the edge connectingv

andv′ in G2. As shown by Levi (1972), a maximal complete
subgraph (clique) ofP corresponds bijectively to a maximal
subgraph isomorphism betweenG1 andG2. Thus, it is pos-
sible to detect a common substructure ofG1 andG2 using the
clique-detection algorithm of Bron and Kerbosch (1973). In
the example of Figure 1 (left), this yields the mappingA–a,
B–b and so on.

Even though clique-detection methods provide a powerful
tool for the structural comparison of proteins, they possess
some major drawbacks: first, depending on the size of the
input graphs and the distribution of the different label types,
the product graph soon becomes relatively large and densely
connected, which in turn leads to huge running times of the
applied algorithms. This problem is particularly severe in our
case, as we are indeed interested in the comparison of large
graphs. Second, it is difficult to estimate the result of a com-
parison in advance. Hence, it is necessary to perform many
superfluous calculations, as it is impossible to detect cases
in which structures are obviously unrelated. In the next sec-
tion, we propose a new hybrid approach that overcomes these
limitations at least to some extent.

Clique-detection based on clique hashing
One reason for the large size of the product graph,P , is the
fact that false-positive matches are very likely to occur for
single nodes of the input graphs:P will usually contain a
large number of nodes having the same label just by chance.
Take for instance the nodeA of graphG1, which is isomorphic
to nodea of graphG2 (Fig. 1). Apart from this isomorphism,
the mappingA–e has to be considered as well, ase has the
same color asA. But sinceA ande have a completely different
environment (nodesG andB may not be mapped tod andf ),
this is actually not necessary. The clique-detection algorithm
spends most of its running time on the elimination of such
false-positive matches and the assembling of real matches into
larger matchings.

Intuitively, assembling individual pieces becomes simpler
when starting from larger pieces. Our method therefore starts
from a modified product graphP ′, whose nodes represent
larger local matches of sizek . This substantially reduces
the probability of false-positive matches and leads to smaller

Fig. 1. Search for common substructures ofG1 andG2 by clique-
detection.P shows the standard product graph,P ′ the much simpler
modified product graph fork = 3.

product graphs (Fig. 1, right). At the same time, the informa-
tion content of the local matches increases. Thus, it can be
hoped that the number of local matches allows an estimation of
the similarity of the complete structures under consideration.

Generation of local matches
Our approach is motivated by the geometric-hashing tech-
nique (Nussinov and Wolfson, 1991). The input graphs are
split into a large number ofk-cliques, complete subgraphs of
a fixed sizek. As complete graphs of a fixed size are always
isomorphic, each substructure is defined uniquely by its node
and edge labels. Hence, to search for similar substructures, it
is sufficient to consider only those labels. The labels are then
mapped onto points in Euclidean space by using a normal-
ization scheme, whereas the node coloring is mapped onto a
discrete attribute and the edge weights are represented directly.
These points are then stored in anR∗-tree (Beckmannet al.,
1990), a standard spatial index structure for external memory.

Once this index structure is built for all structures of
the dataset in a preprocessing stage, it is possible to per-
form an efficient similarity search. Given a query structure,
for all k-cliques in its graph representation,Q, a window
query in the index is performed, resulting in a number of
k-cliques with the same node coloring and a similar (up to
a parameterε) edge weighting. Each such hit indicates a
local match (‘isomorphism’ of sizek) between query struc-
ture Q and a hit structureH from the indexed dataset.
The number of local matches found for each hit struc-
ture allows a rough estimation of the similarity between
Q and H . Moreover, the local matches may be used to
build the modified product graph mentioned earlier. Note
that the decomposition of the graph structures is highly
redundant, and hence it is neither necessary to use all pos-
sible k-cliques for the index generation nor is it required to
launch all possible queries associated with thek-cliques of
the query pocket. Instead, random sampling strategies may be

1523



N.Weskamp et al.

used to reduce the index size and to accelerate the querying
process.

A critical point concerns the selection of the parameterk,
which determines the size of the substructures under consid-
eration. On the one hand, it would be preferable to choose
a high value ofk to reduce the probability of false-positive
matches. On the other hand, the number ofk-cliques in a
graph depends exponentially onk, and thus large values ofk

lead to huge index structures and immense numbers of quer-
ies that have to be performed. To overcome this problem, we
developed a filtering step for the identification of obviously
false-positive chance matches. Using this technique, which is
detailed below, it is possible to use relatively small values fork

without being overwhelmed by a huge amount of insignificant
hits. For our experiments, we usedk = 3.

Assembly of local matches
The clique-detection technique for the modified product graph
intuitively tries to assemble the local matches into larger
matchings and is thus somewhat related to the problem of
DNA fragment assembly. As in fragment assembly, the assem-
bling is guided by overlaps. We define a neighborhood relation
for the substructures of a structure as follows: twok-cliques of
a graph descriptor are overlapping (neighbored) if and only if
they share at least one common node. If two substructures of
the query structure are overlapping, only those hits for these
structures that are also overlapping are of interest. Other hits
can be discarded: they cannot be merged into larger match-
ings since this would lead to an ambiguous mapping of graph
nodes. Figure 2a shows an example of two matches that do
not maintain the neighborhood relation: the three-cliqueBFG
andCEF are neighbors as they share the common nodeF .
The mapping ofBFG to abg and ofCEF to cde as indicated
by the arrows is discarded asabg andcde are not overlapping
and thus a merging of those local matchings would lead to an
ambiguous mapping ofF .

This filtering step is carried out using a novel construct
called a hit list (Fig. 2b). Each node of the query graph is
endowed with such a list. The latter collects all possible match-
ing partners for the respective query node during the index
querying process. Each time a hit is found for ak-clique con-
taining the respective node, this hit ‘votes’ for the mapping
of the respective node to the associated node of an indexed
structure. This ‘voting’ is stored in the hit list. At the end of
the whole querying process, each hit list contains a number of
possible mappings of the respective node to different nodes
of structures from the indexed dataset. Mappings with a high
number of ‘votes’ are supported by a large number of overlap-
ping hit substructures because these hits all share a common
node (i.e. the one involved in the respective mapping). Such
high-scoring hit list entries are therefore likely to particip-
ate in a larger local matching. In other words, there is a low
probability that these entries are false-positive matches. In the
example of Figure 2b, there are five votes for the mapping of

Fig. 2. (a) A combination of two false-positive matches, indicating
an ambiguous mapping ofF to a and d. (b) The hit list for the
comparison of one pseudocenter against a dataset of three binding
pockets.

the respective node to node 23 of structure 1cil but only one
vote for the mapping to node 17. Thus, a mapping to node 23
is more likely. Note that the whole filtering process depends
only on the query structure and is independent of the hit struc-
ture. Thus, queries may be processed using solely information
from the query and the index structures. This is a major advant-
age when working with large datasets as it is not necessary to
keep large portions of the dataset in main memory. At the same
time, the filtering step is linear in the (usually large) number
of hits and thus more efficient than an explicit check of the
overlap, which would require an enumeration of all pairs of
hits from the same dataset entry.

Whether an entry of a hit list qualifies for further considera-
tion depends on a user-defined threshold parameter,M. The
choice of this parameter has a considerable influence not only
on the runtime of the method but also on the quality of the
query results as it is responsible for the separation of signi-
ficant and insignificant matches. We are currently building a
probabilistic model for the method in order to derive statist-
ical distributions for the number of votes. These distributions
will provide the basis for an optimal choice of theM param-
eter. If a sampling strategy is applied, the parameter has to
be adjusted as fewer hits will lead to a smaller number of
‘votes’.

The list of qualified entries for each pair of binding pockets
is finally used to build the product graph for the clique-
detection process. As each entry of this list is part of a larger
local matching, the product graph will be relatively small,
containing only few false-positive matches. The size of the
matching generated by clique-detection is then used as a
measure of similarity. As noted earlier, it is also possible to
calculate a superimposition from the mapping and to perform
a more complex grid-based analysis of the resemblance of the
surfaces.

1524



Efficient similarity search in structure databases

RESULTS
The implementation of our approach has been carried out
in C++ and is based on the Cavbase extension of the Reli-
base system (Schmittet al., 2002). We use Cavbase for the
data handling and exploit some of its infrastructure. A data-
set of 2138 binding pockets originating from 1560 Protein
Data Bank (PDB) entries has been derived and used to assess
the performance and to validate our approach. The dataset
is intended to be a representative subset of all enzyme bind-
ing sites in the PDB. The main selection criteria have been
(i) the availability of an EC-classification for the respective
protein structure from the ENZYME-classification database
(Bairoch, 2000) and (ii) whether the binding pocket contains
a complete ligand structure. The dataset is highly diverse and
covers more than 200 different EC numbers. Typically, not
only the catalytic pockets of a structure are included but also
binding sites of co-factors, etc.

The preprocessing step—which has to be performed only
once for each dataset—required a few hours on five standard
Linux computers. The index was built using a sampling rate of
25% (i.e. only one of fourk-cliques was included in the index).

After the index is built, similarity searches may be per-
formed efficiently in the dataset. Depending on the config-
uration of the applied hardware and on the size of the query
structure, a single (one against all) search may be performed
in a few minutes. Again, it is possible to reduce this runtime
by making use of a random sampling strategy: Figure 3
summarizes some query results for different types of bind-
ing pockets and compares them with the SCOP-classification
(Murzin et al., 1995) of the respective protein structures.
The runtimes are given for the original approach as well as
for the optimized approach combined with different (query)
sampling rates. Remember that a fixed sample rate of 25%
has been used while building the index. To allow a fair
comparison of the results, both implementations used the grid-
based surface-overlap measure of the original approach for
the scoring. All entries of the dataset with a similarity score
above 5.0 were considered as hits. Typically, only 2–3% of all
entries score above this threshold. For each query, the num-
ber of entries from the same SCOP-family among the hits is
shown.

Obviously, it is possible to achieve a significant speed-up
(∼6-fold, in some cases even one order of magnitude) relative
to the original approach without missing too many hits. Note
that even a sampling rate of 20%—which means that only 5%
of the implicit comparisons of thek-cliques of two binding
pockets are actually performed—usually yields sufficiently
good results.

We also expected to find structural similarities not automat-
ically covered by SCOP or comparable classification methods
as these are based on comparisons in sequence and fold
space. We found the well-known examples of convergent
evolution as shown by serine proteases, NAD(P)-dependent
proteins, zinc-binding proteins, etc. One typical example is the

Runtime

0

500

1000

1500

2000

2500

3000

3500

Orig
ina

l

Opt
. (

10
0%

)

Opt
. (

80
%

)

Opt
. (

60
%

)

Opt
. (

40
%

)

Opt
. (

20
%

)

Opt
. (

10
%

)

S
ec

o
n

d
s

1AHX.5
1COM.1
1CYD.1
1DD7.2
1LDN.15
1QQ8.3
2KCE.6
4COX.2
4VGC.1
7TIM.2

Consensus with SCOP

0
10
20
30
40
50
60
70
80
90

100

In
 S

COP

Orig
ina

l

Opt
. (

10
0%

)

Opt
. (

80
%

)

Opt
. (

60
%

)

Opt
. (

40
%

)

Opt
. (

20
%

)

Opt
. (

10
%

)N
o

. o
f 

en
tr

ie
s 

o
f 

p
ro

te
in

 f
am

ily

1AHX.5
1COM.1
1CYD.1
1DD7.2
1LDN.15
1QQ8.3
2KCE.6
4COX.2
4VGC.1
7TIM.2

Fig. 3. Results of some similarity searches in a dataset of 2138
binding pockets, compared with the SCOP-classification. For the
optimized approach, we show the results for different sampling rates.

Fig. 4. Superposition of the binding pockets from the chorismate
mutases 1ecm and 4csm (carbons are colored in yellow). The ligands
superimpose convincingly well, although no ligand information was
used in the similarity calculations. The figure was prepared using
PyMol (DeLano, 2002).

1525



N.Weskamp et al.

chorismate mutases fromEscherichia coli andSaccharomyces
cerevisiae, which show no significant similarity in their
sequence and fold (Rosenet al., 1998). We used the pocket
of 4csm as query and found 1ecm as the highest ranked
non-homologous hit (cf. Fig. 4).

DISCUSSION AND CONCLUSIONS
We presented an efficient two-step approach for the search
of functionally related proteins in large datasets. The two
steps are connected by a novel filtering step for the elimina-
tion of false-positive matches. The filtering step does not rely
on structural superimposition. It is therefore independent of
rigid-body assumptions and able to handle conformational
flexibility. Additionally, it depends only on information that
is available from the query structure and from the index.
This is a major advantage when dealing with large data-
sets that may not be kept in main memory. We applied our
method to a medium-sized dataset and presented some of the
obtained results. In comparison with the original approach,
we achieved a significant speed-up and retained most of the
desired hits.

Clearly, the approach presented is intended mainly for larger
datasets, that will be accessed by a high number of queries—
e.g. for the development of a public Web server, that allows
the comparison of a query pocket against a representative
subset of the PDB. For searching smaller datasets, the index
generation might be too costly and a direct clique-detection
implementation is more appropriate.

Existing approaches for the detection of common side chain
patterns based on efficient indexing of triplets or triangles
(Russell, 1998; Hamelryck, 2003) have to be very selective
to avoid a large number of false-positive matches. There-
fore, they usually detect only highly conserved resemblances.
Using our method for post-processing, their criteria could
eventually be relaxed and thus more distant relationships
among structures detected.

As clique-detection techniques are widely used for the struc-
tural comparison of proteins and small organic molecules
and also for docking applications, our approach might also
be applicable to related problems.

REFERENCES
Bairoch,A. (2000) The ENZYME database in 2000.Nucleic Acids

Res., 28, 304–305.
Beckmann,N., Kriegel,H.-P., Schneider,R. and Seeger,B. (1990) The

R*-tree: an efficient and robust access method for points and
rectangles.Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, May 23–26, Atlantic City,
NJ, USA. ACM Press, pp. 322–331.

Bron,C. and Kerbosch,J. (1973) Algorithm 457: finding all cliques
of an undirected graph.Commun. ACM, 16, 575–577.

DeLano,W.L. (2002)The PyMOL User’s Manual. DeLano Scientific,
San Carlos, CA, USA.

Grindley,H.M., Artymiuk,P.J., Rice,D.W. and Willet,P. (1993) Iden-
tification of tertiary structure resemblance in proteins using a
maximal common subgraph isomorphism Algorithm.J. Mol.
Biol., 229, 707–721.

Hamelryck,T. (2003) Efficient identification of side-chain patterns
using a multidimensional index tree.Proteins, 51, 96–108.

Harrison,A., Pearl,F., Mott,R., Thornton,J. and Orengo,C. (2002)
Quantifying the similarities within fold space.J. Mol. Biol., 323,
909–926.

Koch,I., Lengauer,T. and Wanke,E. (1996) An algorithm for finding
maximal common subtopologies in a set of protein structures.
J. Comp. Biol., 3, 289–206.

Levi,G. (1972) A note on the derivation of maximal common
subgraphs of two directed or undirected graphs.Calcolo, 9,
341–352.

Murzin,A.G., Brenner,S.E., Hubbard,T. and Chothia,C. (1995)
SCOP: a structural classification of proteins database for the
investigation of sequences and structures.J. Mol. Biol., 247,
536–540.

Nussinov,R. and Wolfson,H.J. (1991) Efficient detection of three-
dimensional structural motifs in biological macromolecules by
computer vision techniques.Proc. Natl Acad. Sci., USA, 88,
10495–10499.

Rosen,M., Lin,S.L., Wolfson,H. and Nussinov,R. (1998) Molecu-
lar shape comparisons in searches for active sites and functional
similarity. Prot. Eng., 11, 263–277.

Russell,R.B. (1998) Detection of protein three-dimensional side-
chain patterns: new examples of convergent evolution.J. Mol.
Biol., 279, 1211–1227.

Schmitt,S., Kuhn,D. and Klebe,G. (2002) A new method to detect
related function among proteins independent of sequence and fold
homology.J. Mol. Biol., 323, 387–406.

1526


