
Porting the Eden System to GHC 5.00 ?

Jost Berthold, Rita Loogen, Steffen Priebe, and Nils Weskamp

Philipps-Universität Marburg, Fachbereich Mathematik und Informatik
Hans Meerwein Straße, D-35032 Marburg, Germany

{berthold,loogen,priebe,weskamp}@mathematik.uni-marburg.de

Abstract. This paper presents selected implementation aspects of the
parallel functional language Eden, based on the Glasgow Haskell Com-
piler. Written in the context of porting Eden to a new GHC-version, it
focusses on the implementation principle by different layers, on primitive
operations and their support within the runtime system. It also presents
preliminary runtime results comparing the old and the new system.

1 Introduction

A growing number of applications demand a large amount of computing power.
This calls for the use of parallel hardware and the development of software
for these architectures. Parallel programming is however hard. The programmer
usually has to care about process synchronization, load balancing, and other low-
level details, which makes parallel software development complex and expensive.

Our approach, Eden [5], has the aim to use the advantages of functional pro-
gramming to simplify the development of parallel software, while giving the pro-
grammer explicit control over the parallel behaviour of a program. The current
implementation of the Eden system is based on the Glasgow Haskell Compiler
(GHC) [13]. The Eden system is composed of the following layers:

Eden Programs

(Skeleton) Libraries

Eden Module

Primitive Operations

Parallel Runtime System

Eden programmers will typically develop parallel programs using the Eden lan-
guage constructs briefly described in Section 2, together with parallel skeletons
provided in special libraries [10]. Every Eden program must import the Eden
module, which contains Haskell definitions of Eden’s language constructs as ex-
plained in Section 3. These Haskell definitions heavily use primitive operations
which are functions implemented in C that can be accessed from Haskell. They
implement the functionality needed by Eden’s constructs. Interfacing Eden to
Haskell via the Eden module means that the front-end of the GHC need not

? Work supported by the DAAD (Deutscher Akademischer Austauschdienst)

be modified to compile Eden programs. The extension of the GHC for Eden is
mainly based on the implementation of appropriate new primitive operations,
which is discussed in Section 4. The core of the Eden system is the parallel run-
time system which has been developed by modifying the GUM runtime system
[17] of Glasgow parallel Haskell (GpH) [16] for Eden [3, 8]. This will also be
discussed in Section 4.

This paper has been written in the context of porting our Eden implemen-
tation from GHC version 3.02 to version 5.00. This was necessary because, from
version 4.00 on, the GHC runtime system has been largely revised and im-
proved [15]. In particular, the new storage manager supports a dynamic adapta-
tion of the heap size and Concurrent Haskell is supported by default. The main
task of the porting project was to implement the needed support for Eden into
the new runtime system, having the old system with the Eden extensions as a
reference. However, analyzing the old system revealed that some implemented
solutions in the old system either could not be kept, or had to be considered
as ”second best”, having the improved methods of the new runtime system at
hand. So the project included a certain re-design of system details. Due to the
fact that GHC in general is hardly documented on implementation level, we may
note that it also became a trip into the gory details of some GHC components.
Finding out how GHC behaves is always interesting, but a time-consuming job.
In Section 5, we show the results of some runtime measurements and summarize
our main experiences.

To follow GHC’s line of development is essential for Eden’s future portability.
The interface between GHC and Eden can be minimized to only eight primitive
operations, which provide the elementary functionality for Eden. We hope that
this minimal interface will help us to keep up with the GHC development. The
primitive operations are based on orthogonal extensions of the sequential runtime
system using infrastructure from GpH. Our approach will be of interest for others
who want to extend GHC or a comparable system as part of their own work.

2 Eden’s Main Features

Eden [5] extends the lazy functional language Haskell [14] by syntactic constructs
for explicitly defining processes. Eden’s process model provides direct control over
process granularity, data distribution and communication topology. The Eden
syntax has been changed in comparison to previous papers to achieve a smoother
integration into Haskell. The underlying semantics and concepts are the same
as before.

Basic Constructs. A process abstraction expression process (\x -> e) of type
Process a b defines the behaviour of a process having the parameter x::a as
input and the expression e::b as output. The function

process :: (Trans a, Trans b) => (a -> b) -> Process a b

embeds functions of type a -> b into process abstractions of type Process a b1.
The main difference between functions and process abstractions is that the latter,
when instantiated, are executed in parallel. The context Trans a2 ensures that
functions for the transmission of values of type a are available.

A process instantiation uses the predefined infix operator

(#) :: (Trans a, Trans b) => Process a b -> a->b

to provide a process abstraction with actual input parameters. The evaluation
of an expression (process (\ x -> e1)) # e2 leads to the dynamic creation of a
process together with its interconnecting communication channels. The instan-
tiating or parent process will be responsible for evaluating and sending e2 via an
implicitly generated channel, while the new child process will evaluate the ap-
plication (\ x -> e1) e2 and return the result via another implicitly generated
channel. Note that communication is always invisible for the programmer.

Processes communicate via unidirectional channels which connect one writer
to exactly one reader. Once a process is running, only fully evaluated data objects
are communicated. The only exceptions are lists, which are transmitted in a
stream-like fashion, i.e. element by element. Each list element is first evaluated
to full normal form and then transmitted. Concurrent threads trying to access
input which is not available yet are temporarily suspended. This is the only way
in which Eden processes synchronize.

Example: The following program computes, for a given integer n, the sum of a
list of so-called Euler values: sum (map euler [n, n-1..1]).
The function euler :: Int -> Int computes the number of integers that are
relatively prime to a given integer.

sumEuler :: Int -> Int -> Int

sumEuler c n = sum xs ‘using‘ spine

where xs = [(process (sum . map euler)) # chunk

| chunk <- splitAtN c [n, n-1..1]]

The list [n,n-1..1] is split into chunks of size c. For each chunk, a process
is created which computes the corresponding part of the total sum. The adden-
dum ‘using‘ spine is needed to produce early demand for the evaluation of the
process instantiations. /

Non-strictness, implemented by using lazy evaluation of expressions, is a key
point in our approach. Lazy evaluation is changed to eager evaluation in two
cases: processes are eagerly instantiated, and instantiated processes produce their
output even if it is not demanded. These modifications aim at increasing the
parallelism degree and at speeding up the distribution of the computation. In

1 The previous syntax of a process abstraction was process x -> e. Handling process

as a special function instead of as a new syntactic construct has many advantages.
The process function simply transforms functions into process abstractions. Thus,
a single definition now suffices to specify both a function and the corresponding
process abstraction.

2 The context was previously called Transmissible.

general, a process is implemented by several threads concurrently running in
the same processor, so that different values can be produced independently. The
concept of a virtually shared global graph is avoided, to save the administration
costs while paying the price of possibly duplicating work. Each process evaluates
its outputs autonomously.

Extensions. The base system described above has been extended in different
ways to make programming in Eden more convenient and to improve the expres-
sive power of the language. Many-to-one communication is an essential feature
for some parallel applications, but it spoils the purity of functional languages,
as it introduces non-determinism. In Eden, the predefined process abstraction

merge :: Trans a => Process [[a]] [a]

is used to instantiate a process which does a fair merging of input streams into
a single (non-deterministic) output stream. The incoming values are passed to
the output stream in the order in which they arrive.

An Eden process may also explicitly generate a new dynamic input channel

and send a message containing the channel’s name to another process. The re-
ceiving process may then either use the name to return some information to the
sender process (receive and use), or pass the channel name further on to another
process (receive and pass). Both possibilities exclude each other, and a runtime
error will occur if not appropriately used.

Eden introduces a new unary type constructor ChanName for the names of
dynamically created channels. Moreover, it also adds a new operator3

new :: Trans a => (ChanName a -> a -> b) -> b

Evaluating an expression new (\ (ch_name, ch_vals) -> e) has the effect that
a new channel name ch name is declared as reference to the new input channel
ch vals, which represents future input. The scope of both is the body expression
e whose value is the result of the whole expression. The channel name should
be sent to another process to establish the communication. A process receiving
a channel name ch name, and wanting to reply through it, uses the function4

parfill :: Trans a => ChanName a -> a -> b -> b

Evaluation of an expression parfill ch_name e1 e2 means: Before e2 is evalu-
ated, a new concurrent thread for the evaluation of e1 is generated, whose normal
form result is transmitted via the dynamic channel. The result of the overall ex-
pression is e2, while the generation of the new thread and its communication
through the dynamic channel is a side effect.

3 In the previous syntax, a syntactic construct new has been used. As with process
abstractions, we replace the old new construct by a special function new.

4 The previous syntax used a mixfix operator !* par which now has been re-
named to parfill, as infix operators with three arguments cannot be defined in
Haskell.

Skeletons are a special form of higher-order function with a parallel implemen-
tation that simplify the development of parallel programs. A good example is the
well-known map function, which applies its argument function to each element
of a given list. As each of these calculations is independent, the evaluation of
each element of the result list can be done in parallel. The Eden libraries offer
a number of parallel implementations for map (and other parallel skeletons) that
can be substituted for a sequential map and lead to an instant parallelized version
of the program.

3 The Eden Module

The Eden module which must be imported by every Eden program contains
Haskell definitions for the Eden constructs. These definitions use primitive oper-
ations which provide the needed functionality. The interface of the Eden module
is as follows

module Eden (

Trans(...), Process, process, (#),

ChanName, new, parfill, ...) where

Subsequently, we will focus on the module definitions for process abstraction and
instantiation shown in Fig. 1, which are at the center of the whole system. Fortu-
nately, process creation can be defined completely using the primitive operations
and functions implementing dynamic channels plus one additional primitive op-
eration createProcess#5 for forking a process on a remote processor.

A process abstraction of type Process a b is implemented by a function that
will be evaluated remotely when a corresponding child process is created and that
takes two channel names as arguments. The first argument of type ChanName b

is a channel for sending its output while the second argument of type ChanName

(ChanName a) is a channel to pass the name(s) of its input channel(s) to the
parent process. The number of channels that will be established between parent
and child process does not matter in this context, because the operations on
dynamic channels are overloaded. Tuple types a or b lead to the creation of a
channel for each tuple component. The definition of process (see Fig. 1) shows
that the remotely evaluated function, f remote, creates its input channels via a
function

createDC :: Trans a => a -> (ChanName a, a)

This function yields (a list of) channel names inDCs that will be returned to
the parent process and (a handle to) the values invals that will be received via
these channels. To ensure correct typing of the program, createDC is applied to
its second output, but will not make use of its argument except for determining

5 Note that primitive operations in GHC are distinguished from common functions by
as the last sign in their names.

data (Trans a, Trans b) =>

Process a b = Proc (ChanName b -> ChanName (ChanName a) -> ())

process :: (Trans a, Trans b)

=> (a -> b) -> Process a b

process f = Proc f_remote

where f_remote outDCs chanDC

= let (inDCs, invals) = createDC invals

in writeDC chanDC inDCs ‘fork‘

(writeDCs outDCs (f invals))

(#) :: (Trans a, Trans b) => Process a b -> a -> b

pabs # inps = case createProcess (-1#) pabs inps of Lift x -> x

data Lift a = Lift a

createProcess :: (Trans a, Trans b) =>

Int# -> Process a b -> a -> Lift b

createProcess on# (Proc f_remote) inps

= let (outDCs, outvals) = createDC outvals

(chanDC, inDCs) = createDC inDCs

pinst = f_remote outDCs chanDC

in outDCs ‘seq‘ inDCDC ‘seq‘

case createProcess# on# pinst of

1# -> writeDCs inDCs inps ‘fork‘ (Lift outvals)

_ -> error "process creation failed"

Fig. 1. Haskell definitions of Eden process abstraction and instantiation

the number of channels that have to be produced. The latter is done via an
overloaded function tupsize that gives the number of components of a tuple.
The function

writeDCs :: Trans a => ChanName a -> a -> ()

takes (a list of) channel names and a (tuple) expression6 and creates a thread
for each channel name which evaluates the corresponding tuple component to
normal form and sends the result via the channel. The latter is encoded in the
function writeDC.

In the function implementing a process abstraction, writeDC(s) is used twice:
the dynamically created input channels of the child, inDCs, are sent to the parent
process via the channel chanDC and the results of the process determined by
evaluating the expression (f invals) are sent via the channels outDCs.

Process instantiation by the operator (#) defines the process creation on
the parent side. To cope with lazy evaluation and to get the control back without
waiting for the result of the child process, the process results are lifted to an

6 The size of the tuple is identical to the number of channel names.

immediately available weak head normal form using the constructor Lift. Before
returning the result the Lift is removed. The function createProcess takes the
process abstraction and the input expression and yields the lifted process result.
The placement parameter on# is an un-boxed integer (type Int#) which can be
used to allocate newly created processes explicitly. The current system does
not make use of this possibility. The channels7 are handled using createDC and
writeDCs in the same way as on the child side (see the process abstraction).
The remote creation of the child process is performed by the primitive operation
createProcess#.

A complete discussion of the Eden module would exceed the scope of this
paper. The interested reader is referred to [7, 2] for more detailed descriptions. In
summary, the Eden module gives a high-level definition of Eden’s functionality by
basing the implementation on eight primitive operations. The following section
will explain the primitive operations themselves and their implementation in the
parallel RTS, two subjects which cannot be cleanly separated.

4 Implementation of Primitive Operations

Just as in the previous section, we will only describe selected aspects of the un-
derlying Eden support inside the new RTS, but we will mention every important
primitive, passing from obvious issues to those involving more complexity hidden
inside the runtime system.
Reflecting upon the necessary actions for a remote process to take place, it is
necessary to

– create and connect communication channels in the proper way,

– explicitly request process instantiation (on another processor),

– pass input data to child processes,

– return (fully evaluated) results to parent processes,

and, last but not least,

– provide information about the system setup to the internal process-control-
ling functions in the Eden module and libraries.

As we have shown, the Eden functionality is driven essentially from language
level by functions in the Eden module. Nevertheless, the underlying operations
have to be performed directly in the runtime system of GHC, in the form of
primitive operations, because either the needed information is hidden inside it,
or the action mainly consists of side effects and cannot be specified in a functional
manner.

7 The prefixes in and out in channel names in Figure 1 reflect the point of view of
a child process. Thus, in a process instanciation, the inputs inps for the child are
written into the channels inDCs, which are outputs of the parent process.

4.1 Passing system information to language level

The only system information we want on language level is the number of available
processors and the own processor ID, provided by noPE# and selfPE#. Both are
implemented in a rather trivial manner: Using routines of a message passing
system (PVM), the runtime system must, of course, contain variables which
contain the desired information. These variables are just passed up to Haskell
as integers.

Information provided by these primitives should be used only for process
control. It is clear that, if the operations are misused, this introduces nondeter-
ministic effects into the functional language. Defining a function whose result
depends on the system setup is not intended and therefore explicitly prohibited.
Eden’s layer concept allows the development of independent Haskell libraries, an
advantage we want to encourage by providing the easiest possible support.

4.2 The runtime tables: processes and communication ports

The GHC concurrency model relies on threads, which are internally represented
by so-called TSOs (thread-state-objects). The basic idea of threads is that they
perform autonomous evaluation of a reachable subgraph, always sharing the
global graph heap with other threads.8 In the RTS, an Eden process is modeled
as a group of TSOs, which are working on the same process instantiation and
on a single processor. The threads of a process in the RTS are connected using
unique process identifiers (pids, unique per processor).

As described in [4] and [8], processes are closed entities that do not share any
data among each other. Hence, processes only communicate through channels
and use the pids to address them. The RTS equivalent to channels is a structure
Port, which contains a specific Port number, the pid, and the processor number,
thereby making port addresses unique. At module level, these port addresses
(channels) are represented by the type

data ChanName’ a = Chan Int# Int# Int#

type ChanName a = [ChanName’ a]

ChanName’ objects contain exactly the port identifier triple. Note that the type
ChanName a used in the module is a list of port identifiers; one for each component
of type a in case a is a tuple.

Two kinds of ports are distinguished: Inports are represented by the Haskell
type ChanName’. They belong to a specific process, but are not linked to a special
thread. An inport address (as a ChanName’) can be sent through a channel to allow
higher-order process communication. In contrast, outports are related to TSOs,
allowing the corresponding thread to be connected to a receiver and to send
values. They could have the same representation as inports, but there is no point
in representing them at language level. Both types of ports are administered by
the runtime system using runtime tables.

8 For further details on thread handling in GHC see [11]. Unlike GUM [17], threads
are executed round robin in Eden.

The basic communication concept of the Eden RTS is to connect an inport
of one process to exactly one outport of another to establish communication.
Closing an inport (on garbage collection) implies that the connected outport (if
any) sends unnecessary data and can therefore be closed. Closing an outport of
a process implies stopping the connected TSO. If the last outport of a process is
closed, it terminates by closing all its inports (which can lead to a termination
cascade). Hence, runtime tables are involved in every operation on channels (cre-
ation, port connection, data transfer), including process creation/termination.
This actually is the heart of the Eden RTS.

4.3 Channel handling in the runtime system

The essential functionality behind a channel is situated inside the runtime sys-
tem: each channel inport is connected to a placeholder node (a so-called QueueMe

closure), which stands for an expected result from another process and blocks
any thread trying to evaluate it before arrival. Therefore, just creating a node
of type ChanName’ will not have any effect; it has to be connected in some way
to the QueueMe, involving primitive heap operations to update it later. Objects
of type ChanName’ a and ChanName a are just handles to pass channels to other
processes.

As a general rule, every primitive operation is wrapped in a function, thereby
providing additional type information, triggering execution and limiting actual
use to the desired degree. The function createDC relies on a primitive operation
createDC#, which generates a tuple of QueueMe closures (the parameter indicat-
ing its arity) and a list (ChanName) of channels with inports connected to these
Queue-Me closures inside the RTS. As explained in Section 3, the wrapper func-
tion createDC ensures correct typing of the created closures, which are generic
in the runtime system.

createDC :: a -> (ChanName a, a)

createDC t = let (I# i#) = tupSize t in case createDC# i# of

(# c,x #) -> (c,x)

createDC# :: Int# -> (# ChanName a,a #)9

Once the inports are created, senders can be connected to them to send data
input. Those senders will be threads in a remote process.

4.4 Data communication between processes

Processes in Eden have to exchange arguments and results, which is done by
packing subgraphs10 after their evaluation. Data transfer is performed by the
primitive operations sendVal# and sendHead#, the latter sending one element of

9 (#..#) indicates a so-called un-boxed tuple, a tuple which is handled directly by the
registers of the abstract machine.

10 This is a common issue to GpH and Eden. We modified the packing algorithm of
GpH, eliminating all cases where shared data would be globalised and requested in
a further transmission.

HEAD

Param #n thread

Set channel for
n-th parameter

Close outport,
terminate thread

GHC:
Evaluate n-th
parameter to
normal form
(say: a list)

 VALUE

Param#1thread

Set channel for
first parameter

GHC:
Evaluate first
parameter to
normal form

Sends first pa-
rameter (NF)

Parent Process

Create channel
(input channels)

Create channels
(expected output)

Forks thread for
input parameters

Send
CREATEDC-

Message

Await input channels
(Thread blocked)

GHC:
Proceed

with your
work

(Eventually
block on a

QM)

VALUE

VALUE

Child

Pro-

cess

TERMINATE

CREATEPROCESS_DC

Ex-

chan-
ge of
data
via

heap

VALUE(channels)

Fig. 2. Parent process on process instantiation

a list instead of a complete result. Both operations are used by an overloaded
wrapper function sendChan to distinguish lists from simple values. This latter
function is called by writeDC.

writeDC chan a = setChan chan ‘seq‘ sendChan a

Note that, before any evaluation takes place, the outport of the TSO must be
connected to an inport of another process by calling a primitive setChan#. This
connection prior to evaluating and sending values guarantees that the receiver of
data messages is always defined when sendVal# or sendHead# is called. Sending
without a valid receiver can never happen and would be discarded by the RTS.

Primitive sending operations, as seen from the implementation, can send any
argument in the current evaluation state. The desired functionality is to send
only normal form data and processes (Trans). This is guaranteed by the wrapper
function sendChan in the module which always evaluates data to normal form
before sending.

4.5 Handling channels for process instantiation

The most complex operation of the runtime system is process creation, driven
by the primitive createProcess# and the semantics of the associated message
createProcessDC. Creating a remote process involves packing and transferring a
subgraph and creating an initial TSO on a remote processor when the message
is received.

Channel Thread

Send input
channels

Set receiver
channel

VALUE

Initial Thread

CREATEDC-
Message

Fork thread for
input channels

Create input
channels

Fork threads for
each output value

VALUE

Output #1 thread

Set channel for
first component

Enter GHC:
Evaluate first
component of

tuple to normal
form

Send result

Pa-

rent

pro-

cess
HEAD

HEAD

Enter GHC:

Evaluate n-th
component of

tuple to normal
form

(Possibly a list,
sends several

messages, until
TERM message
or reaches end

of list)

Output #n thread

Set channel for
n-th component

VALUE (closing the stream)

Close outport,
terminate thread

 VALUE

 VALUE

Re-
ceive
input
(heap)

Fig. 3. Child process on process instantiation

The whole sequence of actions is shown in Figures 2 and 3. As explained
in Section 3, process creation is preceded by the creation of new channels (one
for every result) plus one additional port to receive channels for input param-
eters upon creation. The primitive createProcess# will then send a message
createProcessDC to a remote processor, which contains these channels and the
process abstraction (an unevaluated Proc f remote packed as a subgraph, see
Figure 1).

The remote processor receives this message, unpacks the graph and starts a
new process by creating an initial thread. As the first thread in a process, this
thread actually plays the role of a process driver. It creates channels for input,
communicates them to the parent process and forks other TSOs for evaluation
of the included function (which may need their arguments and will block on
QueueMe-Closures). The sequence diagrams (Figures 2 and 3) illustrate in detail
how a new process is created, sends and receives data and terminates. Individual
threads can be terminated on request if their output turns out to be unnecessary.
The diagrams are rather detailed concerning RTS actions, which would lead us
too far in the textual description.

5 Results

5.1 Measurements with the new Eden system

The main reason for the presented port project has been to catch up with the
GHC development and to allow the use of new GHC features in the future
development of Eden. The port project revealed some weak points in the former
Eden implementation which could be eliminated at this opportunity, as we now
benefit from certain APIs and better structuring of the code (see 5.2). On the
other hand, better structuring of the code does not imply better performance.

We carried out some simple performance comparisons to quantify the rela-
tionship between the old and the new system. Comparing the new implementa-
tion as a whole to the old one is in a sense inexact, since various other changes
besides the Eden part must be taken into account, nor is the new runtime system
optimized in any way. We present measurements of a raytracer program which
had already been used for comparisons between GpH and Eden [9]. We repeated
these previous measurements with a scene of 640 spheres and the direct mapping
skeleton. Both programs use the same code (except for the new syntax), and up
to 16 processors.

ray[500]_me 4 10 350 350 UK4 +RTS −[q]Q64K −[qp|N]<PEs> [−H20M] −−RTS

1 2 4 6 8 10 12 14 16

0

25

50

75

100

125

150

175

200

225

250

Runtime

No. of PEs

R
un

tim
e

(s
ec

.)

1 2 4 6 8 10 12 14 16

0

2.5

5

7.5

10

12.5

15

17.5

Rel. Speedup

Eden−3.02

Eden−5.00

Linear Speedup

No. of PEs

Fig. 4. Runtime and speed-up comparison (parallel Raytracer)

The sequential system is almost as fast as the old one (GHC 3.02: 186.2 s,
GHC 5.00: 189.27 s). As shown in Fig. 4, the new Eden RTS is slightly slower
than the old one. The runtime increased by a factor around 1.2, especially on
few processors.

The overall ideas of implementation have not been changed in the new RTS,
modifications only concern details. A possible reason could be that the new sys-
tem is not optimized to avoid local data transfer via the message passing system.
Further investigations will be necessary to determine other possible bottlenecks
in the new RTS.

It is clear that we still need more experience and will soon present con-
solidated findings on how the new Eden RTS behaves, including further opti-
mizations as e.g. enabling the generational garbage collection11 and optimizing
process communication.

5.2 Experiences with the GHC

Starting to work on a highly complex system software as the GHC will always
encounter difficulties. It appears to us that sharing our experiences will supply
an important feedback to other people involved in GHC, touching some tender
points in the development.

Problems during the implementation. Implementing the Eden support in
the RTS cannot be considered as a really complicated task, as long as the needed
information was available. Having the old system at hand, we did not have to
develop basic ideas of implementation. However, many things had to be picked
up directly from the C-code. Exploring the details in the code sometimes led us
to a different approach, having the possibilities of the new RTS. In particular, we
do not use the so-called GpH-spark-pool any more, but create TSOs directly with
the fork-operation and the RTS-API. We also entirely respecified the message
protocol, which is now uniform with the GUM protocol.

The most critical part in the Eden system is the creation of new QueueMe-
closures and channels via native C code; as this is the main difference from
GpH/GUM functionality. Creating closures directly in C code implies knowl-
edge of the appropriate info-pointers, taking care of the heap consumption and
returning the created closures. The new runtime system provides suitable API-
like functions and generic closure data structures which facilitate these issues.

The closure creation is closely related to the implementation of primitive
operations in general and revealed that debugging the RTS evaluator with a
common C debugger, gdb, is a rather difficult job, considering the machine-
dependent optimizations and assembler mangling which strongly confuses gdb.

Another problem, which is still more general, is to understand the modularity
of GHC and its RTS. Not only in the case of certain conventions in implementing

11 GpH does not use generational GC yet. In the Eden implementation, generational
GC would lead to later process termination if we did not provide a different solution
to it.

primitive operations, but generally during our work on the runtime system, our
main problem has always been to understand the functionality of GHC and to
discern where we had to change it to achieve the desired behaviour. Compared to
the concrete issues we had to realize, this task took us almost twice the time than
the actual implementation. Most publications on GHC and its runtime system
do not contain details an implementor needs to know, since they describe things
on a very high level of abstraction.

Descriptions of the RTS implementation. In fact, there are some docu-
ments which describe the real implementation of the GHC RTS at a level which
is useful for implementors:

1. “The Stg Runtime System” [11], the overall description of the runtime
system, which is part of the GHC source distribution.
Regardless of its intermediate state, this text is a very useful source of
information about the RTS. Unfortunately, many passages are just stubs
(“ToDo”) and do not seem to be updated in the near future. In fact, it has
not substantially changed since 1999.

2. “Stg Survival sheet” [1], mainly a developer’s reference to all important
parts of the GUM system and the RTS in general.
This document has considerably grown since our first contact with the GHC
runtime system. In its actual state, we consider it as the best reference to
the GUM implementation, and very good for a quick start when hacking in
the parallel RTS.

3. The abstract machine description in [12] and [15] involves some technical
details of implementation.

4. The GHC Commentary [6] , which mainly covers the frontend, also con-
tains some information about the RTS and the compiler as a whole.

5. The code itself contains many useful comments. The only problem is to
find the file containing the comment one is looking for.

In the recent past, more attention has been paid to documentation issues,
considering e.g. the low level documentation [1] for GUM and the fact that the
commentary [6] has recently joined the repository. This definitely is a step in the
right direction. Our own parts have been continuously documented in a working
document, which will now be translated into English and brought into its final
form [2].

6 Conclusions and Future Work

The aspects discussed in this paper focus on the division of the Eden implemen-
tation into different layers. After all, the Eden concept of lifting explicit control
to functional level shows good parallel performance results [9]. It also makes
development of extensions much easier once the RTS support is implemented.

Lifting aspects of the runtime system to functional level always implies a
decision about what must remain hidden and what can be useful for library

developers or Eden programmers. We have shown that the wrapper functions
we use in the module are necessary in regard to typing issues, but also needed to
restrict the implemented functionality to the desired degree. Implementing such
restrictions directly in the RTS would be an alternative, but at a very high price
in complexity and maintenance.

Seen from the high level perspective, the implementation of Eden relies on
a few primitive operations and reuses much infrastructure of GpH, reducing it
when necessary. Those changes have been very small, but hidden deeply in the
RTS. Our documentation [2] describes what we actually implemented for Eden
in the RTS as well as the problems we met, thereby facilitating comprehension
of the low-level details.

The fact that there is only moderate documentation on the GHC implemen-
tation in general is an apparent shortcoming. The cited descriptions of the RTS,
as well as the code itself, clearly show an underlying modular design, but this
design is sometimes inconsistent in the encoding. No document fills the gap be-
tween the description of the RTS functionality in [11] and the code itself. It is
clear that such a documentation would be of great help for new developers work-
ing on GHC. It can also be a certain guideline to the development altogether.

In the near future, we especially plan to optimize the communication. Further
measurements and analysis will hopefully give us some hints at weak points in
our implementation.

7 Acknowledgements

The Eden porting project would not have survived in the GHC jungle without
the encouraging and supportive help of Hans-Wolfgang Loidl who never lost
patience in explaining the details and mysteries of GHC to us. In addition Simon
Marlow showed us the way out of some dead alleys. Fernando Rubio provided
helpful comments on a draft version of this paper. We gratefully acknowledge
their support and contributions to the work reported in this paper.

References

1. A poor wee Soul[sic]. The stg survival sheet. Unpublished, available at
http://www.cee.hw.ac.uk/˜dsg/gph/docs/StgSurvival.ps.gz.

2. J. Berthold and N. Weskamp. The Eden Porting Project - Porting the Eden
Runtime-System from GHC 2.10 to GHC 5.00.2. draft report, Philipps-University
Marburg, 2002. available at http://www.mathematik.uni-marburg.de/inf/eden/.

3. S. Breitinger, U. Klusik, and R. Loogen. From (Sequential) Haskell to (Parallel)
Eden: An Implementation Point of View. In PLILP’98 – Progr. Lang.: Impl.,

Logics and Programs, LNCS 1490, pages 318–334. Springer, 1998.

4. S. Breitinger, U. Klusik, R. Loogen, Y. Ortega Mallén, and R. Peña Maŕı. DREAM
- the DistRibuted Eden Abstract Machine. In IFL ’97 — Intl. Workshop on the

Impl. of Funct. Lang., LNCS 1467, pages 250–269. Springer, 1997.

5. S. Breitinger, R. Loogen, Y. Ortega Mallén, and R. Peña Maŕı. The Eden Co-
ordination Model for Distributed Memory Systems. In HIPS’97 — Workshop on

High-level Parallel Progr. Models, pages 120–124. IEEE Comp. Science Press, 1997.
6. M. Chakravarty et al. The ghc commentary. Checked in to the GHC CVS, available

at http://www.cse.unsw.edu.au/˜chak/haskell/ghc/comm/.
7. U. Klusik. An Efficient Implementation of the Parallel Functional Language Eden

on Distributed-Memory System. PhD thesis, University of Marburg, 2002. In prep.
8. U. Klusik, Y. Ortega-Mallén, and R. Peña Maŕı. Implementing Eden – or: Dreams

Become Reality. In IFL’98 – Intl. Workshop on the Impl. of Funct. Lang., LNCS
1595, pages 103–119. Springer, 1999.

9. H.-W. Loidl, U. Klusik, K. Hammond, R. Loogen, and P. Trinder. GpH and Eden:
Comparing Two Parallel Functional Languages on a Beowulf Cluster. In SFP’00 –

Scottish Funct. Progr. Workshop, Trends in Functional Programming, Vol. 2, pages
39–52. Intellect, 2000.

10. R. Loogen, Y. Ortega-Mallén, R. Peña, S. Priebe, and F. Rubio. Parallelism Ab-
stractions in Eden. In F. A. Rabhi and S. Gorlatch, editors, Patterns and Skeletons

for Parallel and Distributed Computing. Springer, 2002, to appear.
11. S. Marlow, S. Peyton Jones, and A. Reid. The stg runtime system (revised). Part

of the GHC distribution.
12. S. Peyton Jones. Implementing lazy functional languages on stock hardware: The

spineless tagless g-machine. JFP, 2(2):127–202, 1992.
13. S. Peyton Jones, C. Hall, K. Hammond, W. Partain, and P. Wadler. The Glas-

gow Haskell Compiler: a Technical Overview. In Joint Framework for Informa-

tion Technology Technical Conference, pages 249–257, Keele, U.K., March 1993.
http://www.dcs.gla.ac.uk/fp/papers/grasp-jfit.ps.Z.

14. S. Peyton Jones and J. Hughes. Haskell 98: A Non-strict, Purely Functional Lan-
guage, 1999. Available at http://www.haskell.org/.

15. S. Peyton-Jones and S. Marlow. The new ghc/hugs runtime system. Unpublished,
available at www.research.microsoft.com/˜simonpj/Papers/new-rts.ps.gz.

16. P. Trinder, K. Hammond, H.-W. Loidl, and S. Peyton Jones. Algorithm + Strategy
= Parallelism. J. of Functional Programming, 8(1):23–60, 1998.

17. P. Trinder, K. Hammond, J. Mattson Jr., A. Partridge, and S. Peyton Jones.
GUM: a Portable Parallel Implementation of Haskell. In PLDI’96 — Programming

Language Design and Implementation, pages 78–88. ACM Press, May 1996.

