
High-level Process Control in Eden?

Jost Berthold, Ulrike Klusik, Rita Loogen, Steffen Priebe, and Nils Weskamp

Philipps-Universität Marburg, Fachbereich Mathematik und Informatik
Hans Meerwein Straße, D-35032 Marburg, Germany

{berthold,klusik,loogen,priebe,weskamp}@informatik.uni-marburg.de

Abstract. High-level control of parallel process behaviour simplifies the
development of parallel software substantially by freeing the programmer
from low-level process management and coordination details. The latter
are handled by a sophisticated runtime system which controls program
execution. In this paper we look behind the scenes and show how the
enormous gap between high-level parallel language constructs and their
low-level implementation has been bridged in the implementation of the
parallel functional language Eden. The main idea has been to implement
the process control in a functional language and to restrict the extensions
of the low-level runtime system to a few selected primitive operations.

1 Introduction

A growing number of applications demand a large amount of computing power.
This calls for the use of parallel hardware including clusters and wide-area grids
of computers, and the development of software for these architectures. Parallel
programming is however hard. The programmer usually has to care about pro-
cess synchronisation, load balancing, and other low-level details, which makes
parallel software development complex and expensive. Our approach, Eden [3],
aims at simplifying the development of parallel software. Eden extends the lazy
functional language Haskell [14] by syntactic constructs for explicitly defining
processes. Eden’s process model provides direct control over process granular-
ity, data distribution and communication topology while process creation and
placement of processes, necessary communication and synchronisation are au-
tomatically managed by the runtime system (RTS), i.e. the implementation of
Eden’s virtual machine.

In his foreword to [6] Simon Peyton Jones writes: ”Parallel functional pro-
grams eliminate many of the most unpleasant burdens of parallel programming.
. . . Parallelism without tears, perhaps? Definitely not. . . .The very high-level na-
ture of a parallel functional program leaves a large gap for the implementation to
bridge.” The Eden implementation1 is based on the Glasgow Haskell Compiler
(GHC) [13]. By embedding Eden’s syntax into Haskell, we could use the front-
end of the compiler without any changes. The bulk of the extensions lies in the
? Work supported by the DAAD (German Academic Exchange Service)
1 Freely available at www.mathematik.uni-marburg.de/inf/eden and via the GHC

CVS repository (see www.haskell.org/ghc).

c©2003 Springer-Verlag

back end of the compiler and the RTS [2, 7]. Kernel parts of the parallel func-
tional RTS, like thread and memory management, are shared with GUM, the
implementation of GpH [19]. Eden’s RTS is implemented on top of the message
passing library PVM [15].

In this paper we describe how the Eden implementation has been re-organised in
layers to achieve more flexibility and to improve the maintainability of this highly
complex system. The main idea underlying Eden’s new layered implementation
shown in Fig. 1 is to lift aspects of the RTS to the level of the functional language,

Fig. 1. Layer structure of the
Eden system

i.e. defining basic workflows on a high level of
abstraction and concentrating low-level RTS ca-
pabilities in a couple of primitive operations. In
this way, part of the complexity has been elimi-
nated from the imperative RTS level.

Eden programmers will typically develop paral-
lel programs using the Eden language constructs,
together with parallel skeletons provided in spe-
cial libraries [9]. This is briefly described in Sec-
tion 2. Every Eden program must import the
Eden module, which contains Haskell definitions
of Eden’s language constructs, as explained in
Section 3. These Haskell definitions use primi-

tive operations which are functions implemented in C that can be accessed from
Haskell. The extension of GHC for Eden is mainly based on the implementation
of these new primitive operations, which provide the elementary functionality
for Eden. The paper ends with a discussion of related work and conclusions.

2 Eden’s Main Features

Eden gives the programmer high-level control over the parallel behaviour of a
program by introducing the concept of processes into the functional language
Haskell [14]. Evaluation of the expression (process funct) # arg leads to the
creation of a new process for evaluating the application of the function funct to
the argument arg. The argument arg is evaluated locally and sent to the newly
created process. With the high-level Eden constructs:

– process :: (Trans a, Trans b) => (a -> b) -> Process a b

to transform a function into a process abstraction and
– (#) :: (Trans a, Trans b) => Process a b -> a -> b

to create a process,

the programmer can concentrate on partitioning the algorithm into parallel sub-
tasks, thereby taking into account issues like task granularity, topology, and data
distribution.

Eden processes are eagerly instantiated, and instantiated processes produce
their output even if it is not demanded. These deviations from lazy evaluation

c©2003 Springer-Verlag

aim at increasing the parallelism degree and at speeding up the distribution of
the computation. In general, a process is implemented by several threads concur-
rently running in the same processor, so that different values can be produced
independently. The concept of a virtually shared global graph is avoided, to save
the administration costs while paying the price of possibly duplicating work.

Processes communicate via unidirectional channels which connect one writer
to exactly one reader. When trying to access input which is not available yet,
threads are temporarily suspended. The type class Trans (short for transmissi-
ble) comprises all types which can be communicated and provides overloaded,
implicitly used functions for sending values. All primitive types like Int, Bool,

Char etc., pre- and user-defined algebraic types2 as well as function and process
abstraction types belong to Trans.
Example: The following function is at the heart of a simple ray-tracer pro-
gram. It computes an image with y lines and x columns of a scene consisting
of spheres. The sequential function body of the ray function is simply the ex-
pression map (traceLine x world) [0..y-1]. The parallel version produces the
image by several processes each computing a chunk of lines:

ray :: Int -> Int -> Int -> [Sphere] -> [[RGB]]

ray chunk x y world

= concat ([process (map (traceLine x world)) # linenumbers

| linenumbers <- splitAtN chunk [0..y-1]]

‘using‘ spine)

The function concat flattens a list of lists into a list, thus removing one level
of nested lists — the one introduced by the list of processes. The addendum
‘using‘ spine is needed to produce early demand for the evaluation of the pro-
cess instantiations. /

Many-to-one communication is supported by a predefined process abstraction
merge which, when instantiated, does a fair merging of input streams into a single
(non-deterministic) output stream. Moreover, an Eden process may explicitly
generate a new dynamic input channel (of type ChanName a) and communicate
the channel’s name to another process, which can use the channel for answering
directly. This enables the creation of arbitrary communication topologies despite
the tree-like generation of process systems. The primitive operations for dynamic
channel creation are also used to establish the channels between parent and child
processes during process instantiation (see Section 3).

The task of parallel programming is further simplified by a library of prede-
fined skeletons [9]. Skeletons are higher-order functions defining parallel interac-
tion patterns which are shared in many parallel applications [16]. The program-
mer can simply use such known schemes to achieve an instant parallelisation of a
program. The automatic selection of appropriate skeletons during compile-time
using new Haskell meta-programming constructs is discussed in [5]. The recent
journal paper [8] shows that Eden achieves good performance in comparison with
Glasgow parallel Haskell (GpH) [4] and Parallel ML with Skeletons (PMLS) [10].

2 For user-defined algebraic types, instances of Trans must be derived.

c©2003 Springer-Verlag

3 A Layered Implementation of Coordination

This section considers the internals of Eden’s layered implementation. These
are transparent for the ordinary programmer except that every Eden program
must import the Eden module. This module contains Haskell definitions of the
high-level Eden constructs, thereby making use of the eight primitive operations
shown in Fig. 2. The primitive operations implement basic actions which have
to be performed directly in the runtime system of the underlying sequential
compiler GHC3. In the Eden module, every primitive operation is wrapped in

1. createProcess# request process instantiation on another processor
2. createDC# create communication channel
3. setChan# connect communication channel in the proper way
4. sendHead# send head element of a list on a communication channel
5. sendVal# send single value on a communication channel
6. noPE# determine number of processing elements in current setup
7. selfPE# determine own processor identifier
8. merge# nondeterministic merge of a list of outputs into a single input

Fig. 2. Primitive Operations for Eden

a function4, thereby providing additional type information, triggering execution
and limiting actual use to the desired degree. Information provided by primitives
like selfPE# or noPE# should e.g. only be used for process control. The misuse of
such operations may introduce nondeterministic effects.

In the following, we abstract from low-level implementation details like graph
reduction and thread management which are well-understood and explained else-
where [12, 19, 2]. Instead we focus on coordination aspects, in particular process
abstractions and process instantiations and their implementation in the Eden
module. Communication channels are now explicitly created and installed to
connect processes. Primitives provided for handling Eden’s dynamic input chan-
nels are used for that purpose.

3.1 Channels and Communication

As explained in Section 2, the type class Trans comprises all types which can
be communicated. It provides an overloaded function sendChan :: a -> () for
sending values along communication channels where the channel is known from
the context of its application. The additional functions tupsize and writeDCs

shown in Fig. 3 will be explained later. The context NFData (normal form data)
3 Note that, in GHC, primitive operations and types are distinguished from common

functions and types by # as the last sign in their names.
4 With the same name as the primitive operation, except for the #.

c©2003 Springer-Verlag

is needed to ensure that transmissible data can be fully evaluated (using the
overloaded function rnf (reduce to normal form)) before sending it (using the
primitive operation sendVal# wrapped by sendVal). Lists are transmitted in a
stream-like fashion, i.e. element by element. For this, sendChan is specialized to
sendStream which first evaluates each list element to normal form and transmits
it using sendHead (see Fig. 3).

class NFData a => Trans a where

sendChan :: a -> (); sendChan x = rnf x ‘seq‘ sendVal x

tupsize :: a -> Int; tupsize _ = 1

writeDCs :: ChanName a -> a -> (); writeDCs (cx:_) x = writeDC cx x

-- default definitions, changed

-- appropriately for tuples and lists

instance Trans a => Trans [a] where

sendChan x = sendStream x

sendStream :: Trans a => [a] -> ()

sendStream [] = sendVal []

sendStream (x:xs) = (rnf x) ‘seq‘ ((sendHead x) ‘seq‘ (sendStream xs))

Fig. 3. Type Class Trans with List Instance

Before any communication can take place, a channel must be created and
installed. For this, the functions shown in Fig. 4 are provided. The RTS equiv-
alent to channels is a structure Port which contains (1) a specific Port number,
(2) the process id (pid), and (3) the processor number, forming a unique port
address. At module level, these port addresses (connection points of a channel
to a process) are represented by the type ChanName’. Objects of this type contain
exactly the port identifier triple (see Fig. 4). Note that the higher level type
ChanName a is a list of port identifiers; one for each component of type a in case
a is a tuple.

The function createDC :: Trans a => a -> (ChanName a, a) creates a new
(dynamic) input channel, i.e. a channel on which data can be received, using the
corresponding primitive operation createDC#. It yields the channel name which
can be sent to other processes and (a handle to) the input that will be received
via the channel. If createDC is used for tuple types a, a list of port identifiers
(type ChanName’) and a tuple of input handles will be created. To ensure correct
typing, createDC is always applied to its second output, but will only use it to
determine the needed number of channels, using the overloaded function tupsize

in class Trans.
Data transmission is done by the function writeDC. This function takes a port
identifier and a value, connects the current thread to the given port (setChan#)
and sends the value using the function sendChan. The connection by setChan#

prior to evaluating and sending values guarantees that the receiver of data mes-

c©2003 Springer-Verlag

type ChanName a = [ChanName’ a]

data ChanName’ a = Chan Int# Int# Int#

createDC :: a -> (ChanName a, a)

createDC t = let (I# i#) = tupSize t

in case createDC# i# of (# c,x #) -> (c,x)

writeDC :: ChanName’ a -> b -> ()

writeDC chan a = setChan chan ‘seq‘ sendChan a

Fig. 4. Channel Creation and Communication

sages is always defined when sendVal# or sendHead# is called. While writeDC

defines the behaviour of a single thread, the overloaded function writeDCs (see
Fig. 3) handles tuples in a special way. It takes a list of port identifiers (length
identical to the number of tuple components) and creates a thread for each tuple
component. The instance declaration of Trans for pairs is e.g. as follows:

instance (Trans a, Trans b) => Trans (a,b) where

tupsize = 2

writeDCs (cx:cy:) (x,y) = writeDC cx x ‘fork‘ writeDC cy y

The Eden module contains corresponding instance declarations for tuples with
up to eight components.

3.2 Process Handling

Subsequently, we will focus on the module definitions for process abstraction and
instantiation shown in Fig. 5 and 6. Process creation can be defined on this level,
using the internal functions to create channel names and to send data on them,
plus the primitive operation createProcess# for forking a process on a remote
processor.

A process abstraction of type Process a b is implemented by a function
f remote (see Fig. 5) which will be evaluated remotely by a corresponding child
process. It takes two channel names: the first outDCs (of type ChanName b) is
a channel for sending its output while the second chanDC (of type ChanName

(ChanName a)) is an administrative channel to return the names of input chan-
nels to the parent process. The exact number of channels which are established
between parent and child process does not matter in this context, because the
operations on dynamic channels are overloaded. The definition of process shows
that the remotely evaluated function, f remote, creates its input channels via the
function createDC. Moreover, writeDCs is used twice: the dynamically created in-
put channels of the child, inDCs, are sent to the parent process via the channel

c©2003 Springer-Verlag

data (Trans a, Trans b) =>

Process a b = Proc (ChanName b -> ChanName (ChanName a) -> ())

process :: (Trans a, Trans b)

=> (a -> b) -> Process a b

process f = Proc f_remote

where f_remote outDCs chanDC

= let (inDCs, invals) = createDC invals

in writeDCs chanDC inDCs ‘fork‘

(writeDCs outDCs (f invals))

Fig. 5. Haskell definitions of Eden process abstraction

(#) :: (Trans a, Trans b) => Process a b -> a -> b

pabs # inps = case createProcess (-1#) pabs inps of Lift x -> x

data Lift a = Lift a

createProcess :: (Trans a, Trans b) =>

Int# -> Process a b -> a -> Lift b

createProcess on# (Proc f_remote) inps

= let (outDCs, outvals) = createDC outvals

(chanDC, inDCs) = createDC inDCs

pinst = f_remote outDCs chanDC

in outDCs ‘seq‘ chanDC ‘seq‘

case createProcess# on# pinst of

1# -> writeDCs inDCs inps ‘fork‘ (Lift outvals)

_ -> error "process creation failed"

Fig. 6. Haskell definitions of Eden process instantiation

chanDC and the results of the process determined by evaluating the expression
(f invals) are sent via the channels outDCs5.

Process instantiation by the operator (#) defines process creation on the
parent side. To cope with lazy evaluation and to get back control without waiting
for the result of the child process, the process results are lifted to an immediately
available weak head normal form using the constructor Lift. Before returning
the result, the Lift is removed. The function createProcess takes the process
abstraction and the input expression and yields the lifted process result. The
placement parameter on# is a primitive integer (type Int#) which can be used to
allocate newly created processes explicitly. The current system does not make use
of this possibility, processes are allocated round-robin or randomly on the avail-
able processors. The channels are handled using createDC and writeDCs in the

5 The prefixes in and out in channel names in Fig. 5 and 6 reflect the point of view
of a child process. Thus, in a process instantiation, the inputs inps for the child are
written into the channels inDCs, which are outputs of the parent process.

c©2003 Springer-Verlag

Param #n thread

Set channel for

n-th parameter

Close outport,

terminate thread

GHC:

Evaluate n-th

parameter to

normal form

(say: a list)

VALUE

Param#1thread

Set channel for

first parameter

GHC:

Evaluate first

parameter to

normal form

Sends first pa-

rameter (NF)

Parent Process

Create channel

(input channels)

Create channels

(expected output)

Forks thread for

input parameters

Send

 Message

Await input channels

(Thread blocked)

GHC:

Proceed

with your

work

(Eventually

block on

input handle)

VALUE

HEAD

CREATEPROCESS_DC

Exchan-

ge of

data via

heap

VALUE

Channel Thread

Send input

channels

Set receiver

channel

Initial Thread

Fork thread for

input channels

Create channels

Fork threads for

each output

VALUE

Output #1 thread

Set channel for

first component

Enter GHC:

Evaluate first

component of

tuple to normal

form

Send result

HEAD

Enter GHC:

Evaluate n-th

component of

tuple to normal

form

(Possibly a list,

sends several

messages, until

TERM message

or reaches end

of list)

Output #n thread

Set channel for

n-th component

VALUE (closing the stream)

Close outport,

terminate thread

Ex-

chan-

ge of

data

via

heap

TERMINATE

VALUE(channels)

HEAD

System
CREATEPROC.

System

PE 1 PE 2

Fig. 7. Sequence Diagram for Process Instantiation

same way as on the child side (see the process abstraction). The remote creation
of the child process is performed by the primitive operation createProcess#.

The whole sequence of actions is shown in Fig. 7, which illustrates the inter-
play of the codes in Fig. 5 and 6. Process creation is preceded by the creation of
new channels (one for every result) plus one additional port to receive channels
for input parameters upon creation. The primitive createProcess# sends a mes-
sage createProcessDC to a remote processor, which contains these channels and
the process abstraction (an unevaluated Proc f remote packed as a subgraph).

The remote processor (PE 2 in Fig. 7) receives this message, unpacks the
graph and starts a new process by creating an initial thread. As the first thread
in a process, this thread plays the role of a process driver. Evaluating the code
shown in Fig. 5, it forks a first thread to communicate channels and then evalu-
ates the results, forking one thread for each tuple component but the last, which
is evaluated and sent back by the initial thread itself. Thus, one thread is only
used to communicate channels, the other threads evaluate the output expres-
sions. Threads block on the created input handles if they need their arguments.
As soon as the input arrives, these threads are reactivated by the communication
handler when it writes the received values into the heap.
This concludes our discussion of fundamental mechanisms in the Eden system.

c©2003 Springer-Verlag

4 Related Work and Conclusions

Implementations of parallel functional languages are either based on a parallel
abstract machine or on parallel libraries, linked to an ordinary sequential sys-
tem. Eden is a typical example for the monolithic approach (parallel abstract
machine). It is closely related to GpH [19], using the same framework and even
sharing a lot of code. Although GpH, combined with evaluation strategies [18]
provides comparable control, it generally follows the concept of implicit, or “po-
tential” parallelism, whereas Eden passes parallelism control to the programmer.
During the last decade, the extension of functional languages for parallelism
moved from implicit to more and more explicit approaches, because it became
clear that an effective parallelisation needs some support from the programmer.
The para-functional programming approach [11], as well as Caliban [17], pro-
vide explicit control over subexpression evaluation and process placement, going
essentially further than our process concept.

Providing a set of parallel skeletons [16] is another way of implementing
(more or less explicit) parallelisation facilities. Parallel skeletal languages, as e.g.
P3L [1], provide a fixed set of skeletons, sometimes combined with sophisticated
program analysis, as e.g. in PMLS [10]. The skeleton implementation is usually
out of reach for the programmer, whereas in Eden, programming a skeleton
requires nothing but ordinary parallel functional programming.

By lifting the implementation of explicit low-level process control out of the
RTS into the functional language itself, we reach two goals: As new techniques
like Grid-Computing evolve, it becomes more and more important for a parallel
programming system to provide not only good performance and speed-up be-
haviour, but also to make parallel programming as simple as possible. We achieve
this not only on the highest level, i.e. for the ordinary application programmer,
but also for the advanced programmer interested in the development of skeletons
or even parallel extensions. An advantage of our layered implementation is that
developers can use the high-level layers of module and skeleton library which we
have introduced.

With rising demand for efficient compilers and better exploitation of parallel
computers, compiler construction is getting much more complex. By the layer
concept, we gain advantages on portability, code reuse, extensibility, mainte-
nance, and abstraction on the implementation side. The implementation based
on a few primitive operations leads to clean interfaces between the implemen-
tation layers, which makes it easier to follow version changes of the underlying
sequential compiler. This is the first step to our long-term objective: the design
of a generic parallel extension of sequential functional runtime systems, on top
of which various parallel functional languages could be implemented.

Acknowledgements. We thank Hans-Wolfgang Loidl, Simon Marlow and Fer-
nando Rubio for their support during the development of the Eden runtime sys-
tem. Additionally, we are grateful to Phil Trinder and the anonymous referees
for helpful comments on this paper.

c©2003 Springer-Verlag

References

1. B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: A Struc-
tured High Level Programming Language and its Structured Support. Concurrency
— Practice and Experience, 7(3):225–255, May 1995.

2. S. Breitinger, U. Klusik, and R. Loogen. From (Sequential) Haskell to (Parallel)
Eden: An Implementation Point of View. In PLILP’98, LNCS 1490, pages 318–334.
Springer, 1998.

3. S. Breitinger, R. Loogen, Y. Ortega-Mallén, and R. Peña. Eden: Language
Definition and Operational Semantics. Technical report, 1996. Available at
http://www.mathematik.uni-marburg.de/inf/eden.

4. Glasgow Parallel Haskell. WWW page. http://www.cee.hw.ac.uk/˜dsg/gph/.
5. K. Hammond, J. Berthold, and R. Loogen. Automatic Skeletons in Template

Haskell. In HLPP 2003. Paris, France, June 2003.
6. K. Hammond and G. Michaelson, editors. Research Directions in Parallel Func-

tional Programming. Springer-Verlag, 1999.
7. U. Klusik, Y. Ortega-Mallén, and R. Peña Maŕı. Implementing Eden – or: Dreams

Become Reality. In IFL’98, LNCS 1595, pages 103–119. Springer, 1999.
8. H.-W. Loidl, F. Rubio Diez, N. Scaife, K. Hammond, U. Klusik, R. Loogen,

G. Michaelson, S. Horiguchi, R. Pena Mari, S. Priebe, A. R. Portillo, and P. Trinder.
Comparing parallel functional languages: Programming and performance. Higher-
order and Symbolic Computation, 16(3), 2003.

9. R. Loogen, Y. Ortega-Mallén, R. Peña, S. Priebe, and F. Rubio. Parallelism Ab-
stractions in Eden. In F. A. Rabhi and S. Gorlatch, editors, Patterns and Skeletons
for Parallel and Distributed Computing. Springer, 2002.

10. G. Michaelson, N. Scaife, P. Bristow, and P. King. Nested Algorithmic Skeletons
from Higher Order Functions. Parallel Algorithms and Appl., 16:181–206, 2001.

11. R. Mirani and P. Hudak. First-Class Schedules and Virtual Maps. In FPCA’95 —
Conf. on Functional Programming Languages and Computer Architecture, pages
78–85, La Jolla, California, June 1995. ACM Press.

12. S. Peyton Jones. Implementing lazy functional languages on stock hardware: The
spineless tagless g-machine. J. of Functional Programming, 2(2):127–202, 1992.

13. S. Peyton Jones, C. Hall, K. Hammond, W. Partain, and P. Wadler. The Glas-
gow Haskell Compiler: a Technical Overview. In Joint Framework for Informa-
tion Technology Technical Conference, pages 249–257, Keele, U.K., March 1993.
http://www.dcs.gla.ac.uk/fp/papers/grasp-jfit.ps.Z.

14. S. Peyton Jones and J. Hughes. Haskell 98: A Non-strict, Purely Functional Lan-
guage, 1999. Available at http://www.haskell.org/.

15. Parallel Virtual Machine Reference Manual, Version 3.2. University of Tennessee,
August 1993.

16. F. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and
Distributed Computing. Springer, 2002.

17. F. Taylor. Parallel Functional Programming by Partitioning. PhD thesis, Depart-
ment of Computing, Imperial College, London, 1997.
http://www.lieder.demon.co.uk/thesis/thesis.ps.gz.

18. P. Trinder, K. Hammond, H.-W. Loidl, and S. Peyton Jones. Algorithm + Strategy
= Parallelism. J. of Functional Programming, 8(1):23–60, 1998.

19. P. Trinder, K. Hammond, J. Mattson Jr., A. Partridge, and S. Peyton Jones.
GUM: a Portable Parallel Implementation of Haskell. In PLDI’96, pages 78–88.
ACM Press, May 1996.

