
Efficient Similarity Search in Protein Structure Databases:  
Improving Clique-Detection through Clique Hashing 

 
Nils Weskamp*, Daniel Kuhn#, Eyke Hüllermeier*§ and Gerhard Klebe# 

*Department of Mathematics and Computer Science 
#Institute of Pharmaceutical Chemistry 

University of Marburg 
35032 Marburg, Germany 

 
§Corresponding author: eyke@informatik.uni-marburg.de 

 
In order to make the structural comparison of protein binding sites 
more efficient, we propose a two-step method that combines 
advantages from both graph-based clique-detection and geometric 
hashing. The search for protein similarity is completely independent 
of sequence and fold information. Instead, it is based on a recent 
approach for the automatic extraction of binding sites from protein 
structures and the representation of their geometric and 
physicochemical properties. We also present some empirical results 
for similarity search in a medium-sized dataset. 
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1  Introduction 
 
Most ambitious among the competing techniques for the structural comparison of proteins are 
those which operate completely independent of sequence and fold information. These techniques 
are capable to reveal functional relations among proteins that are not due to phylogenetic 
dependency.  
 
Unfortunately, such approaches are computationally very complex and require a reduction of the 
problem size, which is usually achieved by considering only the secondary structure elements of 
the protein. Our approach is instead based on a recent method for the automatic extraction and 
description of protein binding sites [Schmitt et al., 2002]. Following the idea that the function of a 
protein is determined by the shape and the physicochemical properties of the binding pocket, we 
assign pseudocenters – as 3D-descriptors – to the cavity-flanking amino acids to represent their 
interaction properties. Two binding sites are regarded as similar, if they share a common spatial 
arrangement of assigned pseudocenters and expose similar physicochemical properties into the 
binding site. The binding site-composing amino acids, the attributed pseudocenters and a cavity 
surface are stored in the database Cavbase [Schmitt et al., 2002]. 
 
The original approach by Schmitt et al. uses a clique-detection method that interprets the 
pseudocenters as nodes of a graph. Typically, this results in graphs of the size 50-150 (yet graphs 
with more than 1000 nodes do exist). The physicochemical properties of the centers are modeled 
as a coloring of the nodes. An edge is inserted between two nodes, weighted with the geometric 
distance between the adjacent nodes. To reduce the complexity, an edge is inserted if its length 
does not exceed 12.0 Å. A standard algorithm [Bron-Kerbosch, 1973] is used to detect connected 
maximal common substructures in the graph representations, applying the modifications suggested 
in the study of [Koch et al., 1996]. The size of the common substructures is our measure of 
similarity. Additionally, the common substructures may be used to calculate a geometric 
superimposition of the structures [Kabsch, 1976] and to perform more complex similarity 
measurements based on mutual surface-surface matches of common cavity patches. Although 
both of these measures formally do not fulfill the properties of a metric, they were subjected to 
empirical validation and usually revealed good results. The implications for clustering are not in the 
scope of this paper and will be discussed elsewhere. 
 



Due to the comparatively fine-grained and therefore large graph representations, the runtime 
complexity of the method is relatively high. To allow efficient similarity searches in large datasets 
and all-against-all comparisons as a basis for clustering, we developed an improved hybrid method 
for the detection of common substructures in binding sites. This method combines advantages 
from both, graph-based clique-detection and geometric hashing, as will be detailed in Section 3. 
Before, Section 2 recalls the standard clique-detection approach and points out some of its 
drawbacks. Finally, we shall present some empirical results in Section 4. 
 
2 Standard clique-detection techniques 
 
Clique-detection is a well-known strategy for the structural comparison of proteins or drug-sized 
organic molecules. Given two labeled input graphs G1 and G2, the first step is the construction of a 
so-called product graph P (cf. Figure 1). Each node of P consists of a pair of nodes with identical 
labels from the input graphs, thus representing an “isomorphism” (matching) of size 1 between the 
two graphs. Two nodes (u,v) and (u',v') of P are connected by an edge if the respective matchings 
are compatible, i.e. the edge connecting u and u' in G1 (if any) has the same label as the edge 
connecting v and v' in G2. As shown by Levi [Levi, 1972], a maximal complete subgraph (clique) of 
P corresponds bijectively to a maximal subgraph isomorphism between G1 and G2. Thus, it is 
possible to detect a common substructure of G1 and G2 using the clique-detection algorithm of 
Bron and Kerbosch. In the example of Figure 1 (left), this yields the mapping A-a, B-b, and so on. 
 

 
Even though clique-detection methods provide a powerful tool for the structural comparison of 
proteins, they possess some major drawbacks: First, depending on the size of the input graphs 
and the distribution of the different label types, the product graph soon becomes relatively large 
and densely connected, which in turn leads to huge running times of the applied algorithms. This 
problem is particularly severe in our case, as we are indeed interested in the comparison of large 
graphs. Second, it is difficult to estimate the result of a comparison in advance. Hence, it is 
necessary to perform many superfluous calculations, as it is impossible to detect cases in which 
structures are obviously unrelated. In the next section, we propose a new hybrid approach which 
overcomes these limitations at least to some extent. 
 
3 Clique-detection based on clique hashing 
 
One reason for the large size of the product graph P is the fact that false-positive matches are very 
likely to occur for single nodes of the input graphs: P will usually contain a large number of nodes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Search for common substructures of G1 and G2 by clique-detection. P shows 
the standard product graph, P~  the much simpler modified product graph for k=3. 



having the same label just by chance. Take for instance the node A of graph G1, which is 
isomorphic to node a of graph G2 (Figure 1). Apart from this isomorphism, the mapping A-e has to 
be considered as well, as e has the same color as A. But since A and e have a completely different 
environment (nodes G and B may not be mapped to d and f), this is actually not necessary. The 
clique-detection algorithm spends most of its running time on the elimination of such false-positive 
matches and the assembling of real matches into larger matchings.  
 
Intuitively, assembling individual pieces becomes simpler when starting from larger pieces. Our 
method therefore starts from a modified product graph, whose nodes represent larger local 
matches of size k. This substantially reduces the probability of false-positive matches and leads to 
smaller product graphs (Figure 1 right). At the same time, the information content of the local 
matches increases. Thus, it can be hoped that the number of local matches allows for an 
estimation of the similarity of the complete structures under consideration. 
 
How can we generate the local matches? Our approach is motivated by the geometric-hashing 
technique [Nussinov-Wolfson, 1991]. The input graphs are split into a large number of k-cliques, 
complete subgraphs of a fixed size k. As complete graphs of a fixed size are always isomorphic, 
each substructure is defined uniquely by its node and edge labels. Hence, to search for similar 
substructures, it is sufficient to consider only those labels. The labels are then mapped onto points 
in Euclidian space by using a normalization scheme, whereas the node coloring is mapped onto a 
discrete attribute and the edge weights are represented directly. These points are then stored in an 
R*-tree [Guttman, 1984; Beckmann et al., 1990], a standard spatial index structure for external 
memory. As opposed to the commonly used hash tables, this structure adapts itself dynamically to 
the distribution of the data points and therefore guarantees a better worst-case behavior at the 
expense of a slightly worse average-case behavior. Additionally, boundary effects related to the 
binning of the data points are automatically avoided, and the dynamic insertion and deletion of 
entries is simplified since no global re-organization of the index is necessary. 
 

 
 
Once this index structure is built for all structures of the dataset in a preprocessing stage, it is 
possible to perform an efficient similarity search. Given a query structure, for all k-cliques in its 
graph representation Q, a window query in the index is performed, resulting in a number of k-
cliques with the same node coloring and a similar (up to a parameter ε) edge weighting. Each such 
hit indicates a local match (“isomorphism” of size k) between query structure Q and a hit structure 
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Figure 2: (a) shows a false-positive match, indicating an ambiguous mapping of F to a 
and d (b) shows the hit list for the comparison of one pseudocenter against a dataset of 3 
binding pockets. 



H from the indexed dataset. The number of local matches found for each hit structure allows for a 
rough estimation of the similarity between Q and H. Moreover, the local matches may be used to 
build the modified product graph mentioned earlier. Note that the decomposition of the graph 
structures is highly redundant, hence it is neither necessary to use all possible k-cliques for the 
index generation, nor is it required to launch all possible queries associated to the k-cliques of the 
query pocket. Instead, random sampling strategies may be used to reduce the index size and to 
accelerate the querying process. 
 
A critical point concerns the selection of the parameter k, which determines the size of the 
substructures under consideration. On the one hand, it would be preferable to choose a high value 
of k to reduce the probability for false-positive matches. On the other hand, the number of k-
cliques in a graph depends exponentially on k, thus large values of k lead to huge index structures 
and immense numbers of queries that have to be performed. To overcome this problem, we 
developed a filtering step for the identification of obviously false-positive chance matches. Using 
this technique, which is detailed below, it is possible to use relatively small values for k without 
being overwhelmed by a huge amount of insignificant hits. For our experiments, we used k=3. 
 
 

 
 
The clique-detection technique for the modified product graph intuitively tries to assemble the local 
matches into larger matchings and is thus somewhat related to the problem of DNA fragment 
assembly. As in fragment assembly, the assembling is guided by overlaps. We define a 
neighborhood relation for the substructures of a structure as follows: two k-cliques of a graph 
descriptor are overlapping (neighbored) if and only if they share at least one common node. If two 
substructures of the query structure are overlapping, only those hits for these structures which are 
also overlapping are of interest. Other hits can be discarded: they cannot be merged into larger 
matchings since this would lead to an ambiguous mapping of graph nodes. Figure 2 (a) shows an 
example of two matches which do not maintain the neighborhood relation: the 3-cliques BFG and 
CEF are neighbors, as they share the common node F. The mapping of BFG to abg and of CEF to 

Query 
Pocket 

Number of 
entries from 
same SCOP-
family in 
dataset 

Original 
Approach 

Optimized 
Approach -  
100%   
(25%) 

Optimized 
Approach - 
80 % 
(20%) 

Optimized 
Approach - 
60 % 
(15%) 

Optimized 
Approach - 
40 % 
(10%) 

Optimized 
Approach - 
20 %  
(5%) 

Optimized 
Approach - 
10 %  
(2.5%) 

1AHX.5 78 78 73 73 75 73 73 63 
  1823 s 416 s  (4.4) 346 s  (5.3) 284 s  (6.4) 209 s  (8.7) 122 s (15.0) 83 s   (22.0) 
1COM.1 20 20 20 20 20 19 13 1 
  823 s 150 s  (5.5) 112 s  (7.3) 94 s    (8.8) 73 s  (11.2) 54 s   (15.2) 33 s   (25.0) 
1CYD.1 86 85 73 72 68 64 59 47 
  2437 s 767 s  (3.2) 710 s  (3.4) 561 s  (4.3) 434 s  (5.6) 241 s (10.1) 137 s (17.8) 
1DD7.2 16 10 10 10 10 10 10 10  
  1897 s 511 s  (3.7) 449 s  (4.2) 338 s  (5.6) 239 s  (8.0) 134 s (14.2) 94 s   (20.2) 
1LDN.15 31 29 24 23 23 23 19 16 
  2099 s 625 s  (3.4) 513 s  (4.1) 405 s  (5.2) 299 s  (7.0) 172 s (12.2) 103 s (20.4) 
1QQ8.3 5 5 5 5 5 5 5 2 
  1640 s 373 s  (4.4) 301 s  (5.4) 231 s  (7.1) 167 s  (9.8) 104 s (15.8) 74 s   (22.2) 
2KCE.6 77 77 74 75 73 72 71 56 
  2344 s 531 s  (4.4) 509 s  (4.6) 392 s  (6.0) 281 s  (8.3) 159 s (14.7) 104 s (22.5) 
4COX.2 41 31 25 24 24 24 24 21 
  3178 s 706 s  (4.5) 622 s  (5.1) 477 s  (6.7) 339 s  (9.4) 180 s (17.7) 114 s (27.9) 
4VGC.1 44 42 42 42 42 42 42 35 
  1208 s 371 s  (3.3) 276 s  (4.4) 225 s  (5.4) 170 s  (7.1) 101 s (12.0) 72 s   (16.8) 
7TIM.2 33 32 32 32 31 30 20 1 
  737 s 99 s    (7.4) 81 s    (7.4) 69 s  (10.7) 57 s  (12.9) 44 s   (16.8) 23 s   (32.0) 

 
Table 1: Results of some similarity searches in a representative dataset of 2138 binding pockets. The SCOP-
classification [Murzin et al., 1995] of the query structures is used as a reference, because similar proteins should 
possess similar binding sites.  For the original approach, we present the runtime (in seconds) and the number of 
entries from the respective SCOP-family yielding a similarity score above 5.0. (On average, 49.27 (2.3 %) entries 
score above this threshold.) For the optimized approach, we show the associated results (incl. relative speed-up 
factor) for different sampling rates. The rates are given as percentage of queries made (percentage of comparisons 
made), as we use a 25% sampling when building the index. 



cde as indicated by the arrows is discarded, as abg and cde are not overlapping and thus a 
merging of those local matchings would lead to an ambiguous mapping of F.  
 
This filtering step is carried out using a novel construct called hit list (Figure 2 (b)). Each node of 
the query graph is endowed with such a list. The latter collects all possible matching partners for 
the respective query node during the index querying process. Each time a hit is found for a k-clique 
containing the respective node, this hit “votes” for the mapping of the respective node to the 
associated node of the an indexed structure. This “voting” is stored in the hit list. At the end of the 
whole querying process, each hit list contains a number of possible mappings of the respective 
node to different nodes of structures from the indexed dataset. Mappings with a high number of 
“votes” are supported by a large number of overlapping hit substructures, because these hits all 
share a common node (i.e. the one involved in the respective mapping). Such high-scoring hit list 
entries are therefore likely to participate in a larger local matching. In other words, there is a low 
probability that these entries are false-positive matches. In the example of Figure 2 (b), there are 3 
votes for the mapping of the respective node to node 23 of structure 1cil.1, but only 1 vote for the 
mapping to node 19. Thus, a mapping to node 23 is more likely. Note that the whole filtering 
process depends only on the query structure and is independent of the hit structure. Thus, queries 
may be processed using solely information from the query and the index structures. This is a major 
advantage when working with large datasets, as it is not necessary to keep large portions of the 
dataset in main memory. At the same time, the filtering step is linear in the (usually large) number 
of hits and thus more efficient than an explicit check of the overlap, which would require an 
enumeration of all pairs of hits from the same dataset entry. 
 
Whether an entry of a hit list qualifies for further consideration depends on a user-defined threshold 
parameter MIN_VOTES. The choice of this parameter has a considerable influence not only on the 
runtime of the method but also on the quality of the query results, as it is responsible for the 
separation of significant and insignificant matches. We are currently building a probabilistic model 
for the method in order to derive statistical distributions for the number of votes. These distributions 
will provide the basis for an optimal choice of the MIN_VOTES parameter. If a sampling strategy is 
applied, the parameter has to be adjusted, as fewer hits will lead to a smaller number of “votes”. 
 
The list of qualified entries for each pair of binding pockets is finally used to build the product graph 
for the clique-detection process. As each entry of this list is part of a larger local matching, the 
product graph will be relatively small, containing only few false-positive matches. The size of the 
matching generated by clique-detection is then used as a measure of similarity. As noted earlier, it 
is also possible to calculate a superimposition from the mapping and to perform a more complex 
grid-based analysis of the resemblance of the surfaces.  
 
4 Results 
 
The implementation of our approach has been carried out in C++ and is based on the Cavbase 
extension of the Relibase system [Hendlich et al., 2003]. We use Cavbase [Schmitt et al., 2002] for 
the data handling and exploit some of its infrastructure. A dataset of 2138 binding pockets 
originating from 1560 PDB entries has been derived and used to assess the performance and to 
validate our approach. The dataset is intended to be a representative subset of all enzyme binding 
sites in the PDB. The main selection criteria have been: (i) availability of a SCOP-classification 
[Murzin et al., 1995] for the respective protein structure, (ii) availability of an E.C.-classification for 
the respective protein structure from the ENZYME-classification database [Bairoch, 2000] and (iii) 
whether the binding pocket contains a complete ligand structure. The dataset is highly diverse and 
covers more than 200 different E.C.-numbers. Typically, not only the catalytic pockets of a 
structure are included, but also binding sites of co-factors etc.  
 
The preprocessing step – which has to be performed only once for each dataset – required a few 
hours on five standard Linux computers. It produced an index of approximately 772 MB, where we 
used a random sampling strategy with a sampling rate of 25% (i.e. only 1 of 4 k-cliques has been 
included in the index, the full index has a size of approximately 2.9 GB). 
 



After the index is built, similarity searches may be performed efficiently in the dataset. Depending 
on the configuration of the applied hardware and on the size of the query structure, a single (one 
against all) search may be performed in a few minutes. Again, it is possible to reduce this runtime 
by making use of a random sampling strategy: Table 1 summarizes some query results for different 
types of binding pockets and compares them to the SCOP-classification of the respective protein 
structures. The runtimes are given for the original approach as well as for the optimized approach 
combined with different (query) sampling rates. Remind that a fixed sample rate of 25 % has been 
used while building the index. To allow a fair comparison of the results, both implementations used 
the grid-based surface-overlap measure of the original approach for the scoring. All entries of the 
dataset with a similarity score above 5.0 where considered as hits. Typically, only 2-3 % of all 
entries score above this threshold. For each query, the number of entries from the same SCOP-
family among the hits is shown.  
 
Obviously, it is possible to achieve a significant speed-up (approximately 6-fold, in some cases 
even one order of magnitude) relative to the original approach without missing too many hits. Note 
that even a sampling rate of 20 % – which means that only 5 % of the implicit comparisons of the 
k-cliques of two binding pockets are actually made (as 20 % of the k-cliques from the query pocket 
are compared to 25 % of the k-cliques from the entries of the dataset) – usually yields sufficiently 
good results.  
 
As a matter of fact, a comparison against SCOP should be seen only as an initial validation, as 
SCOP is based on comparisons in sequence and fold space. Therefore, we expect to find 
structural similarities not automatically covered by SCOP or comparable classification methods. 
We also performed comparisons with the E.C.-classification of the respective query structures and 
obtained similar overall results (results not shown). A detailed validation of the approach is clearly 
beyond the scope of this paper. The interested reader is referred to [Schmitt et al., 2002]. 
 
5 Conclusions 
 
We presented an efficient two-step approach for the search of functionally related proteins in large 
datasets. The first step makes use of an index structure in order to detect common substructures 
of a fixed size k in an efficient way. The (small) local hits are then merged into larger matchings in 
the second step. The two steps are connected by a novel filtering step for the elimination of false-
positive matches. The filtering step does not rely on structure superimposition. It is therefore 
independent of rigid-body assumptions and able to handle conformational flexibility. Additionally, it 
depends only on information which is available from the query structure and from the index. This is 
a major advantage when dealing with large datasets that may not be kept in main memory. We 
applied our method to a medium-sized dataset and presented some of the obtained results. In 
comparison with the original approach, we achieved a significant speed-up and retained most of 
the desired hits. 
 
Clearly, the presented approach is intended mainly for larger datasets, which will be accessed by a 
high number of queries– i.e. for the development of a public web-server, which allows the 
comparison of a query pocket against a representative subset of the PDB. For searching smaller 
datasets, the index generation might be too costly and a direct clique-detection implementation is 
more appropriate. 
 
Existing approaches for the detection of common side chain patterns based on efficient indexing of 
triplets or triangles (e.g. [Hamelryck, 2003]) have to be very selective to avoid a high amount of 
false-positive matches. Therefore, they usually detect only highly conserved resemblances. Using 
our method for post-processing, their criteria could eventually be weakened and thus more distant 
relationships among structures detected. 
 
As clique-detection techniques are widely used for the structural comparison of proteins, small 
organic molecules and also for docking applications, our approach might also be applicable to 
related problems.  
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