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Abstract: We introduce the novel concept of graph alignment, a generalization of
graph isomorphism that is motivated by the commonly used multiple sequence ali-
gnments. Graph alignments and graph isomorphisms are equivalent in the case of pair-
wise comparisons, but if many graphs should be analyzed simultaneously, graph ali-
gnments are more robust against noise and perturbations. Thus, graph alignments can
detect conserved patterns in large sets of related graphs in a more reliable way.

We study simple heuristics for the efficient calculation of approximate graph ali-
gnments and apply our approach to the structural analysis and functional classification
of the active sites of proteins. Our approach is able to automatically detect even weak-
ly conserved structural patterns in protein structures. Among other applications, these
motifs can be used to classify proteins according to their function.

1 Introduction

Multiple sequence alignment is an established method for the detection of conserved mo-
tifs in genes and proteins nowadays [SM97]. Different databases contain multiple ali-
gnments and conserved motifs of known sequence families ([BBC+02],[SBC+02]). The
use of position specific scoring matrices allows for an automated search of such conser-
ved regions in sequence data [AMS+97] and thus for the classification of sequences into
families and classes.

Until now, in the field of graph-based methods for protein structure analysis (i.e., methods
that model the properties of a protein structure as a graph and that are independent of the
inherent linear ordering of the residues in the protein backbone), comparable concepts have
not been examined intensively [KLW96, APG+94, SNW02]. These methods often focus
on exact graph matching techniques and thus rely on the concept of graph isomorphism to
detect common (i.e., conserved) regions. This is mainly due to the fact that exact matching
is often sufficient for pairwise comparisons and already challenging in its complexity. But
as the number of available protein structures grows exponentially, multiple examples are
accessible for most of the protein families nowadays. Thus, the simultaneous comparison
of multiple protein structures becomes an interesting opportunity as it allows one to detect
slight structural variations due to mutations and also conformational flexibility upon ligand
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Abbildung 1: A (multiple) isomorphism among the labeled graphsA, B, C, D is indicated by the
dashed lines. All four graphs contain the identical subgraph with the nodes1, 2, 4, 5 while nodes3
and6 have different labels in all graphs.

binding. For the case of multiple comparisons, some authors suggest a generic extension
of the exact matching approaches [KLW96]. Yet, as we will show in this paper, the concept
of graph isomorphism can be too stringent for the analysis of large assemblies of diverse
structures as it is sensitive to outliers and noise. We therefore introduce the more robust
concept of a graph alignment that relies on approximate graph matching techniques and
thus allows one to detect weakly conserved motifs.

Graph alignments can be seen as a generalization of (sub-)graph isomorphisms as each
graph isomorphism is also a graph alignment. Yet graph alignments introduce an additional
degree of freedom as they allow one to introduce new, in the following called dummy (or:
gap), nodes into a graph whenever appropriate. Figure 1 shows an exemplary set of four
graphs that contain an identical (i.e., isomorphic) subgraph of size4. This “conserved”
subgraph may be detected by well-established standard techniques [Le72, BK73]. Figure
2 shows instead a perturbed version of the graph collection as it is more likely to occur
in real-life datasets. In this paper, we consider the deletion of nodes or the changing of
node-labels and edge-weights as possible perturbations. Standard approaches are highly
susceptible to these kinds of changes. For example, in Figure 1, all nodes with the number
5 correspond to each other. Yet in Figure2, the node labeled number5 is missing in graph
A. Therefore, also the correspondence among the remaining three nodes is “lost” as no
matching node exists in graphA.

On the other hand, as each of the four centers1, 2, 4, 5 is significantly conserved across the
series (i.e., in three out of four graphs), one would appreciate to detect the (partially) con-
served pattern defined by these nodes. By introducing dummy nodes (shown as boxes in
dark gray), it is possible to detect this conserved pattern. Therefore, the concepts proposed
in this paper may be useful to improve the robustness against errors and noise contained
inherently in protein structure data.
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Abbildung 2: A perturbed version of the graphs in Figure 1. No non-trivial isomorphism exists
among these graphs as each of the “conserved” nodes is missing (or is strongly shifted to another
position which leads to changed edge weights) in one of the graphs. By inserting additional “dummy-
nodes” (shown as boxes in dark gray) it is still possible to identify the (partially) conserved pattern.

This paper is organized as follows: First, we give a formal definition of graph alignments
(section 2) and describe some algorithms for their construction (section 3). Additionally,
we show that graph alignments may be used to screen large datasets of protein structures
for members of a particular functional family (section 4).

2 Graph Alignments

Usually, a (multiple) sub-graph isomorphism across a set of node-labeled and edge-
weighted graphs{G1(V1, E1), . . . , Gn(Vn, En)} is defined as a setT ⊆ V1 × · · · × Vn

such that

1. For all t = (v1, . . . , vn), t′ = (v′1, . . . , v
′
n) ∈ T with t 6= t′: vi 6= v′i for i =

1, . . . , n, i.e. each node of each graph is contained in at most one tuple such that the
mapping defined by the graph isomorphism is unambiguous.

2. Fort = (v1, . . . , vn) ∈ T : l(v1) = · · · = l(vn), i.e. all nodes that are mapped onto
each other share the same label.

3. For allt = (v1, . . . , vn), t′ = (v′1, . . . , v
′
n) ∈ T with t 6= t′: If (vi, v

′
i) ∈ Ei for an

i = 1, . . . , n, then(vj , v
′
j) ∈ Ej for all j = 1, . . . , n and

∣∣w(vi, v
′
i)− w(vj , v

′
j)

∣∣ ≤
ε for an ε ∈ R, i.e. if two nodes are connected in one of the graphs, then the asso-
ciated nodes in the other graphs must also be connected by an edge with a similar
weight.

This definition implies that a node may be included in the isomorphismT only if it is
contained ineachof the graphsG1, . . . , Gn. For large values ofn, the presence of slight



perturbations thus leads to very small or even empty isomorphisms. A simple consideration
shows the relevance of this problem: Assume thatp is the (small) probability that a parti-
cular conserved center is perturbed in one particular graph,n is the number of conserved
nodes andt is the number of graphs. Then — assuming independence of the perturbations
— the probability that the complete conserved subgraph will be discovered is(1 − p)n·t.
For p = 0.01 andn = t = 10, one obtains a probability of0.37 (0.13 for t = 20, 0.05
for t = 30). More generally, the expected size of the actually conserved subgraph is only
(1− p)t · 100% of the complete subgraph.

Thus, even if the graphs share a significant amount of similarity and contain highly con-
served nodes, it is likely that for each conserved node, at least one graphGi exists such
that the node is missing in this particular graph. For example, in Figure 2, each of the four
nodes1, 2, 4, 5 is “conserved” in three of the four graphs, but as it is also missing in the
remaining graph, it is not part of an isomorphism of the four graphs. Considering only a
subset of the four graphs does not solve this problem as in this case at most three of the
centers could be identified as “conserved”.

To overcome this problem, we suggest the concept of a graph alignment: The central idea
is to allow the insertion of additional nodes — named “dummy nodes” — into the analyzed
graphs. These dummy nodes play a role similar to that of gaps in sequence alignments. If
a conserved node is “missing” in a particular graph for what reason ever, a dummy node
can be introduced to allow for the construction of a valid mapping of the conserved nodes.
(See the dummy nodes shown as gray boxes in Figure 2.)

Formally, a graph alignment1 is defined as a setT ⊆ V1 ∪ {�} × · · · × Vn ∪ {�} (where
� represents a dummy node), such that

1. For allt = (v1, . . . , vn), t′ = (v′1, . . . , v
′
n) ∈ T with t 6= t′: If vi 6= �, thenvi 6= v′i

for i = 1, . . . , n, i.e. each non-dummy node of each graph is contained in at most
one tuple such that the mapping defined by the graph alignment is unambiguous.

2. Fort = (v1, . . . , vn) ∈ T : l(v1) = · · · = l(vn) for all vi 6= �, i.e. all non-dummy
nodes that are mapped onto each other share the same label.

3. For all t = (v1, . . . , vn), t′ = (v′1, . . . , v
′
n) ∈ T with t 6= t′: If vi, v

′
i 6= � and

(vi, v
′
i) ∈ Vi for an i = 1, . . . , n, then(vj , v

′
j) ∈ Ej for all j = 1, . . . , n with

vj , v
′
j 6= � and

∣∣w(vi, v
′
i)− w(vj , v

′
j)

∣∣ ≤ ε for an ε ∈ R, i.e. if two non-dummy
nodes are connected in one of the graphs, then the associated non-dummy nodes in
the other graphs should also be connected by an edge with a similar weight.

We call the nodesvi contained in a tuplet = (v1, . . . , vn) ∈ T aligned.

The additional degree of freedom introduced by this extension has a number of conse-
quences. First, it is now always possible to align two graphs such that all of their nodes
are included in the alignment. Thus, it is no longer required to distinguish between graph

1The term “Graph Alignment” was introduced independently by Berg and Lässig [BL03]. The authors un-
derstand by “Graph Alignment” a related, yet different concept that does, e.g., not allow for the introduction of
dummy nodes.



alignments and subgraph alignments. Second, the additional freedom can lead to ambi-
guities as many different alignments possibly exist for a given set of graphs. Therefore, it
is necessary to introduce a scoring system to separate useful from inadequate alignments.
Intuitively, dummy nodes should only be inserted if no other valid match partner can be
found. Therefore, the insertion of dummy nodes should be penalized. A very simple (ex-
emplary) scoring system is defined by

s(T ) =
∑
t∈T

∑
t=(t1,...,tn)

{
−λ

0
ti = �

ti 6= �
(1)

for a λ ∈ R+. This scoring system simply counts the number of dummy nodes that have
been inserted into the alignment. Depending on the application area, it is of course possible
to apply more sophisticated scoring schemes, which may, e.g., assign different penaltiesλ
to different (types of) nodes. Additionally, one could also weaken point 2 of the require-
ments in the definition above and allow for mismatches (i.e., an alignment of nodes with
different labels), which would then have to be penalized in the scoring system.

In principle, it is possible to extend the standard methods for the detection of graph iso-
morphisms based on clique-detection in association graphs [Le72, BK73]. These require
the scoring system to be additive and monotonic in the size ofT . Yet, as the maximum
clique problem is computationally very complex [DP99], such an approach is not feasible
for more than just a few graphs: One would have to construct an association graph that
contains all potential mappings among the different graph nodes. I.e., this graph would
contain as nodes all tuplest ∈ V1 ∪ {�} × · · · × Vn ∪ {�} that fulfill point 2 of the
definition above. Apparently, the size of such a structure grows very fast with the number
and size of the input graphs and easily reaches impractical values.

In the next section, we therefore suggest two simple heuristic algorithms for the efficient
calculation of graph alignments. These are — as the idea for graph alignments itself —
stimulated by concepts from multiple sequence analysis.

3 Algorithms

In the case ofn = 2, i.e. for pairwise comparisons, the difference between graph iso-
morphisms and graph alignments is small. In particular, a generic extension of (maximal)
pairwise subgraph isomorphisms to pairwise alignments exists that is optimal with respect
to additive scoring systems such as (1). This extension simply assigns all nodes of both
graphs that are not part of the isomorphism to a dummy node in the other graph.

Therefore, the calculation of optimal pairwise graph alignments easily reduces to the cal-
culation of pairwise maximal subgraph isomorphisms. For this problem, the standard
approaches for the detection of graph isomorphisms are usually applicable in practice
[BK73, Le72]. For the graphs that we consider in the experiments section, such a pair-
wise isomorphism can be calculated in less than a second on a standard Linux computer,
if some heuristics are used [SKK02]. To optimize the runtime, we first use an exhaustive
search strategy to calculate a small “seed” isomorphism, which is then extended with a
greedy strategy.



Thus, an efficient way has to be developed to calculate multiple graph alignments from
pairwise graph alignments. In sequence analysis, star alignments and tree alignments are
frequently used schemes for calculating multiple sequence alignments [SM97]. We there-
fore propose to use similar schemes for the calculation of multiple graph alignments. We
plan to investigate more sophisticated methods (like, e.g. algorithms based on continuati-
on methods [GR96] or techniques for the construction of large isomorphisms from small
local matches) in the future.

Let G = {G1, . . . , Gn} be a set of graphs and letT1(G1, G2), . . . , Tn−1(G1, Gn) be
a set of pairwise alignments ofG1 to G2, . . . , Gn. Then, Algorithm 1 can be used to
iteratively merge two alignments in a star-like manner. The algorithm uses the nodes of the
“central” graphG1 as pivot elements to join the two alignments. If a pivot element is not
included in one of the alignments, the respective positions are filled with dummy nodes.
The resulting alignment is not necessarily optimal with respect to the scoring system, but it
can be calculated very efficiently. In the next section, we show that alignments calculated
by Algorithm 1 are often sufficiently reliable in practice.

The quality of star alignments strongly depends on the initially selected central graph. The
latter can either be selected manually (e.g., if one of the graphs is known to be particularly
representative or characteristic for the dataset) or automatically on the basis of the used
scoring system (e.g., (1)). For this purpose, an alignment can be calculated for different
central graphs and then the alignment with the highest overall score is selected. In our
experiments, we simply tested all graphs of the dataset as centers.

Alternatively, it is sometimes better to use a tree alignment scheme to produce the graph
alignment. The algorithm used to perform this calculation is conceptually similar to algo-
rithm 1, but it does not use a fixed central graph. Instead, it merges each alignment with
its nearest neighbor (i.e., the alignment with the highest number of overlapping pivot ele-
ments). Tree alignments often have a higher relevance than star alignments and are better
suited for rather heterogeneous sets of graphs. Yet, for the graphs used in our experiments,
we found the difference among star and tree alignments to be relatively small. The exami-
nation of other, more sophisticated algorithms for the efficient calculation of robust graph
alignments is one direction of our future research.

4 Experiments

Our practical experiments are based on the Cavbase extension of the Relibase system
[SKK02, HBGK03]. In Cavbase, active sites of protein structures are described by gra-
phs in a first-order approximation. The geometrical structure and the physico-chemical
properties of a binding pocket are represented by pre-defined pseudocenters — points in
the three dimensional space that represent the center of a particular property. Two centers
are connected by an edge in the graph representation, if their Euclidean distance is below
12.0 Å and each edge is labeled with the respective distance. The edges of the graph thus
represent geometrical constraints among certain properties. The obtained graphs have a si-
ze of approximately85 nodes on the average, whereas graphs with hundreds of nodes are
frequent and graphs with thousands of nodes do exist. The graphs are also quite dense as



Algorithm 1 Algorithm for the star-like merging of graph alignments using a fixed refe-
rence graphGi as center.

Input: Alignments T1, T2, both
containing Gi(Vi, Ei)

01 For each t = (t.1, . . . , t.n) ∈ T2:
02 If ∃t′ = (t′.1, . . . , t′.m) ∈ T1

s.t. t.i = t′.i:
03 Replace t′ ∈ T1 by

t′′ = (t′.1, . . . , t′.m, t.1, . . . , t.n)
04 Else:
05 Insert t′′ = (�, . . . , �, t.1, . . . , t.n) ∈ T1

06 For each t′ = (t′.1, . . . , t′.n) ∈ T1 :
07 If 6 ∃t = (t.1, . . . , t.n) ∈ T2

s.t. t.i = t′.i:
08 Insert

t′′ = (t′.1, . . . , t′.n, �, . . . , �) ∈ T1

09 Return T1

Output: Merged Alignment from T1 and T2

approximately20 percent of all pairs of nodes are connected by an edge on the average. As
proteins exhibit a certain amount of flexibility and experimental structure determination is
error-prone or mutations could create additional structural variation, one cannot expect to
find identical occurrences of a conserved pattern. Instead, one has to search also for pat-
terns that occur only partially in the different structures to characterize a particular protein
family.

To examine the performance of our approach, we examined a diverse set of 10 enzyme
families (cf. Table 1). We took a number of representative binding pockets from each
of these families and used algorithm 1 to calculate a multiple graph alignment. Using
the generated alignments, it was possible to calculate a “consensus pocket” that contains
information about all pseudocenters conserved in many of the considered pockets2. For
each such centerc, an average position and the spatial variancevar(c) across the data set
are stored (cf. Figure 3). (These values are determined from a rigid superimposition of the
pockets). Additionally, the degree of conservationcon(c) is stored for each of the centers.
Thus, the consensus pocket may be regarded as an analog to position specific scoring
matrices in the sequence domain.

Consensus pockets may not only serve as a guideline to analyze structural conservation and
variation with respect to one particular binding pocket (and could therefore be of interest
for structure-based drug design), they are also useful as search templates to screen large
datasets of protein structures or to classify proteins of unknown function. As the consensus
pocket contains information about the expected position and the allowed deviation for
each of the conserved centers along with information about the importance of the centers,
it is possible to search for occurrences of a particular pattern in protein structures. If a
compatible pattern is found in a protein structure, its similarity to the respective consensus
pocket is calculated. For each conserved centerc that is detected (as centerc′) in the protein
structure, a score from the interval[0, 1] is added to the overall similarity score. This score

2In this particular case, we used a threshold of25%.



is defined as
scorec(c′) = con(c) · fitc(c′) (2)

where
fitc(c′) = 1− 2 · (Φ

0,
√

var(c)
(dist(c, c′))− 0.5), (3)

anddist(c, c′) denotes the spatial distance of the centersc andc′. Φµ,σ denotes the cumu-
lative distribution function of the normal distribution with meanµ and standard deviation
σ. fit thus reaches a value of1.0, if c′ is located exactly at the position ofc. The value
of fit decreases if the distance amongc andc′ grows, whereas the slope of the decrease
depends on the observed variation in the consensus pocket,var(c).

We used the consensus pockets derived for the 10 enzyme families to screen a large and
diverse set of9352 binding pockets from6044 PDB entries (i.e., representing roughly
one quarter of the PDB). As expected, binding pockets corresponding to enzymes of the
respective family lie on the best-scored ranks. For example, among the65 binding pockets
from carbonic anhydrases contained in the dataset,63 were found on the first ranks — and
these were the only hits scoring with a significant (i.e.,≤ 10−5) e-value3; 15 of the binding
pockets were used to calculate the initial graph alignment. The results for the remaining
families are summarized in Table 1.

In general, using the automatically derived consensus pockets, it is possible to identify
most of the members of a protein family and of related families. Without question, the
relevance of the generated consensus pockets strongly depends on the structures selected
to calculate the initial alignment. Thus, it might be possible to improve the results using
carefully selected and unbiased subsets of the representative structures.

5 Conclusions and Outlook

We introduced the new concept of graph alignment, which is a generalization of graph
isomorphism and conceptually related to (multiple) sequence alignment. If multiple graphs
have to be compared simultaneously, graph alignments could lead to better results in the
presence of noise as they are more robust against structural perturbations. In particular,
they allow the detection of partially conserved patterns that occur with slight variations in
many of the analyzed graphs.

We applied our new concept to automatically identify conserved patterns in the binding
pockets of enzymes from different families. The resulting patterns were used to screen a
large dataset of binding pockets. They were relevant enough to identify most of the struc-
tures of the respective families. Using our approach, it should therefore also be possible
to perform an automatic functional annotation of newly determined protein structures in
the context of high-throughput crystallography. A major advantage of our approach is the
fact that the consensus pockets can be calculated fully-automated. Other approaches for
template-based search in protein structure databases (e.g., [WBT97, Ha03, Ru98]) are of-
ten restricted to search templates of a fixed size and cannot be used to derive the templates

3This e-value has been estimated from the empirical distribution of the similarity scores (i.e., from the compa-
rison of one consensus pocket against the dataset of9352 pockets). These scores follow approximately a normal
distribution.



EC-Number Family Name Cons. Centers Entries Used Hits Overlap True Hits

1.01.01.0001 Alcohol dehydrogenase 103 82 67 134 65 72

2.01.01.0045 Thymidylate synthase 91 108 101 105 96 98

2.05.01.0018 Glutathione transferase 196 77 47 30 29 30

2.06.01.0001 Asp. aminotransferase 53 92 83 80 62 64

2.07.01.0112 Protein-tyrosine kinase 61 43 24 50 19 19

2.07.07.0049 Reverse transcriptase 65 100 55 125 55 55

3.04.21.0004 Trypsin 58 115 110 243 109 109

3.04.23.0016 HIV protase 66 129 111 125 111 113

3.05.02.0006 Beta-lactamase 96 52 40 61 33 33

4.02.01.0001 Carbonate dehydratase 42 65 15 63 15 63

Tabelle 1: The 10 enzyme families considered in our application example. The fourth column shows
the number of cavities contributing to establish the consensus pocket of the respective family, the
fifth column gives the number of cavities that were actually contributing to calculate the final ali-
gnment. Hits are entries from the dataset that achieved a significant (i.e.,≤ 10−5) e-value. The
“Overlap”-column contains the number of entries that were used to calculate the alignment and sco-
red significantly. “True Hits” belong to the respective enzyme family according to their classification.
“Hits” that are not “True Hits” typically belong to closely related enzyme families or are lacking a
correct annotation. “Cons. Centers” shows the number of conserved centers that have been included
in the consensus pocket.

Abbildung 3: The consensus pocket for the family of carbonic anhydrases. The amino acids and
the solvent accessible surface from one structural example (PDB-code 1a42) are shown only for
orientation. The spheres represent the mean position of the conserved pseudocenters whereas small
spheres represent areas of high structural conservation, while large spheres represent centers with
higher spatial variation across the analyzed data set.



automatically from a large set of reference structures. In the future, we plan to examine
more elaborate algorithms and scoring systems for the calculation of optimal graph ali-
gnments. The general concept of graph alignments might also be applicable to a number
of different problems and application areas.
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