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Abstract

Several fuzzy extensions of decision tree induction, an established ma-

chine learning method, have already been proposed in the literature. So far,

however, fuzzy decision trees have almost exclusively been used for the perfor-

mance task of classification. In this paper, we show that a fuzzy extension of

decision trees is arguably more useful for another performance task, namely

ranking. Roughly, the goal of ranking is to order a set of instances from most

likely positive to most likely negative. The motivation for applying fuzzy deci-

sion trees to this problem originates from recent investigations of the ranking



performance of conventional decision trees. These investigations will be con-

tinued and complemented in this paper. Our results reveal some properties

which seem to be crucial for a good ranking performance—properties that

are better and more naturally offered by fuzzy than by conventional decision

trees. Most notably, a fuzzy decision tree produces scores in terms of mem-

bership degrees on a fine-granular scale. Using these membership degrees as

a ranking criterion, a key problem of conventional decision trees is solved in

an elegant way, namely the question of how to break ties between instances

in the same leaf or, more generally, between equally-scored instances.

1 Introduction

Decision trees are one of the most extensively studied methods in machine learning

and data mining. Several factors contribute to their popularity, notably the follow-

ing. Decision trees are comprehensible and interpretable by the domain expert and

can naturally handle different types of attributes (e.g., numerical and categorical).

Moreover, they are intrinsic multi-class learners, scale comparatively well with the

number of attributes and instances [24], and have an attribute selection mechanism

built-in. Finally, decision trees have shown to obtain classification performance close

to or even outperforming other state-of-the-art methods, especially when they are

boosted or used in a different ensemble method [12]. The two most widely used

implementations for decision trees are CART [4] and C4.5 [25].

Traditionally, decision trees are used in the common supervised classification

setting where the goal is to find an accurate mapping from instance space to label

space. However, in many applications it is not enough to predict the most likely

class label for each test instance [6]. What is needed instead is, assuming a binary

label space for simplicity, a total ordering of test instances from most likely positive

to most likely negative. In this way, a ranking of test instances is obtained. For

example, a credit-card fraud detection system may need to rank bank accounts



according to the possibility of being compromised. The rank position of an instance

depends on the score it receives. Obviously, the mapping from an instance to the

probability of belonging to the positive class is a perfect scoring function, but so is

any monotone transformation thereof. It follows that a good probability estimator

is a good ranker, but not necessarily the other way around. Even more interestingly,

improving accuracy does not necessarily decrease the number of ranking errors, and

vice versa [11]. The standard performance metric for the supervised ranking setting

is the area under the ROC curve, or AUC for short [3].

A decision tree, trained in the usual way as a classifier, can be used for ranking

by scoring an instance in terms of the frequency of positive examples found in

the leaf to which it is assigned. A few papers provide experiments showing that

unpruned trees lead to better rankings (higher AUC values) than standard pruned

trees [23, 10]. This is counterintuitive at first sight since it is well-known, at least

for classification accuracy, that pruning prevents or alleviates the overfitting effect

and strongly reduces variance. Several other enhancements to the trees have been

proposed to improve their ranking performance, as we will review later.

Fuzzy decision trees are more advanced in the sense that they model uncer-

tainty around the split values of the features, resulting in soft instead of hard splits.

Moreover, they naturally produce scores in the form of membership degrees. Sev-

eral papers have compared decision trees with their fuzzy variants, but always in

terms of classification accuracy; see for example [19] and references therein. Yet,

even though some gains have occasionally been reported, it is still unclear whether

fuzzy decision trees can systematically and significantly outperform non-fuzzy trees

in terms of classification accuracy.

In this paper, we argue that a fuzzification of decision trees is potentially more

useful for the problem of ranking, that is, if performance is measured in terms of

AUC instead of classification accuracy. The main aim of the paper is to corroborate

this claim by offering convincing explanations for the good ranking performance of



fuzzy decision trees. To this end, we first readdress the empirical observations con-

cerning conventional (non-fuzzy trees) in a systematic way. Afterward, we present

a formal analysis which, for the first time, shows a close connection between the

AUC and the number of distinct scores assigned to test instances. All previous

(and sometimes surprising) observations can be explained by our analysis. As a

consequence of these findings, we conclude that fuzzy decision trees can be expected

to produce good rankings, and we conduct an extensive set of new experiments

on benchmark data sets to verify this conjecture. More specifically, we show that

fuzzy trees can consistently outperform the best methods for AUC-optimizing trees

while still maintaining the benefits of decision trees such as comprehensibility and

interpretability.

The remainder of the paper is organized as follows. Background and notation is

given in Section 2. In Section 3, we discuss related work from the machine learning

literature. Afterward, in Section 4, we provide a first set of experiments that verify,

correct, and extend earlier empirical results. Inspired by these results, we provide

our formal analysis in Section 5. In Section 6, we show that fuzzy decision trees are

very good rankers. Section 7 concludes the paper.

2 Background and Notation

In this section, we briefly explain the bipartite ranking problem, ROC curves, and

the AUC. Moreover, we provide a short note on the Laplace correction. We assume

that the reader is familiar with the basic concepts of decision tree learning.

2.1 Bipartite Ranking Problem

Consider an instance space X and let the sample space X × {−1, +1} be endowed

with a probability measure P; thus, P(x, c) denotes the probability to observe in-

stance x with class label c. An instance x with class label +1 (−1) is called a



positive (negative) instance. A decision tree f is considered as an X → [0, 1] map-

ping and f(x) is interpreted as the probability or, more generally, as a degree of

confidence that the class label of x is +1. Henceforth, we call f(x) the score of

instance x and we score an instance in terms of the frequency of positive examples

found in the leaf to which it is assigned.. The goal is to use the scores in order to

rank instances such that the positives are ranked higher than the negatives.

2.2 ROC Curves and the AUC

A natural performance metric for ranking is the probability of the event f(x) > f(y)

given that x is a positive instance and y is a negative instance, both independently

drawn from the sample space according to P(·). Empirically, this probability has

to be estimated from a sample S = {(xi, ci)}
n
i=1 ⊆ (X × {−1, +1})n. An unbiased

estimator is the Wilcoxon-Mann-Whitney statistic, which is given by the fraction

of pairs (xi,xj), with xi a positive instance and xj a negative instance such that

f(xi) > f(xj) [3]. So, we simply count the number of pairs of instances that are

correctly ordered. In case of a tie in the scores, f(xi) = f(xj), the instance pair is

counted with 1/2 instead of 1.

Interestingly, the above statistic is equivalent to the area under the ROC curve,

or AUC for short [3]. The output of a decision tree f has to be thresholded in order

to produce a crisp classification (i.e., to decide whether the instance is a positive or

a negative one). When the score is above some threshold t ∈ [0, 1], then we classify

the instance as positive; otherwise as negative. A positive instance that is correctly

classified is called a true positive. If it is classified as negative, then it is called a

false negative. A true negative and a false positive are defined analogously. The

total number of true positives, false positives, true negatives, and false negatives are



denoted by TP , FP , TN , and FN , respectively. From these numbers we derive

tpr =
TP

TP + FN
, tnr =

TN

TN + FP
,

fpr =
FP

FP + TN
, fnr =

FN

TP + FN
,

where true positive rate is denoted by tpr and true negative rate by tnr . We note

that fpr = 1−tnr is the false positive rate and fnr = 1−tpr is the false negative rate.

Now, an ROC curve visualizes these performances across all possible classification

thresholds. So, if there are s different scores assigned to instances in the sample S,

then there are s+1 thresholding ranges, each resulting in different fpr and tpr values.

The connection of these points in the (fpr , tpr) plane results in a piecewise linear

curve, which is called the ROC curve. Since a non-convex ROC curve indicates a

suboptimal behavior that can easily be repaired, the convex hull of the ROC curve

can be used as reference without loss of generality [8]. Fig. 1 gives an illustration.

For decision trees, it has been shown that the ROC convex hull can be generated

efficiently [9]. Each leaf corresponds to a line segment of the curve, with slope equal

to the class distribution in that leaf. Hence, ordering the leaves according to their

class distributions (i.e., the scores) generates an ROC convex hull. The AUC is then

equivalent to the sum of the area of the trapezoids defined by the line segments of

the convex hull.

2.3 Laplace Correction

The so-called Laplace correction is often used in probability estimation. It simply

adds a pseudo-count of 1 to the relative frequencies of all classes. For a decision

tree, this means that, given p positive examples and n negative examples in a leaf,

the estimated probability for the positive class is

p + 1

p + n + 2
. (1)
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Figure 1: An empirical ROC curve and its ROC convex hull (ROCCH). Note that
an ROC curve is always dominated by its convex hull.

Roughly speaking, Laplace correction yields a more cautious estimation, which is

biased toward the middle (probability 1/2) and avoids extreme estimates; in fact,

neither 0 nor 1 can be produced as an estimate (though convergence toward these

values is still possible for large sample sizes). Even though the Laplace correction

appears to be ad-hoc at first sight, (1) can be derived from a uniform prior on [0, 1]

as a Bayes estimate of the success parameter of a binomial distribution [2, p. 71-74].

3 AUC-Optimizing Decision Trees

Relative class frequencies in leaf nodes of a decision tree have been shown to produce

poor scores [26, 15, 31]. Even though, as mentioned earlier, good probability esti-

mation is only a sufficient but not a necessary precondition, this suggests that the

learning strategy of decision trees is not suitable for learning good rankers. Several

researchers have therefore tried to improve the ranking performance of decision trees;

see for example [9, 10, 27, 32, 5]. In this paper, we restrict ourselves to improvements

involving a single decision tree, and hence do not consider ensemble methods such

as bagging, which produce incomprehensible results. Our special interest concerns

the frequently cited paper [23], in which the authors propose two enhancements to

improve the AUC of decision trees. They call the resulting method C4.4 and show



empirically that it leads to higher test AUC values than the standard C4.5 learner,

that was used as a baseline. The two proposed enhancements are the following:

• First, learn unpruned trees by turning off error-based pruning and node col-

lapsing in C4.5. The stopping criterion for tree building is then that either the

number of instances in the leaf is at most two, or all the features have been

exhausted on the current path. The main idea is that the branches removed

by the pruning step might still be useful for ranking. They allow for assigning

different scores to instances contained in a hyper-rectangle that is considered

good enough for classification purposes.1 A drawback of this technique is that

unpruned decision trees may become extremely large.

• Second, smooth the class frequencies in a leaf using Laplace correction. An

unpruned tree will often produce leaves with low cardinality (i.e., the leaves

comprise only a small number of training instances) and, hence, the tree will

produce unreliable scores. The most compelling example is a pure leaf, that

is, a leaf consisting of only positive or only negative examples. Such a leaf

produces a score of either 0 or 1, indicating that it is most certain of its

output. Laplace correction makes the scores from small leaves less extreme

and, as conjectured by the authors, hereby more accurate and reliable. The

win-loss-equal statistics that they obtained show that most of the improvement

of C4.4 over C4.5 is due to the Laplace correction. Interestingly, a generalized

version of the Laplace correction, called m-estimate, was found to not produce

higher test AUC values [10].2

In a response to these empirical results, [16] mentions the following two possible

disadvantages of C4.4. First, the unpruned tree will probably overfit, and this may

1A decision tree divides the input space by means of hyper-rectangles since, at each node, a
feature test induces a decision boundary perpendicular to the corresponding axis.

2Note that Laplace correction does not change the accuracy of a decision tree, except when the
score is 0.5 (which is in turn very unlikely due to the tree learning strategy).



cause unreliable class frequencies in the leaves. Second, the number of training ex-

amples in the leaves of an unpruned tree is often (very) small. It follows that these

leaves are likely to give the same score to test instances which are very different

from each other in the sense of following different branches in the tree. To overcome

these possible disadvantages, the authors propose the following method to improve

ranking performance. The tree building strategy is left unchanged, i.e., the learning

algorithm C4.5 is used in its standard form. However, in the prediction phase, a

test instance is propagated along all branches emerging from a node, with a smaller

weight for the branches not satisfying the test predicate in that node. The weights

are multiplied along the paths toward leaves and corresponding predictions are aver-

aged. So, each leaf contributes to the overall score of a test instance and the weight

of the contribution is determined by the number of feature tests that failed on the

path from root to leaf. As a rationale of this approach, the authors explain that

it is natural to expect a small chance that feature values are altered due to noise

or errors in the training set. Hence, different paths in the tree should be explored.

Experimental results show that this technique is able to outperform C4.4 when the

pruning level and a second parameter controlling the weight of each branch are set

appropriately. Yet, only six very small data sets are used in these experiments. The

method has not been used afterward or further investigated, maybe also because a

formal analysis of its effectiveness is missing (in fact, as we will see later, the ratio-

nale of the approach is not the true reason for its improved AUC). Nonetheless, at

least in the prediction phase, some connections with fuzzy decision trees exist, since

an instance can be propagated simultaneously along multiple paths.

4 Experimental Analysis of AUC-Optimizing Trees

In this section, we present a first set of experiments that elaborate on some details

and (implicit) assumptions of the aforementioned two methods. More specifically,



we investigate the effect of three factors that have been considered to be influential

for the AUC of decision trees. We start by explaining the setup of the experiments.

4.1 Experimental Setup

We used twenty binary classification data sets from the UCI benchmark repository

[1]. The data sets vary strongly in size, number and type of features, and in class

distribution. Their most important characteristics are given in Table 1. The tree

induction algorithm that we use is the implementation of C4.5 provided by the WEKA

machine learning package [30]. This package is open-source and for free available

(http://www.cs.waikato.ac.nz/ml/weka/).

The reported values of the AUC (or any other test statistic to our interest) are

obtained as follows. We apply a 10-fold stratified cross validation procedure, and

on each training fold we learn ten decision trees with different pruning levels. The

pruning level is controlled by the confidence factor, a parameter of the learning

algorithm. C4.5 allows for confidence factors between 0 and 0.5, where smaller

values incur more pruning. The confidence factor of decision tree #i ∈ {1, . . . , 9} is

set equal to i/20, and the tenth decision tree is a completely unpruned tree (pruning

turned off, confidence factor is irrelevant). Since the default value of the confidence

factor in C4.5 is 0.25, a standard pruned tree (i.e., a conventional decision tree) in

earlier experiments is our decision tree #5. For each pruning level, the values of

the test statistic on the ten test sets are recorded and averaged. This procedure is

repeated twenty times and each time the data set is randomly shuffled. We report

the estimation of the expected value of the test statistic in terms of the mean,

accompanied by the estimated standard deviation.

To analyze some of the results more thoroughly, we applied the Wilcoxon signed-

ranks test as recommended in [7]. The test looks at the difference between the test

statistic values of two methods on each data set. These differences are ranked

according to their absolute values; average ranks are assigned in case of ties. The



Table 1: The twenty data sets: (1) reference number, (2) name, (3) number of
instances, (4) number of nominal features, (5) number of numerical features, and
(6) percentage of the majority class.

# name size nom num % maj class

1 adult 48842 7 6 76.07
2 breast cancer 286 9 0 70.28
3 breast wisconsin 699 0 8 65.52
4 caravan 5822 85 0 65.52
5 credit rating 690 9 6 55.51
6 german credit 1000 13 7 69.40
7 heart statlog 270 7 6 59.50
8 horse colic 368 14 7 63.04
9 house votes 435 16 0 38.62

10 ionosphere 351 0 34 35.90
11 kr vs kp 3196 36 0 52.22
12 liver 345 1 5 42.03
13 monks1 556 6 0 50.00
14 monks2 604 6 0 65.72
15 pima 768 0 8 65.10
16 sick 3772 22 7 93.16
17 sonar 208 0 60 53.36
18 spambase 4601 0 57 61.00
19 spect 267 22 0 58.80
20 tic-tac-toe 958 9 0 65.34

test statistic is then given by the difference between the sum of ranks for the data

sets on which the second method outperformed the first and the sum of ranks for

the opposite case.

4.2 Dependence of AUC on Pruning Level

Unpruned trees with Laplace correction have been shown to consistently outperform

standard pruned trees in terms of AUC [23]. However, the effect of decreasing the

pruning level has not been tested and it was implicitly assumed to be monotone.

Also, no tests have been performed comparing different pruning levels for a decision

tree without Laplace correction. So, to complement earlier experiments, we show in

Fig. 2(a) the typical behavior of the AUC obtained by the ten decision trees for four



representative data sets.3 The pruning level is decreasing from left to right, i.e., left

is highly pruned and right is completely unpruned. Solid and dashed curves show

the result for decision trees, respectively, with and without Laplace correction. We

can make three interesting observations from these illustrations:

• First, comparing dashed and solid curves, it can be seen that Laplace correc-

tion applied in the leaf nodes never decreases the AUC, and hence, Laplace-

corrected decision trees significantly outperform conventional trees. We there-

fore strongly advocate the use of Laplace correction.

• Second, in conjunction with Laplace correction, unpruned trees indeed pro-

duce better rankings than the trees pruned at the default level. The Wilcoxon

signed-ranks test shows that we can reject the null hypothesis (equal ranking

performance of unpruned trees and standard pruned trees) at the 1% signif-

icance level. However, we note that the value of the AUC is not always a

monotone decreasing function of the pruning level, or equivalently, a mono-

tone increasing function of the depth of the tree. Therefore, it seems to be a

good idea to try out several pruning levels below the standard value used for

classification purposes.

• Third, no clear trend can be identified when inspecting the dashed curves only

(trees without Laplace correction), although in general the standard pruned

trees have higher AUC values than unpruned trees. Nonetheless, when using

the Wilcoxon signed-ranks test, we do not have a statistically significant dif-

ference at the 5% significance level due to some data sets where the unpruned

tree outperforms with a large margin the standard pruned tree.

Table 2 summarizes these three findings for all data sets by reporting the AUC

of decision trees #1, #5, and #10. A fourth column indicates where the highest

3These data sets are representative in the sense that the shape of the curves of the test statistics
and the corresponding differences in absolute values represent the other data sets as well.



AUC occurs. The results verify that the best rankers are decision trees with Laplace

correction and, except for a few exceptions, with less pruning than is commonly used

for classification purposes.

4.3 The Effect of Laplace Correction

The above results show that Laplace correction has an important effect; in fact, it

yields the largest improvement in AUC. In earlier work, this effect was attributed

to an increased reliability, i.e., scores of small leaves are presumably less reliable

estimates of the true probabilities of the positive class as are scores of large leaves.

This distinction is especially considered to be important when extreme scores are

produced by small leaves since corresponding instances are ranked at the very ends

of the list of instances, and hereby, may incur large ranking errors.

More specifically, consider a leaf with p positive and n negative examples, a

second one with corresponding values p′ and n′. Moreover, suppose that p > n,

and that both leaves have the same score s1 = p/(p + n) = p′/(p′ + n′) = s2.

The corresponding Laplace-corrected scores are s′1 = (p + 1)/(p + n + 2) and s′2 =

(p′+1)/(p′+n′+2), respectively, which means that s′1 > s′2 if and only if p+n > p′+n′.

In other words, Laplace correction breaks ties between leaves with the same score

in favor of the larger one. For example, an instance falling in a leaf with 40 positive

and 10 negative examples will be ranked ahead of an instance in a leaf with only 4

positives and 1 negative. From a statistical point of view, this is clearly reasonable,

since the prediction of the positive class is arguably more reliable for the former

than for the latter. Analogous corrections are made in the case where p < n, i.e.,

for presumably negative leaf nodes.

It is worth noting that, apart from breaking ties between equally scored instances,

Laplance correction may also produce a reversal of scores. Thus, it may happen

that s1 > s2 while s′1 < s′2 for the corrected scores, a property which is perhaps

less desirable. In particular, instances falling into pure leaf nodes with only positive



(negative) instances should still be ranked above (below) the instances falling into

non-pure leaves. This is however not guaranteed, especially in the case of small

nodes (the score of a pure leaf with only 2 positive examples, for example, would be

strongly reduced from 1 to 3/4). To elaborate on this, we tested whether Laplace

correction changes the rank position of extremely scored instances with respect to

instances that do not fall into pure leaves. In our experiments, we have found that

this event is unlikely to occur, and when it still does, then the change in rank position

is on average very small; see [13] for the details of the results. Thus, it seems that

the main effect of Laplace correction is local tie breaking : The ranking of instances

is refined by resolving ties between instances having the same score, i.e., by turning

some equalities into strict order relations, but mostly without swapping the position

of instances. We conjecture that this effect is the true benefit of Laplace correction.

4.4 The Number of Distinct Scores

As a last experiment, we investigate a conjecture of [16], namely that large trees

are only able to produce a small number of different scores. Instances with equal

score are potentially disadvantageous for AUC because they can at most contribute

a count of 1/2. Hence, to obtain more diversity among the instances, a pruned tree

should be preferred. The main observation here is that the cardinality of a leaf

determines the number of scores it can produce, i.e., a leaf with m examples can

only produce m + 1 different (uncorrected) scores, namely 0, 1/m, 2/m, . . . , 1.

However, we conjecture that the net effect of pruning on the total number of

scores produced by a tree is not clear. On the one hand, pruning indeed increases

the cardinality of the leaves (and, hence, reduces the probability that two leaves

have the same score). On the other hand, however, it also reduces the number of

leaves. In any case, it is clear that Laplace correction increases the number of scores

since two leaves produce the same score only when the absolute numbers of positive

and negative instances are identical (and not only the relative frequencies).



Fig. 2(c) shows the typical behavior of the number of different scores for the four

representative data sets, and Table 3 summarizes the findings for all data sets and

decision trees #1, #5, and #10. We make the following two observations from these

illustrations and statistics, depending on the type of features in the data set:

• First, for the data sets with only numerical features, the number of scores is

almost always non-decreasing in the pruning level (since a numerical feature

can be tested repeatedly on a path). When we have a decrease, then this

decrease is very small, often limited to low pruning levels, and only happens

in case of no Laplace correction. This shows that a few leaves can indeed start

to produce the same scores, but Laplace correction breaks the ties.

• Second, even for data sets with only nominal features we can have an increase

in scores along all pruning levels (e.g., spect and house votes). When this

is not the case, we often see that the increase is up to a certain pruning level.

After that level, trees with Laplace correction slightly decrease the number of

scores (this happened only on four data sets). Without Laplace correction,

the decrease is of course stronger.

Independent of the aforementioned two observations, it is interesting to compare

Figs. 2(a) and 2(c), suggesting that the decision tree that produces the best rankings

is the one that assigns many different scores to the test instances.

4.5 Conclusions from the Experimental Results

With this set of experiments we have verified earlier results in more detail and we

tested some issues that have not been carefully considered before. Summarizing the

results, we confirm that Laplace correction is always beneficial and that unpruned

trees almost always have higher AUC than standard pruned trees (at least with

Laplace correction). In addition, our results show that a slightly pruned tree can

have higher AUC than an unpruned tree, at least when it produces more distinct
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Figure 2: Test statistics of the ten decision trees. Solid and dashed curves repre-
sent trees, respectively, with and without Laplace correction. An asterisk indicates
the first tree with the highest test statistic, which is the AUC of C4.5 and the
perturbation method (a - b) and corresponding number of different scores (c - d).



Table 2: The average AUC and standard deviations of decision trees #1, #5, and #10. Results are shown in two parts: without
and with Laplace correction. The fourth column of each part lists the decision trees that obtain the highest AUC.

#
without Laplace correction with Laplace correction

1 5 10 max 1 5 10 max

1 .8739 ± .0014 .8874 ± .0013 .8638 ± .0019 7 .8741 ± .0015 .8932 ± .0014 .8969 ± .0009 9
2 .5691 ± .0176 .5942 ± .0285 .5830 ± .0246 2-3 .5691 ± .0176 .5933 ± .0278 .6127 ± .0210 2-3
3 .9605 ± .0035 .9638 ± .0051 .9580 ± .0084 7-9 .9660 ± .0035 .9717 ± .0034 .9760 ± .0036 10
4 .5000 ± .0000 .4997 ± .0004 .5777 ± .0091 10 .5000 ± .0000 .4990 ± .0005 .6997 ± .0093 10
5 .8915 ± .0057 .8940 ± .0063 .8530 ± .0121 5-6 .8929 ± .0060 .9079 ± .0055 .9022 ± .0034 8
6 .6261 ± .0260 .6467 ± .0148 .6253 ± .0142 2 .6323 ± .0261 .7100 ± .0084 .7090 ± .0108 2
7 .7622 ± .0188 .7583 ± .0176 .7408 ± .0215 1 .7728 ± .0219 .8011 ± .0182 .8178 ± .0245 10
8 .8517 ± .0192 .8517 ± .0192 .8414 ± .0167 1-5 .8517 ± .0192 .8517 ± .0192 .8617 ± .0158 10
9 .9670 ± .0082 .9797 ± .0073 .9762 ± .0076 2 .9728 ± .0061 .9852 ± .0041 .9875 ± .0043 10

10 .8663 ± .0170 .8660 ± .0150 .8822 ± .0141 10 .8998 ± .0132 .9083 ± .0137 .9126 ± .0144 10
11 .9948 ± .0013 .9967 ± .0012 .9969 ± .0012 10 .9967 ± .0005 .9988 ± .0003 .9991 ± .0002 10
12 .5753 ± .0152 .6251 ± .0150 .6423 ± .0144 10 .5723 ± .0145 .6406 ± .0128 .6537 ± .0139 10
13 .9233 ± .0145 .9823 ± .0054 .9804 ± .0051 9 .9233 ± .0145 .9823 ± .0054 .9858 ± .0037 9
14 .5000 ± .0000 .5356 ± .0168 .6532 ± .0103 8 .5000 ± .0000 .5388 ± .0179 .6742 ± .0099 8
15 .7412 ± .0145 .7558 ± .0084 .7546 ± .0102 4 .7533 ± .0134 .7805 ± .0098 .7870 ± .0104 10
16 .9468 ± .0088 .9523 ± .0075 .9512 ± .0089 8-9 .9441 ± .0101 .9704 ± .0076 .9917 ± .0027 8-10
17 .7344 ± .0197 .7439 ± .0222 .7416 ± .0213 2-3 .7841 ± .0160 .7814 ± .0145 .7851 ± .0156 2-3
18 .9360 ± .0027 .9377 ± .0025 .9343 ± .0027 2 .9476 ± .0024 .9642 ± .0013 .9672 ± .0016 10
19 .7112 ± .0215 .6626 ± .0268 .7033 ± .0210 1 .7191 ± .0206 .7121 ± .0188 .7325 ± .0210 7
20 .8352 ± .0136 .9117 ± .0049 .8966 ± .0084 9 .8314 ± .0133 .9229 ± .0042 .9374 ± .0035 10



Table 3: The average number of distinct scores and standard deviations of decision trees #1, #5, and #10. Results are shown in
two parts: without and with Laplace correction. The fourth column of each part lists the decision trees that produce the most
distinct scores.

#
without Laplace correction with Laplace correction

1 5 10 max 1 5 10 max

1 46.3 ± 3.1 168.5 ± 6.9 989.7 ± 6.0 10 50.4 ± 2.9 182.5 ± 7.0 1251.8 ± 9.5 10
2 3.1 ± 0.3 4.2 ± 0.2 10.7 ± 0.4 10 3.1 ± 0.3 4.2 ± 0.2 15.3 ± 0.4 10
3 5.4 ± 0.3 6.4 ± 0.3 7.2 ± 0.3 7 5.6 ± 0.4 7.3 ± 0.4 11.3 ± 0.2 10
4 1.0 ± 0.0 1.5 ± 0.2 42.8 ± 1.2 10 1.0 ± 0.0 1.9 ± 0.4 78.2 ± 1.4 10
5 5.3 ± 0.4 9.2 ± 0.5 16.9 ± 0.5 10 5.4 ± 0.4 9.3 ± 0.5 25.5 ± 1.3 10
6 6.8 ± 1.2 20.2 ± 0.3 17.6 ± 0.5 9 6.7 ± 1.1 23.7 ± 0.3 27.9 ± 0.7 10
7 7.1 ± 0.3 8.5 ± 0.2 7.5 ± 0.3 5 7.7 ± 0.4 9.4 ± 0.3 12.7 ± 0.3 10
8 3.9 ± 0.1 4.2 ± 0.2 25.9 ± 0.9 10 3.9 ± 0.1 4.3 ± 0.2 28.0 ± 0.8 10
9 4.5 ± 0.3 5.5 ± 0.2 8.8 ± 0.3 10 4.5 ± 0.3 5.5 ± 0.2 9.1 ± 0.3 10

10 4.0 ± 0.1 4.3 ± 0.2 4.4 ± 0.2 8 6.2 ± 0.3 7.2 ± 0.3 7.6 ± 0.3 10
11 7.5 ± 0.2 6.3 ± 0.2 4.5 ± 0.3 1 20.0 ± 0.3 22.4 ± 0.5 24.8 ± 0.5 10
12 6.6 ± 1.1 11.5 ± 0.6 11.2 ± 0.5 3 6.6 ± 1.1 16.6 ± 0.4 17.3 ± 0.4 10
13 3.9 ± 0.3 3.0 ± 0.2 4.7 ± 0.4 10 12.2 ± 0.6 15.1 ± 0.5 20.6 ± 0.6 10
14 1.0 ± 0.0 4.6 ± 1.4 13.7 ± 0.5 8 1.0 ± 0.0 6.8 ± 2.2 21.2 ± 0.4 9
15 9.3 ± 0.6 11.1 ± 0.6 11.6 ± 0.4 8 10.4 ± 0.9 13.1 ± 0.9 14.8 ± 0.8 10
16 10.9 ± 0.7 15.1 ± 0.6 16.8 ± 0.5 8 14.2 ± 1.4 22.6 ± 1.2 28.3 ± 0.6 10
17 4.5 ± 0.1 4.3 ± 0.1 4.2 ± 0.1 2 7.9 ± 0.3 8.0 ± 0.3 8.1 ± 0.3 10
18 20.1 ± 0.5 26.6 ± 0.6 27.5 ± 0.4 7 31.7 ± 0.6 45.8 ± 0.9 53.1 ± 0.7 10
19 3.4 ± 0.2 6.1 ± 0.5 9.5 ± 0.3 10 3.4 ± 0.2 6.3 ± 0.5 13.4 ± 0.6 10
20 13.9 ± 0.6 14.4 ± 0.4 11.1 ± 0.3 7 25.5 ± 1.4 33.2 ± 0.5 32.9 ± 0.5 9



scores. We may conclude that there seems to be a strong positive correlation between

number of scores and AUC. In the next section, we present a formal analysis that

indeed shows that a higher number of possible scores (implying less ties among

ranked instances) is likely to result in a higher AUC.

5 Formal Analysis of AUC-Optimizing Trees

We will mainly adopt a geometric perspective, as we think that it greatly facilitates

the understanding. Given a set of instances S, the ROC curve of a decision tree is

constructed as follows. Let the leaves be numbered in decreasing order according

to their score and denote by Li the i-th leaf or, depending on the context, the set

of (training) examples in the i-th leaf (i = 1, . . . ,m). With pi and ni denoting,

respectively, the number of positive and negative examples in Li, the score of this

leaf is si = pi/(pi + ni). Let P = p1 + . . . + pm be the total number of positive

instances in S and, analogously, we define N = n1 + . . . + nm as the number of

negative instances in S. Now, each leaf Li contributes a segment Si with slope

di = (pi · N)/(ni · P ), and lengths ∆xi = ni/N and ∆yi = pi/P in the directions of

the abscissa and ordinate, respectively. The concatenation of these ordered segments

leads to a piecewise linear convex curve, which is the ROC convex hull. In general,

we denote the concatenation of segments Sa and Sb by Sa|Sb.

Now, suppose that a leaf Li is further split into two leaves Li1 and Li2. Without

loss of generality, we assume that di1 = pi1/ni1 ≥ pi2/ni2 = di2, where pi1 is the num-

ber of positive examples in Li1 and the other quantities are defined analogously. In

the original ROC curve, the segment Si is replaced by two segments Si1 and Si2 such

that Si1 shares the starting point and Si2 the end point of Si. Obviously, the curve

thus obtained dominates the original curve, since Si runs below Si1|Si2 while the

rest of the curve remains unchanged. Therefore, the area under the modified curve

is larger than the area under the original curve (or at least equal if di1 = di2). The



new area, however, may not correspond to the AUC of the modified tree since the

segments S1, . . . , Si−1, Si1, Si2, Si+1, . . . , Sm are not necessarily well-ordered, which

means that at least one of the conditions di−1 ≥ di1 and di2 ≥ di+1 might be vio-

lated. Hence, the question arises whether a locally beneficial modification has also

a positive global effect on the AUC.

Lemma 5.1. Consider a piecewise linear continuous curve consisting of m segments

S1, . . . , Sm and let dj ≥ 0 be the slope of Sj. If dj−1 < dj, then swapping segments

Sj−1 and Sj can only increase the area under the curve.

Proof. Since the rest of the curve remains unaffected, it suffices to consider the

change of the area of the intersection between the area under the original curve and

the rectangle defined by the diagonal that starts in the starting point of Sj−1 and

ends in the endpoint of Sj. Thus, subsequent to a suitable transformation, we can

assume without loss of generality that Sj−1 starts in (0, 0) and Sj ends in (1, 1).

With (a, b) being the point where the two segments meet, we must have b ≤ a since

the slope of Sj−1 is smaller than the slope of Sj, which means that (a, b) must be

located below the diagonal. After swapping the two segments, they will meet in the

point (1 − a, 1 − b), which is then located above the diagonal. Thus, Sj|Sj−1 runs

above Sj−1|Sj and, therefore, the area under the curve can only increase.

Theorem 5.2. Splitting a leaf can only increase the empirical AUC of a decision

tree.

Proof. We have seen that splitting a leaf Li and replacing the corresponding segment

Si by Si1 and Si2 (in the correct order) leads to a curve that runs above the original

ROC curve and, therefore, covers a larger area. The new AUC is given by the

area under the curve that is obtained after re-ordering the segments in decreasing

order according to their slopes. This re-ordering can be achieved by repeatedly

swapping the segment Si1 with its left neighbour and, likewise, repeatedly swapping

the segment Si2 with its right neighbour. The previous lemma has shown that, in



each of these steps, the area under the curve can only increase. Thus, the theorem

immediately follows by induction over the number of swaps that are needed to bring

the segments into a proper ordering.

As shown by the previous result, a local improvement of a single segment is

also globally beneficial in terms of AUC. Restrictively, however, one has to consider

that our result refers to the empirical AUC and not the true AUC. In fact, the

score associated with a leaf as well as the slope of the corresponding segment are

only estimations that may deviate from the real values. In the true ROC curve of

a decision tree, the length of a leaf’s segment corresponds to the probability that

an instance falls into that leaf, which is estimated by the relative frequency in

the training set. Likewise, the true slope δi of the segment is determined by the

conditional probabilities of positive and negative instances in the leaf, and therefore

may deviate from the estimation di derived from relative frequencies. As a result,

the ordering of the segments according to the di may not coincide with the ordering

according to the δi. In this case, the true ROC curve is non-convex and, therefore,

the ranking performance in terms of AUC suboptimal. Formally, a non-convexity

is caused by an inversion, that is, a pair of leaves (Li, Lj) such that di > dj but

δi < δj.

Nonetheless, even by looking at the problem from this point of view, there are

two other convincing explanations for our finding that, in general, having more

scores is better than having less:

• First, the ROC curve that can be obtained by splitting a segment, and hence

increasing the number of scores, is at least potentially better than the original

curve. Roughly speaking, the more small segments are available (i.e., the less

ties among ranked instances), the more convex the curve can become. To

illustrate, consider the two extreme cases: If there is only a single leaf, the

ROC curve consists of a single segment, namely the diagonal, and the AUC is



0.5. On the other hand, if each instance is comprised by a single leaf, the AUC

can become arbitrarily close to 1, given that the leaves are correctly ordered.

• Second, the main pitfall preventing from a high AUC in the case of many

leaves is inversions due to wrongly estimated scores, which may turn potential

convexities into actual concavities. However, given the assumption that the

estimation errors are bounded, inversions are likely to have a more local effect,

i.e., they concern only leaves that are “neighbored” in terms of their scores.

Again, this means that having more scores is better, as it increases the proba-

bility that two leaves are well-ordered (there is a smaller probability that two

randomly chosen leaves are neighbored and, therefore, potentially inverted).

To illustrate and further investigate these two points, we conduct a simple but

conclusive experiment on synthetic data. The results will show that our formal

analysis also applies to the true AUC with high probability, even when estimation

errors are quite large. We generate a random binary list of 1000 elements where a 1

(0) indicates that the corresponding instance is positive (negative). We assume that

these instances belong to the same leaf and start applying an iterative procedure

that takes a random “leaf” and splits it in two. A fixed success parameter u ∈ [0.5, 1]

is used to arrange the instances in the new leaves such that the average fraction of

positives in one leaf is u and the average fraction of negatives in the other leaf is also

u. At each iteration we compute the true and empirical AUC. By definition, the

true AUC is determined by the frequency of positives in all leaves and the empirical

AUC is determined by adding noise to each of these frequencies. Noise is randomly

drawn from an interval [−h, +h], so if a true frequency is a, then its estimation

lies in [a − h, a + h]. We stop the leaf splitting iteration when there is no leaf left

comprising more than two instances. The complete process is repeated for twenty

times and we report average test statistic values. We already note that the results

do not depend on the size of the binary list.
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Figure 3: Results of the simulation study as a function of the number of leaves:
(a) true AUC (dashed) and empirical AUC (solid) where curves more to the point
(0, 1) correspond to higher values of u, and (b) difference between true AUC and
empirical AUC where higher curves correspond to higher values of h.

Fig. 3(a) shows the average empirical AUC for a fixed h = 0.2 and, respectively,

u = 0.5, 0.6, 0.7 as a function of the number of leaves. Clearly, splitting leaves

(breaking ties or splitting segments) leads to higher AUC, and the better the tie

breaking, the larger the gains in AUC. Corresponding standard deviations are very

small, decreasing with the number of leaves, and for clarity have been omitted in

the figure. The influence of the estimation errors is illustrated in Fig. 3(b). Here, we

have fixed u = 0.2 and we show the average difference between true AUC and em-

pirical AUC for, respectively, h = 0.1, 0.2, 0.4, 1 (with the latter implying completely

random scores). Clearly, even for quite high values of h the difference between true

and empirical AUC is small, and after an early point decreasing when the number

of leaves increases (of course, except for completely random scores). In other words,

leaf-splitting seems to be tolerant toward estimation errors of probabilities for the

positive class in the sense that only the ordering of scores is important: As long as

an estimation error does not cause an inversion of scores with respect to the true

probabilities, there is no negative effect on the AUC.



5.1 Conclusions from the Theoretical Results

From our theoretical analysis above, we may conclude that the empirical AUC in-

creases with the number of scores produced by a tree, at least when these scores

are better than random approximations of the true conditional probabilities in the

leaves. This result explains why unpruned or only slightly pruned trees in combina-

tion with Laplace correction in the leaves have been shown to be very good rankers.

It also explains why other methods such as bagging lead to an improvement in AUC.

The experiments with synthetic data support our conjecture that local tie breaking

is beneficial for the AUC, and that it is robust toward estimation errors since we

are only interested in a correct ordering of the scores.

6 Fuzzy Decision Trees

Our results, theoretical and empirical, lead us to conjecture that fuzzy decision trees

should be good rankers. By softening the splits at feature threshold values in internal

nodes, these trees produce a fuzzy partitioning of the instance space and, thereby,

much more scores than conventional decision trees. Thus, while being at least com-

petitive to conventional trees in terms of classification accuracy, they additionally

offer a better representation of the confidence of a classification. Roughly speaking,

boundary cases close to the split points are considered less certain than examples far

away from these boundaries. And even if the scores produced by fuzzy decision trees

are not necessarily good probability estimates, they still yield a reasonable ordering

in terms of confidence, which is completely sufficient for good ranking performance.

Fuzzy variants of decision tree induction have been developed for quite a while

(e.g [29, 14, 17, 18]) and seem to remain a topic of interest even today [20, 21, 22]. We

recommend [19] as a one of the most sophisticated approaches, including a compre-

hensive overview of research in this field. All approaches provide a typical example

for the “fuzzification” of standard machine learning methods. More specifically,



fuzzification here primarily concerns the threshold values used for defining splitting

predicates (constraints) for numeric attributes. In conventional decision trees, pred-

icates such as size ≤ 180 can be modeled in terms of an indicator function, which

in this example in given by the mapping x 7→ I(0,180](x). In fuzzy trees, thresholds

are defined in terms of fuzzy sets and, hence, an indicator function is replaced by

a monotone increasing or decreasing function µ(·) that maps to [0, 1]. An instance

with attribute value x will then follow the left branch with degree 1 − µ(x) and

the right branch with degree µ(x). To classify a new instance by a fuzzy decision

tree, different inference mechanisms have been devised. A common approach is to

associate with each leaf node, which is labeled by a class, a degree of support which

is given by the t-norm combination of the degrees to which the instance follows the

edges along that path. The overall support of a class is then given by the t-conorm

combination of all support degrees for that class. If a classification is requested, i.e.,

a definite decision in favor of a single class, then the class with the highest overall

support is an obvious choice. In our context of ranking, the score of an instance is

given by the support of the positive class.

To verify our conjecture, we analyzed the ranking performance of fuzzy decision

trees in an experimental way. Decision tree learners are quite complex from an

implementation point of view, and technical details of an implementation may have

a significant influence on the performance. To guarantee maximal comparability, we

therefore resorted to a very simple approach for constructing fuzzy decision trees:

First, we build a conventional decision tree as usual, and afterward we fuzzify the

split points of this tree. Thus, the type of splitting is the only structural difference

between the fuzzy and non-fuzzy trees used in the experiments. Fuzzifying the

split points is done by replacing the corresponding step function on the domain

of the split attribute by a sigmoid membership function, namely the cumulative

distribution function of a Gaussian density. Moreover, fuzzy inference is done using

the product t-norm and the algebraic sum as t-conorm.



Fig. 2(b) shows the average AUC values obtained by the fuzzy decision tree.

Table 4 summarizes the results for all data sets that contain numerical attributes

by reporting the average improvement in AUC value. The number in the fourth

column is in bold when the fuzzy tree is smaller and has higher AUC value than

the best decision tree obtained in our first set of experiments (as described in Sec-

tion 4). The experimental setup is kept identical except, of course, for the fuzzifica-

tion of the trees. We estimated the bandwidths of the Gaussians as follows. First,

we standardized the training data to have zero mean and unit variance (and test

instances are transformed accordingly). Then, we only tried a single bandwidth

λ ∈ {0.0001, 0.00015, 0.001, 0.005, 0.01, 0.1, 0.15, 0.2}. The reported results corre-

spond to the best λ as measured on a validation set (20% of the training set). We

make three observations from these results.

1. First, decision trees without Laplace correction benefit most from the post-

fuzzification. This was to be expected, since these trees by themselves are not

able to produce many distinct scores. Nonetheless, in general, it is still best

to use Laplace correction in the leaves in order to distinguish between small

and large leaves. More specifically, the null hypothesis that Laplace correction

does not change the ranking performance of our fuzzy trees is rejected by the

Wilcoxon signed-ranks at the 5% significance level.

2. Second, fuzzy decision trees have significantly larger AUC values along all

pruning levels when compared to the standard trees, independent of whether

Laplace correction is used. This result holds at the 1% significance level and

hence is strong evidence in favor of our conjecture that fuzzy trees are very

good rankers.

3. Third, to improve on the AUC value of the best tree in our first set of exper-

iments, we can almost always use a fuzzy decision tree that is much smaller.

For example, a fuzzy tree #7 is a better ranker than a standard unpruned



tree (#10) at the 5% significance level. This is important for practical pur-

poses since the unpruned or slightly pruned trees that were used so far are not

comprehensible, interpretable, and clearly have a very large variance.

As a final remark, we note that the number of distinct scores produced by a

fuzzy decision tree is many times higher when compared to conventional trees (even

when they use Laplace correction; see Fig. 2(d) and Table 5). So again, there is

indeed a clear correlation between increase in number of distinct scores and increase

in average AUC value, as was to be expected from the formal analysis.

A more advanced tuning of the membership functions, such as allowing for dif-

ferent shapes and parameters in each node, is very likely to improve further on

the results obtained so far. We expect the same for the more advanced fuzzy deci-

sion tree learners, since their scores are very accurate with respect to classification

accuracy and ties among ranked instances are not likely to occur [28].

7 Conclusion

In this paper, we have analyzed, both formally and experimentally, important and

sometimes surprising observations from the recent machine learning literature con-

cerning methods to improve decision trees for the bipartite ranking problem. More

specifically, we can draw two main conclusions from our analysis. First, Laplace

correction significantly increases performance in terms of AUC. In contrast to pre-

vious conjectures, however, the reason is not a better probability estimation, but

instead a reasonable tie breaking effect that comes along with an increased number

of scores. This also explains the previous finding that generalizations of the Laplace

correction, like the m-estimate, essentially yield the same results (no further im-

provement is obtained). Second, unpruned trees almost always have higher AUC

values than standard pruned trees (at least with Laplace correction). The reason is

that unpruning increases the number of segments of the ROC curve, and thereby



Table 4: Improvement in AUC and its standard deviation (values separated by a /) of fuzzy decision trees #1, #5, and #10.
Results are shown in two parts: without and with Laplace correction. The fourth column of each part lists the decision trees that
obtain the highest AUC. A number is in bold when there is a fuzzy tree that is smaller and has higher AUC than the best decision
tree so far.

#
without Laplace correction with Laplace correction

1 5 10 max 1 5 10 max

1 .0022 / -.0050 .0050 / -.0045 .0203 / -.0074 7 .0022 / -.0058 .0039 / -.0050 .0011 / -.0033 9

3 .0207 / -.0132 .0193 / -.0200 .0269 / -.0357 10 .0143 / -.0139 .0096 / -.0130 .0069 / -.0137 10

5 .0051 / -.0200 .0096 / -.0229 .0470 / -.0455 9 .0053 / -.0211 .0062 / -.0200 .0115 / -.0113 9

6 .0004 / -.0913 .0316 / -.0508 .0393 / -.0514 2 .0004 / -.0919 .0082 / -.0298 .0034 / -.0400 4

7 -.0017 / -.0658 .0231 / -.0628 .0325 / -.0754 8 -.0025 / -.0786 .0028 / -.0667 .0025 / -.0921 10

8 -.0000 / -.0675 -.0000 / -.0675 .0003 / -.0587 1-5 -.0000 / -.0675 -.0000 / -.0675 .0006 / -.0557 10
10 .0338 / -.0618 .0412 / -.0525 .0319 / -.0502 10 .0167 / -.0461 .0111 / -.0477 .0102 / -.0506 10

12 .0563 / -.0497 .0461 / -.0554 .0401 / -.0526 10 .0595 / -.0463 .0453 / -.0442 .0342 / -.0477 6

15 .0496 / -.0529 .0556 / -.0283 .0543 / -.0370 4 .0440 / -.0497 .0373 / -.0341 .0323 / -.0371 10

16 .0139 / -.0322 .0211 / -.0271 .0356 / -.0363 10 .0039 / -.0360 .0080 / -.0264 .0043 / -.0116 10
17 .1046 / -.0733 .0905 / -.0843 .0946 / -.0799 1 .0537 / -.0561 .0555 / -.0501 .0537 / -.0547 10

18 .0260 / -.0102 .0266 / -.0096 .0278 / -.0104 2 .0162 / -.0094 .0029 / -.0042 -.0013 / -.0051 7



Table 5: Relative increase in the number of distinct scores gained by the fuzzy decision trees #1, #5, and #10 (e.g, a value of 10
means that the fuzzy tree yields ten times as many distinct scores). Results are shown in two parts: without and with Laplace
correction. The fourth column of each part lists the trees that obtain the highest number of distinct scores.

#
without Laplace correction with Laplace correction

1 5 10 max 1 5 10 max

1 15.2 ± 4.5 8.6 ± 0.9 3.5 ± 1.1 10 14.0 ± 4.8 7.9 ± 0.9 2.7 ± 0.6 10
3 3.8 ± 0.3 3.6 ± 0.5 3.9 ± 0.6 10 3.7 ± 0.3 3.2 ± 0.4 2.5 ± 0.7 10
5 2.0 ± 0.7 2.2 ± 1.1 2.2 ± 0.8 10 1.9 ± 0.6 2.2 ± 1.1 1.4 ± 0.3 10
6 1.4 ± 0.3 1.5 ± 0.8 2.0 ± 0.6 10 1.4 ± 0.3 1.3 ± 0.9 1.3 ± 0.3 10
7 1.7 ± 0.6 1.8 ± 0.6 2.2 ± 0.4 10 1.5 ± 0.5 1.6 ± 0.4 1.3 ± 0.4 10
8 1.0 ± 0.2 1.0 ± 0.2 1.0 ± 0.2 10 1.0 ± 0.2 1.0 ± 0.2 0.9 ± 0.2 10

10 5.3 ± 1.8 6.0 ± 1.3 5.9 ± 1.3 8 3.4 ± 1.1 3.6 ± 0.5 3.4 ± 0.5 10
12 3.8 ± 0.2 2.6 ± 0.3 2.7 ± 0.3 6 3.8 ± 0.2 1.8 ± 0.3 1.7 ± 0.2 6
15 5.5 ± 1.2 5.5 ± 0.9 5.7 ± 0.5 10 5.0 ± 0.7 4.7 ± 0.6 4.5 ± 0.3 10
16 5.0 ± 1.0 5.1 ± 1.0 5.0 ± 0.9 10 3.8 ± 0.6 3.4 ± 0.7 3.0 ± 0.7 10
17 3.9 ± 0.6 4.0 ± 0.7 4.1 ± 0.8 2 2.2 ± 0.2 2.2 ± 0.2 2.1 ± 0.2 5
18 17.0 ± 1.5 13.9 ± 1.1 13.8 ± 1.5 10 10.8 ± 1.0 8.1 ± 0.7 7.1 ± 0.8 10



leads to higher AUC values provided that the empirical scores are sufficiently good

estimations of the true slopes of the segments. In fact, the relationship between AUC

value and pruning level is not necessarily monotone, as it was previously assumed

to be, especially when Laplace correction is turned off.

One obvious conclusion from these results is that fuzzy decision trees should be

good rankers, a conjecture that we could verify in an experimental way. In fact, our

experiments show that fuzzy trees are able to consistently outperform the methods

proposed in the machine learning literature, while not loosing the advantages of

decision trees such as comprehensability and interpretability. Strictly speaking, our

claims were of course only verified for a specific decision tree learner and a fuzzy

variant thereof. Yet, C4.5 is a state-of-the-art method, and the fuzzy variant we

used is a rather simple one that could still be improved in various ways. Therefore,

we believe that a generalization of our conclusions beyond these specific algorithms

is warranted.

Roughly speaking, the distinguishing feature of fuzzy decision trees is their ability

to represent the confidence of a classification in a reasonable way. Ordering the

instances according to their scores, i.e., their degrees of membership in the positive

class, consequently leads to good rankings in terms of the AUC metric.

Interestingly, this advantage is not exploited in the conventional classification

setting. To make a classification, a fuzzy prediction has to be defuzzified, which

essentially means predicting the class with the higher degree of membership. Thus,

the advantage of discriminating scores is obviously lost, and indeed, a defuzzified

fuzzy decision tree again produces hard decision boundaries in the instance space.

We believe this to be the main reason for why a consistent advantage of using fuzzy

trees for classification has not yet been shown (at least not in a resilient way across

several independent studies). As we have seen, the situation is quite different in the

ranking setting, where fuzzy decision trees significantly outperform their non-fuzzy

counterparts.



Another potential advantage of fuzzy decision trees is a better trade-off between

classification and ranking performance. In fact, our results have shown that, in the

non-fuzzy case, pruned trees are good classifiers but poor rankers, while unpruned

trees are good rankers but poor classifiers. In other words, a single decision tree

cannot be both at the same time, a good classifier and a good ranker. Fuzzy decision

trees may overcome this dilemma, since even small fuzzy trees can produce diverse

scores. In future work, we plan to elaborate on this aspect more closely.
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