Package 'pGME'

August 29, 2013

Type Package

Title Estimates the parameters of normal mixtures by penalized
likelihood methods (with exact Newton's method in multivariate case).

Version 1.0

Date 2012-08-10
Author Grigory Alexandrovich, Florian Schwaiger
Maintainer Grigory Alexandrovich alexandrovich@mathematik.uni-marburg.de

Description

Estimating the parameters of normal mixtures can lead to difficulties (especially for small sample sizes), if each component of the mixture has possibly a different mean and standard deviation resp. covariance matrix, since then the likelihood is unbounded for any standard deviation parameter going to zero. Further, when estimating a mixture with too many components the parameters are not identifiable anymore since weight parameters can converge towards zero. Both mentioned cases can be avoided by using penalty functions in the log-likelihood.

License GPL-2

Depends methods,mclust,mvtnorm,rgl,ellipse

R topics documented:

pGME-package 2
convert_object 3
createNormalMixtureModel 4
gaussianMixtureMLE 5
logliDerivatives 8
mat2vec 9
maxAposteriori 10
normalMixtureModel-class 11
plot-methods 12
plotComponents 12
show-methods 13
simulate-methods 13
Index 14

pGME-package Estimates the parameters of finite normal mixtures by penalized likelihood methods (with the exact Newton's method in the multivariate case).

Description

Estimating the parameters of finite normal mixtures can lead to difficulties (especially for small sample sizes), if each component of the mixture has possibly a different mean and standard deviation resp. covariance matrix, since then the likelihood is unbounded for any standard deviation parameter going to zero. Further, when estimating a mixture with too many components the parameters are not identifiable anymore since weight parameters can converge towards zero. Both mentioned cases can be avoided by using penalty functions in the log-likelihood.
The package provides functions for penalized maximum likelihood estimation of finite normal mixtures. Due to penalization the algorithm avoids singularities (i.e. prevents any variance to converges towads zero, where the likelihood is unbounded). Further, the penalization can provide a better fit when components are not well separated.

Details

Package:	pGME
Type:	Package
Version:	1.0
Date:	$2012-08-10$
License:	GPL-2
Depends:	methods,mclust,mvtnorm,rgl,ellipse

Given a dataset one can use the function gaussianMixtureMLE to estimate the (penalized) MLE. The output is (among other values) an object of the class normalMixtureModel-class, which can for example be ploted with the generic plot function plot-methods. Further, simulate-methods simulates a dataset from a given mixture object. Finally, a maximum a posteriori clustering can be computed using the function maxAposteriori.

Author(s)

Grigory Alexandrovich, Florian Schwaiger
Maintainer: Grigory Alexandrovich alexandrovich@mathematik.uni-marburg.de

References

Alexandrovich, G., "An exact Newton's method for ML estimation in a penalized Gaussian mixture model". Preprint. (2012)
Chen, J. and Tan,X. "Inference for Multivariate Normal Mixtures", Journal of Multivariate Analysis. (2009)

Chen, J. and Li, P., "Hypothesis Test for Normal Mixture Models: The EM approach", The Annals of Statistics. (2009)
Fraley, C. and Raftery A. "MCLUST Version 3 for R: Normal Mixture Modeling and Model-Based Clustering". (2007)

Vollmer, S., Holzmann, H. and Schwaiger, F., "Peaks vs. Components." To appear in: Review of Development Economics. (2012)

See Also

```
gaussianMixtureMLE,logliDerivatives, plot-methods, plotComponents, simulate-methods,
``` maxAposteriori

\section*{Examples}
```

\#one dimensional case
m1 <- createNormalMixtureModel(p = c(0.3,0.4), mu = c(1,3,3.5), sigma = c(0.8,0.8,0.8))
plot(m1)
x <- simulate(object = m1, nsim = 250)
gaussianMixtureMLE (x = x, k = 3, object = m1) \$estimatedModel
gaussianMixtureMLE(x = x, k = 3, penSig = 1, penP = 1, object = m1) \$estimatedModel
\#2 dimensional case
sigma <- array(dim=c (2,2,2))
sigma[,,1] <- 0.2*c(1,0.8,0.8,1)
sigma[,,2] <- 0.4*c(1,-0.5,-0.5,1)
m2 <- createNormalMixtureModel(p = 0.7, mu = cbind(c(1,1),c(3,3)), sigma = sigma)
plot(m2)
x <- simulate(object = m2, nsim = 700)
estimate <- gaussianMixtureMLE(x = x, k = 2, penSig = 1)

```
convert_object Converts an object of the class normalMixtureModel into a vector.

\section*{Description}

Converts an object of the class normalMixtureModel into a vector (\(\mu_{1}, \ldots, \mu_{k}, L_{1}, \ldots, L_{k}, q_{1}, \ldots, q_{k-1}\)), where \(L_{i} L_{i}{ }^{T}=\Sigma_{i}^{-1}\) and \(p_{i}=\frac{q_{i}}{q_{1}+\ldots+q_{k-1}+1}\). The lower triagonal matrices \(L_{i}\) are vectrorized row wise (see mat 2 vec).

\section*{Usage}
```

convert_object(object)

```

\section*{Arguments}
object
An object of the class normalMixtureModel-class.

\section*{Value}

A vector with length \(k(D+D(D+1) / 2)+k-1\)

\section*{Examples}
```


# define means and covariaces of the components of a two-dimensional two-component mixtu

# means

mu = cbind(c(1,1),c(3,3))

# covariances

sigma = array (dim=c (2,2,2))
sigma[,,1] = 0.2*c(1,0.8,0.8,1)
sigma[,,2] = 0.4*c(1,-0.5,-0.5,1)

# Create a normalMixtureModel object

object <- createNormalMixtureModel(p = 0.7, mu = mu, sigma = sigma)

# simulate 700 points from the mixture

x <- simulate(object = object, nsim = 700)

# estimate the parameters of the mixture from the simulated sample

estimate <- gaussianMixtureMLE(x = x, k = 2, penSig = 1)

# extract the parameters from the returned object and convert them into a vector

pars <- convert_object(estimate\$estimatedModel)

```
createNormalMixtureModel
creates a mixture model object

\section*{Description}

This function can be used to create an object of the type normalMixtureModel-class (using the new-function is certainly possible, too).

\section*{Usage}
```

createNormalMixtureModel(p, mu, sigma)

```

\section*{Arguments}
\(\mathrm{p} \quad\) weights of the mixture components (it is possible to enter all k or only the first \(\mathrm{k}-1\) weights)
mu means of the k components
sigma standard deviations of the k components

\section*{Value}

An object of the type normalMixtureModel-class.

\section*{Examples}
\(m 0=\) createNormalMixtureModel \((p=c(0.5), m u=c(1,2), \operatorname{sigma}=c(0.8,0.8))\)
gaussianMixtureMLE estimating (penalized) MLE

\section*{Description}

This function estimates the parameters of a (multivariate) k-component normal mixture using a penalized maximum likelihood estimator.

\section*{Usage}
```

gaussianMixtureMLE(x, k, object, penP = 0, penSig = 0, doFI = FALSE, tol_eps =
tol_delta = 1e-11, tol_grad = 1e-11, tol_rlc = 1e-08, tol_em = 1e-06, verbose
bcl = 35, maxit = 10, hard_conv = FALSE, parallel = TRUE)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline x & the dataset, which should be a vector in case of one dimensional fitting and a matrix in the multivariate case \\
\hline k & number of mixture components \\
\hline object & optionally an object of type normalMixtureModel-class, its parameters will be used as starting points for the optimization \\
\hline penP & non-negative penalty constant for the weights (default is 0 , i.e. no penalization) \\
\hline penSig & non-negative penalty constant for the standard deviations or resp. covariance matrix (default is 0 , i.e. no penalization) \\
\hline doFI & If TRUE, an estimate of the Fisher information matrix of the MLE will be returned (only in the multidimensional case). \\
\hline tol_eps & Tolerance for the solver of the linear equation systems. A number with absolute value less than tol_eps is considered as zero (only in the multidimensional case). \\
\hline tol_delta & Tolerance for a stopping criterion. If the 2 -norm of the Newton's direction is less then tol_delta, the function returns the current value \(\theta_{k}\) (only in the multidimensional case). \\
\hline tol_grad & Tolerance for a stopping criterion. If the 2 -norm of the gradient of the \(\log\) likelihood is less then tol_grad, the function returns the current value \(\theta_{k}\) (only in the multidimensional case). \\
\hline tol_rlc & Tolerance for a stopping criterion. If the relative log-likelihood change is less then tol_rlc, the function returns the current value \(\theta_{k}\) (only in the multidimensional case). \\
\hline tol_em & Tolerance for the stopping criterion for the preceding EM algorithm from the package Mclust. If the relative log-likelihood change during the EM iterations is less than tol_em, than the current value \(\theta_{k}\) is beeing passed to the Newton's iteration (only in the multidimensional case). \\
\hline verbose & If TRUE, some additional outputs will be produced (only for multidimensional case). Default value is FALSE. \\
\hline bcl & Backtracking length. Maximal number of iterations of the backtracking routine during the line search. \\
\hline maxit & The maximal number of iterations for the Newton's method. \\
\hline
\end{tabular}

\section*{hard_conv If TRUE, the algorithm iterates until all stopping criteria are fulfilled. Default value is FALSE.}
parallel If TRUE, some parts of the calculation are carried out in parallel using OpenMP interface.

\section*{Details}

One dimensional case:

In detail the objective function is not only the log-likelihood, but the sum of the log-likelihood, a penalty function depending on the sigmas and a penalty function depending on the weights, i.e.
\(\operatorname{loglike}\left(\mu_{1}, \ldots, \mu_{k}, \sigma_{1}, \ldots, \sigma_{k}, p_{1}, \ldots, p_{k-1} \mid X_{1}, \ldots, X_{n}\right)+c_{s} \cdot \operatorname{pen}_{1}\left(\sigma_{1}, \ldots, \sigma_{k}, x\right)+c_{p} \cdot \operatorname{pen}_{2}\left(p_{1}, \ldots, p_{k}\right)\),
where \(c_{s}\) and \(c_{p}\) are non-negative constants. These constants determine how strong small values of the parameters should be penalized and thus avoided. The penalty functions are given by
\[
\operatorname{pen}_{1}\left(\sigma_{1}, \ldots, \sigma_{k}, x\right)=-\sum_{i=1}^{k} \frac{s_{n}^{2}}{\sigma_{i}^{2}}+\log \left(\frac{s_{n}^{2}}{\sigma_{i}^{2}}\right)
\]
where \(s_{n}^{2}\) is the empirical variance, and
\[
\operatorname{pen}_{2}\left(p_{1}, \ldots, p_{k}\right)=\sum_{i=1}^{k} \log \left(p_{i}\right) .
\]

Choosing \(c_{s}=c_{p}=0\) yields the MLE and is the default option. If no starting points are supplied, then they are calculated using package mclust. Thus, if no penalization is used, the used starting point is already the MLE and is only slightly changed.

Multidimensional case:

The function also estimates the parameter of a multivariate k -component normal mixture by maximizing the penalized log-likelihood function:
\[
\operatorname{loglike}\left(\mu_{1}, \ldots, \mu_{k}, \Sigma_{1}, \ldots, \Sigma_{k}, q_{1}, \ldots, q_{k-1} \mid X_{1}, \ldots, X_{n}\right)+c \cdot \operatorname{pen}\left(\Sigma_{1}, \ldots, \Sigma_{k}, x\right)
\]

The penalty function is given by
\[
\operatorname{pen}\left(\Sigma_{1}, \ldots, \Sigma_{k}, x\right)=-\sum_{i=1}^{k} \operatorname{tr}\left(S_{x} \Sigma_{i}^{-1}\right)+\log \left|\Sigma_{i}\right|
\]

Where c is a non-negative constant. In contrary to the one dimensional case only the covariances can be penalized.

In the multidimensional case the optimization is carried out with the exact Newton's method. If no starting points are supplied, then they are calculated using k-means and the EM-Algorithm. Due to the fact that Newton's method converges locally it is better to supply no starting point rather than a bad starting point. The function uses internally the following parameterization
\[
\operatorname{loglike}\left(\mu_{1}, \ldots, \mu_{k}, L_{1}, \ldots, L_{k}, q_{1}, \ldots, q_{k-1} \mid X_{1}, \ldots, X_{n}\right)+c \cdot \operatorname{pen}\left(L_{1}, \ldots, L_{k}\right)
\]
where \(L_{i} L_{i}{ }^{T}=\Sigma_{i}^{-1}\) and \(p_{i}=\frac{q_{i}^{2}}{q_{1}^{2}+\ldots+q_{k-1}^{2}+1}\).
The function uses analytical derivatives.

\section*{Value}

In the one-dimensional case a list with 4 entries:
```

estimatedModel

```
 the estimated model, which is of the type normalMixtureModel-class
loglik A vector with two components. First component: value of the log-likelihood,
 second component: value of the penalized log-likelihood.
AIC value of the aic
BIC value of the bic

In the multidimensional case a list with 6 entries:
```

estimatedModel

```
 the estimated model, which is of the type normalMixtureModel-class
BIC value of the bic
loglik A vector with two components. First component: value of the log-likelihood, second component: value of the penalized log-likelihood.
numit A vector with two components. First component: number of EM-iterations to find a starting point, second component: number of Newton's iterations.
convergence A String. Describes which stopping rule took effect.
MLE_covariance
An estimate of the covariance matrix of the MLE (- inverse of the Fisher Information), if demanded.

\section*{Author(s)}

Grigory Alexandrovich, Florian Schwaiger

\section*{References}

Chen, J. and Tan,X. "Inference for Multivariate Normal Mixtures", Journal of Multivariate Analysis. (2009)

Chen, J. and Li, P., "Hypothesis Test for Normal Mixture Models: The EM approach", The Annals of Statistics. (2009)
Grigory Alexandrovich. An exact Newton's method for ML estimation in a penalized Gaussian mixture model.

\section*{Examples}
```

\#one dimensional case
m1 <- createNormalMixtureModel(p = c(0.3,0.4), mu = c(1,3,3.5), sigma = c(0.8,0.8,0.8))
plot(m1)
x <- simulate(object = m1, nsim = 250)
gaussianMixtureMLE (x = x, k = 3, object = m1)\$estimatedModel
gaussianMixtureMLE(x = x, k = 3, penSig = 1, penP = 1, object = m1) \$estimatedModel
\#2 dimensional case
sigma <- array(dim=c(2,2,2))
sigma[,,1] <- 0.2*c(1,0.8,0.8,1)
sigma[,,2] <- 0.4*c(1,-0.5,-0.5,1)
m2 <- createNormalMixtureModel(p = 0.7, mu = cbind(c(1,1),c(3,3)), sigma = sigma)
plot(m2)

```
```

x <- simulate(object = m2, nsim = 700)
estimate <- gaussianMixtureMLE(x = x, k = 2, penSig = 1)

```
logliDerivatives Calculates the analytical derivatives of the penalized log-likelihood function in the multivariate case.

\section*{Description}

Calculates the analytical derivatives of the penalized log-likelihood
\[
\operatorname{loglike}\left(\mu_{1}, \ldots, \mu_{k}, L_{1}, \ldots, L_{k}, q_{1}, \ldots, q_{k-1} \mid X_{1}, \ldots, X_{n}\right)+c \cdot \operatorname{penalty}\left(L_{1}, \ldots, L_{k}\right)
\]
of a multivariate (dimension \(D>1\)) normal mixture with respect to the parameter vector \(\theta\).

\section*{Usage}
```

logliDerivatives(object = NULL, parameter = NULL, x, prop = 0,
pen = 0, grad = TRUE, hess = TRUE, parallel = TRUE)

```

\section*{Arguments}
object An object of the class normalMixtureModel. The derivatives are evaluated at the parameters stored in this object. If not supplied, the argument parameter must be supplied.
parameter A \(k D+k D(D+1) / 2+k-1\) vector at which the derivatives are evaluated. k is the number of components and D is the dimension. If it is not supplied, ob ject must be supplied. If both supplied, only parameter is used.
\(x \quad\) Data matrix. Each row must be a vector of length D.
prop Internal parameter.
pen Positive real number or zero. The weight of the penalization term.
grad Logical. If TRUE the gradient of the penalized log likelihood will be calculated.
hess Logical. If TRUE the hessian of the penalized log likelihood will be calculated.
parallel If TRUE, some parts of the calculation are carried out in parallel using OpenMP interface.

\section*{Details}

The parameter vector is given by
\[
\theta=\left(\mu_{1}, \ldots, \mu_{k}, L_{1}^{\Delta}, \ldots, L_{k}^{\Delta}, q_{1}, \ldots, q_{k-1}\right)
\]
where \(\mu_{i}\) is a \(D\)-vector (mean of the component i), \(L_{i}^{\Delta}\) is a \(D(D+1) / 2\) vector, it is the halfvectorization of the Cholesky factor of the inverse of the i'th covariance matrix: \(L_{i} L_{i}^{T}=\Sigma_{i}^{-1}\) and \(q_{1}, \ldots, q_{k-1}\) are the weight parameters. The weight of the i'th compoment is thereby given by \(\frac{q_{i}^{2}}{q_{1}^{2}+\ldots+q_{k-1}^{2}+1}\). The length of \(\theta\) is \(k D+k D(D+1) / 2+k-1\).

\section*{Value}

A list with 3 entries:
```

loglikelihood
A number. The value of the penalized log likelihood at the supplied parameter.
gradient A vector. The gradient of the penalized log likelihood at the supplied parameter.
hessian A matrix. The Hessian at the supplied parameter.

```

\section*{References}

Alexandrovich, G., "An exact Newton's method for ML estimation in a penalized Gaussian mixture model".

\section*{Examples}
```


# define means and covariaces of the components of a two-dimensional two-component mixtu

# means

mu = cbind(c(1,1),c(3,3))

# covariances

sigma = array(dim=c (2,2,2))
sigma[,,1] = 0.2*c(1,0.8,0.8,1)
sigma[,,2] = 0.4*c(1,-0.5,-0.5,1)

# Create a normalMixtureModel object

object <- createNormalMixtureModel(p = 0.7, mu = mu, sigma = sigma)

# simulate 700 points from the mixture

x <- simulate(object = object, nsim = 700)

# estimate the parameters of the mixture from the simulated sample

estimate <- gaussianMixtureMLE(x = x, k = 2, penSig = 1)

# calculate the derivatives of the log-likelihood

devs <- logliDerivatives(object = estimate\$estimatedModel, x = x)

# .. or alternative

# extract the parameters from the returned object and convert them into a vector

pars <- convert_object(estimate\$estimatedModel)
devs_2 <- logliDerivatives(parameter = pars, x = x)

```
mat \(2 \mathrm{vec} \quad\) This function produces a row wise half-vectorization of a \(D \times D\) ma-
trix.

\section*{Description}

This function converts a \(D \times D\) matrix into a vector. It takes only the diagonal and the elements under the diagonal.

\section*{Usage}
```

mat2vec(mat)

```

\section*{Arguments}
mat A square matrix (typically a symmetric or a lower triangular).

\section*{Value}

A vector with length \(D(D+1) / 2\), where the elements are concatenated row wise up to the diagonal.

\section*{Examples}
```

\#create a lower triangular matrix and convert it into a vector.
mat <- rbind(c(1,0),c(2,3))
vec <- mat2vec(mat)

```
```

maxAposteriori maximum a posteriori estimates

```

\section*{Description}

Find the maximum a posteriori estimates for all data points given a normal mixture model.

\section*{Usage}
maxAposteriori(x,object, detail = FALSE,plot = TRUE,levels = NULL)

\section*{Arguments}
\[
\begin{array}{ll}
\text { x } & \text { a vector resp. matrix containing the dataset } \\
\text { object } & \begin{array}{l}
\text { normal mixture model which should be used, see normalMixtureModel-class } \\
\text { or createNormalMixtureModel, possibly an estimated model using gaussianMixtureMLE }
\end{array} \\
\text { detail } & \begin{array}{l}
\text { when detail equals TRUE also the maximum a posteriori probabilities are re- } \\
\text { turned }
\end{array} \\
\text { plot } & \begin{array}{l}
\text { If TRUE and datadimension is } 1 \text { or } 2 \text { a plot will be produced. }
\end{array} \\
\text { levels } & \begin{array}{l}
\text { If plot = TRUE, optionally a vector with entries in }(0,1) . \text { Then the contours of } \\
\text { the according levels are ploted (see function ellipse from package ellipse). }
\end{array}
\end{array}
\]

\section*{Value}

Depending on the input value of detail, either the a posteriori clustering or also the a posteriori probabilities.

\section*{Examples}
```

\#one dimensional case
m1 = createNormalMixtureModel(p = c(0.5), mu = c(1,3), sigma = c(0.8,0.8))
x1 = simulate(object = m1, nsim = 250)
fit1 = gaussianMixtureMLE(x = x1, k = 2, penSig = 1, penP = 1, object = m1) \$estimatedMode
clust1 = maxAposteriori(object = fit1, x = x1, detail = FALSE, plot = TRUE)
\#2 dimensional case
sigma <- array(dim=c (2,2,2))
sigma[,,1] <- 0.2*c(1,0.8,0.8,1)
sigma[,,2] <- 0.4*c(1,-0.5,-0.5,1)
m2 <- createNormalMixtureModel(p = 0.7, mu = cbind(c(1,1),c(3,3)), sigma = sigma)
x2 <- simulate(object = m2, nsim = 700)
fit2 = gaussianMixtureMLE(x = x2, k = 2, penSig = 1, object = m2) \$estimatedModel
\#first plot
maxAposteriori(object = fit2, x = x2, detail = FALSE, plot = TRUE)
\#second plot
maxAposteriori(object = fit2, x = x2, detail = TRUE,levels=c(0.4,0.9))

```
```

normalMixtureModel-class
class for normal mixtures

```

\section*{Description}

This class formalizes normal mixture models.

\section*{Objects from the Class}

Objects can be created by calls of the function createNormalMixtureModel, using new() or as a part of the returned value of gaussianMixtureMLE.

\section*{Slots}
p : weights of the mixture components
mu : means of the k components
sigma: standard deviations or covariance matrices of the k components
dimension: dimension of the dataset

\section*{Methods}
plot see plot-methods
simulate simulate-methods

\section*{Examples}
```

\#one dimensional case
m0 = createNormalMixtureModel(p=c(0.3,0.4),mu=c(1,3,3.5),sigma=c(0.8,0.8,0.8))
plot(m0)
\#2 dimensional case
s0 = array (dim=c (2,2,2))
s0[,,1] = 0.2*c(1,0.8,0.8,1)
s0[,,2] = 0.4*c(1,-0.5,-0.5,1)
model2 = createNormalMixtureModel(p=0.7,mu=cbind(c(1, 1),c(3,3)),sigma=s0)
plot(model2)

```
```

plot-methods plot the density of a normal mixture

```

\section*{Description}

This generic function plots the density of a given normal mixture model (e.g. of an object of type normalMixtureModel-class).

\section*{Methods}
```

signature(x = "normalMixtureModel")

```

\section*{See Also}
plotComponents

\section*{Examples}
```

\#one dimensional case
m0 = createNormalMixtureModel(p=c(0.5),mu=c (1,2),sigma=c(0.8,0.8))
plot (m0)
\#2 dimensional case
sigma <- array(dim=c (2,2,2))
sigma[,,1] <- 0.2*c(1,0.8,0.8,1)
sigma[,,2] <- 0.4*c(1,-0.5,-0.5,1)
m2 <- createNormalMixtureModel(p = 0.7, mu = cbind(c(1,1),c(3,3)), sigma = sigma)
plot(m2)

```
plot Components plot single components of a normal mixture

\section*{Description}

This function plots the weighted single components of a given normal mixture in one figure.

\section*{Usage}
```

plotComponents(object, add = FALSE, main = "")

```

\section*{Arguments}
```

object normal mixture model which should be used, see normalMixtureModel-class
or createNormalMixtureModel, possibly an estimated model using gaussianMixtureML
add select TRUE, to add the plot to an existing plot
main main title of the plot

```

\section*{See Also}
```

plot-methods

```

\section*{Examples}
```

m0 = createNormalMixtureModel (p=c(0.3,0.4),mu=c(1,3,3.5),sigma=c(0.8,0.8,0.8))
plotComponents(object=m0)

```
show-methods output on the console of a mixture model

\section*{Description}

This function is only necessary to provide a nice output of a normal mixture model on the console.

\section*{Examples}
\(m 0=\) createNormalMixtureModel \((p=c(0.5), m u=c(1,2), \operatorname{sigma}=c(0.8,0.8))\)
m0
```

simulate-methods simulate data of a normal mixture

```

\section*{Description}

This generic function simulates a dataset of a given normal mixture model (e.g. of an object of type normalMixtureModel-class).

\section*{Methods}
```

signature(object = "normalMixtureModel", nsim = "numeric")

```

\section*{Examples}
```

\#one dimensional case
m1 <- createNormalMixtureModel(p = c(0.3,0.4), mu = c(1,3,3.5), sigma = c(0.8,0.8,0.8))
x <- simulate(object = m1, nsim = 250)
plot(density(x))
\#2 dimensional case
sigma <- array(dim = c(2,2,2))
sigma[,,1] <- 0.2*c(1,0.8,0.8,1)
sigma[,,2] <- 0.4*c(1,-0.5,-0.5,1)
m2 <- createNormalMixtureModel(p = 0.7, mu = cbind(c(1,1),c(3, 3)), sigma = sigma)
x <- simulate(object = m2, nsim = 700)
plot(x, pch = 19, cex = 0.7)

```

\section*{Index}
```

*Topic Gaussian mixture log likelihood derivatives
logliDerivatives, 8
*Topic classes
normalMixtureModel-class, 11
*Topic methods
plot-methods, 12
show-methods, 13
simulate-methods, 13
*Topic package, gaussian mixture, mle, penalized, newton
algorithm, unbounded
likelihood
pGME-package, 2
convert_object, 3
createNormalMixtureModel, $4,10,11$, 13
gaussianMixtureMLE, $2,3,5,10,11,13$
logliDerivatives, 3, 8
mat $2 \mathrm{vec}, 3,9$
maxAposteriori, $2,3,10$
normalMixtureModel-class, 11
pGME (pGME-package), 2
pGME-package, 2
plot, normalMixtureModel-method
(plot-methods), 12
plot-methods, 12
plotComponents, $3,12,12$
show, normalMixtureModel-method
(show-methods), 13
show-methods, 13
simulate, normalMixtureModel, numeric-method
(simulate-methods), 13
simulate-methods, 13

```
```

