
Package ‘pGME’
August 29, 2013

Type Package

Title Estimates the parameters of normal mixtures by penalized
likelihood methods (with exact Newton's method in multivariate case).

Version 1.0

Date 2012-08-10

Author Grigory Alexandrovich, Florian Schwaiger

Maintainer Grigory Alexandrovich <alexandrovich@mathematik.uni-marburg.de>

Description
Estimating the parameters of normal mixtures can lead to difficulties (especially for small sam-
ple sizes), if each component of the mixture has possibly a different mean and standard devia-
tion resp. covariance matrix, since then the likelihood is unbounded for any standard deviation pa-
rameter going to zero. Further, when estimating a mixture with too many components the param-
eters are not identifiable anymore since weight parameters can converge towards zero. Both men-
tioned cases can be avoided by using penalty functions in the log-likelihood.

License GPL-2

Depends methods,mclust,mvtnorm,rgl,ellipse

R topics documented:
pGME-package . 2
convert_object . 3
createNormalMixtureModel . 4
gaussianMixtureMLE . 5
logliDerivatives . 8
mat2vec . 9
maxAposteriori . 10
normalMixtureModel-class . 11
plot-methods . 12
plotComponents . 12
show-methods . 13
simulate-methods . 13

Index 14

1

2 pGME-package

pGME-package Estimates the parameters of finite normal mixtures by penalized like-
lihood methods (with the exact Newton’s method in the multivariate
case).

Description

Estimating the parameters of finite normal mixtures can lead to difficulties (especially for small
sample sizes), if each component of the mixture has possibly a different mean and standard devi-
ation resp. covariance matrix, since then the likelihood is unbounded for any standard deviation
parameter going to zero. Further, when estimating a mixture with too many components the pa-
rameters are not identifiable anymore since weight parameters can converge towards zero. Both
mentioned cases can be avoided by using penalty functions in the log-likelihood.
The package provides functions for penalized maximum likelihood estimation of finite normal mix-
tures. Due to penalization the algorithm avoids singularities (i.e. prevents any variance to converges
towads zero, where the likelihood is unbounded). Further, the penalization can provide a better fit
when components are not well separated.

Details

Package: pGME
Type: Package
Version: 1.0
Date: 2012-08-10
License: GPL-2
Depends: methods,mclust,mvtnorm,rgl,ellipse

Given a dataset one can use the function gaussianMixtureMLE to estimate the (penalized)
MLE. The output is (among other values) an object of the class normalMixtureModel-class,
which can for example be ploted with the generic plot function plot-methods. Further, simulate-methods
simulates a dataset from a given mixture object. Finally, a maximum a posteriori clustering can be
computed using the function maxAposteriori.

Author(s)

Grigory Alexandrovich, Florian Schwaiger
Maintainer: Grigory Alexandrovich <alexandrovich@mathematik.uni-marburg.de>

References

Alexandrovich, G., "An exact Newton’s method for ML estimation in a penalized Gaussian mixture
model". Preprint. (2012)
Chen, J. and Tan,X. "Inference for Multivariate Normal Mixtures", Journal of Multivariate Analysis.
(2009)
Chen, J. and Li, P., "Hypothesis Test for Normal Mixture Models: The EM approach", The Annals
of Statistics. (2009)
Fraley, C. and Raftery A. "MCLUST Version 3 for R: Normal Mixture Modeling and Model-Based
Clustering". (2007)

convert_object 3

Vollmer, S., Holzmann, H. and Schwaiger, F., "Peaks vs. Components." To appear in: Review of
Development Economics. (2012)

See Also

gaussianMixtureMLE, logliDerivatives, plot-methods, plotComponents, simulate-methods,
maxAposteriori

Examples

#one dimensional case
m1 <- createNormalMixtureModel(p = c(0.3,0.4), mu = c(1,3,3.5), sigma = c(0.8,0.8,0.8))
plot(m1)
x <- simulate(object = m1, nsim = 250)
gaussianMixtureMLE(x = x, k = 3, object = m1)$estimatedModel
gaussianMixtureMLE(x = x, k = 3, penSig = 1, penP = 1, object = m1)$estimatedModel

#2 dimensional case
sigma <- array(dim=c(2,2,2))
sigma[,,1] <- 0.2*c(1,0.8,0.8,1)
sigma[,,2] <- 0.4*c(1,-0.5,-0.5,1)
m2 <- createNormalMixtureModel(p = 0.7, mu = cbind(c(1,1),c(3,3)), sigma = sigma)
plot(m2)
x <- simulate(object = m2, nsim = 700)
estimate <- gaussianMixtureMLE(x = x, k = 2, penSig = 1)

convert_object Converts an object of the class normalMixtureModel into a vector.

Description

Converts an object of the class normalMixtureModel into a vector (µ1, . . . , µk, L1, . . . , Lk, q1, . . . , qk−1),
where LiLi

T = Σ−1
i and pi = qi

q1+...+qk−1+1 . The lower triagonal matrices Li are vectrorized row
wise (see mat2vec).

Usage

convert_object(object)

Arguments

object An object of the class normalMixtureModel-class.

Value

A vector with length k(D +D(D + 1)/2) + k − 1

4 createNormalMixtureModel

Examples

define means and covariaces of the components of a two-dimensional two-component mixture.

means
mu = cbind(c(1,1),c(3,3))

covariances
sigma = array(dim=c(2,2,2))
sigma[,,1] = 0.2*c(1,0.8,0.8,1)
sigma[,,2] = 0.4*c(1,-0.5,-0.5,1)

Create a normalMixtureModel object
object <- createNormalMixtureModel(p = 0.7, mu = mu, sigma = sigma)

simulate 700 points from the mixture
x <- simulate(object = object, nsim = 700)

estimate the parameters of the mixture from the simulated sample
estimate <- gaussianMixtureMLE(x = x, k = 2, penSig = 1)

extract the parameters from the returned object and convert them into a vector
pars <- convert_object(estimate$estimatedModel)

createNormalMixtureModel
creates a mixture model object

Description

This function can be used to create an object of the type normalMixtureModel-class (using
the new-function is certainly possible, too).

Usage

createNormalMixtureModel(p, mu, sigma)

Arguments

p weights of the mixture components (it is possible to enter all k or only the first
k-1 weights)

mu means of the k components

sigma standard deviations of the k components

Value

An object of the type normalMixtureModel-class.

Examples

m0 = createNormalMixtureModel(p=c(0.5),mu=c(1,2),sigma=c(0.8,0.8))

gaussianMixtureMLE 5

gaussianMixtureMLE estimating (penalized) MLE

Description

This function estimates the parameters of a (multivariate) k-component normal mixture using a
penalized maximum likelihood estimator.

Usage

gaussianMixtureMLE(x, k, object, penP = 0, penSig = 0, doFI = FALSE, tol_eps = 1e-11,
tol_delta = 1e-11, tol_grad = 1e-11, tol_rlc = 1e-08, tol_em = 1e-06, verbose = FALSE,
bcl = 35, maxit = 10, hard_conv = FALSE, parallel = TRUE)

Arguments

x the dataset, which should be a vector in case of one dimensional fitting and a
matrix in the multivariate case

k number of mixture components

object optionally an object of type normalMixtureModel-class, its parameters
will be used as starting points for the optimization

penP non-negative penalty constant for the weights (default is 0, i.e. no penalization)

penSig non-negative penalty constant for the standard deviations or resp. covariance
matrix (default is 0, i.e. no penalization)

doFI If TRUE, an estimate of the Fisher information matrix of the MLE will be re-
turned (only in the multidimensional case).

tol_eps Tolerance for the solver of the linear equation systems. A number with absolute
value less than tol_eps is considered as zero (only in the multidimensional
case).

tol_delta Tolerance for a stopping criterion. If the 2-norm of the Newton’s direction is
less then tol_delta, the function returns the current value θk (only in the
multidimensional case).

tol_grad Tolerance for a stopping criterion. If the 2-norm of the gradient of the log-
likelihood is less then tol_grad, the function returns the current value θk

(only in the multidimensional case).

tol_rlc Tolerance for a stopping criterion. If the relative log-likelihood change is less
then tol_rlc, the function returns the current value θk (only in the multidi-
mensional case).

tol_em Tolerance for the stopping criterion for the preceding EM algorithm from the
package Mclust. If the relative log-likelihood change during the EM iterations
is less than tol_em, than the current value θk is beeing passed to the Newton’s
iteration (only in the multidimensional case).

verbose If TRUE, some additional outputs will be produced (only for multidimensional
case). Default value is FALSE.

bcl Backtracking length. Maximal number of iterations of the backtracking routine
during the line search.

maxit The maximal number of iterations for the Newton’s method.

6 gaussianMixtureMLE

hard_conv If TRUE, the algorithm iterates until all stopping criteria are fulfilled. Default
value is FALSE.

parallel If TRUE, some parts of the calculation are carried out in parallel using OpenMP
interface.

Details

One dimensional case:

In detail the objective function is not only the log-likelihood, but the sum of the log-likelihood, a
penalty function depending on the sigmas and a penalty function depending on the weights, i.e.

loglike(µ1, . . . , µk, σ1, . . . , σk, p1, . . . , pk−1|X1, . . . , Xn)+cs·pen1(σ1, . . . , σk, x)+cp·pen2(p1, . . . , pk),

where cs and cp are non-negative constants. These constants determine how strong small values of
the parameters should be penalized and thus avoided. The penalty functions are given by

pen1(σ1, . . . , σk, x) = −
k∑

i=1

s2
n

σ2
i

+ log(
s2

n

σ2
i

)

where s2
n is the empirical variance, and

pen2(p1, . . . , pk) =
k∑

i=1

log(pi).

Choosing cs = cp = 0 yields the MLE and is the default option. If no starting points are supplied,
then they are calculated using package mclust. Thus, if no penalization is used, the used starting
point is already the MLE and is only slightly changed.

Multidimensional case:

The function also estimates the parameter of a multivariate k-component normal mixture by maxi-
mizing the penalized log-likelihood function:

loglike(µ1, . . . , µk,Σ1, . . . ,Σk, q1, . . . , qk−1|X1, . . . , Xn) + c · pen(Σ1, . . . ,Σk, x).

The penalty function is given by

pen(Σ1, . . . ,Σk, x) = −
k∑

i=1

tr(SxΣ−1
i) + log |Σi|

Where c is a non-negative constant. In contrary to the one dimensional case only the covariances
can be penalized.

In the multidimensional case the optimization is carried out with the exact Newton’s method. If no
starting points are supplied, then they are calculated using k-means and the EM-Algorithm. Due to
the fact that Newton’s method converges locally it is better to supply no starting point rather than a
bad starting point. The function uses internally the following parameterization

loglike(µ1, . . . , µk, L1, . . . , Lk, q1, . . . , qk−1|X1, . . . , Xn) + c · pen(L1, . . . , Lk),

where LiLi
T = Σ−1

i and pi = q2
i

q2
1+...+q2

k−1+1
.

The function uses analytical derivatives.

gaussianMixtureMLE 7

Value

In the one-dimensional case a list with 4 entries:

estimatedModel
the estimated model, which is of the type normalMixtureModel-class

loglik A vector with two components. First component: value of the log-likelihood,
second component: value of the penalized log-likelihood.

AIC value of the aic

BIC value of the bic

In the multidimensional case a list with 6 entries:

estimatedModel
the estimated model, which is of the type normalMixtureModel-class

BIC value of the bic

loglik A vector with two components. First component: value of the log-likelihood,
second component: value of the penalized log-likelihood.

numit A vector with two components. First component: number of EM-iterations to
find a starting point, second component: number of Newton’s iterations.

convergence A String. Describes which stopping rule took effect.
MLE_covariance

An estimate of the covariance matrix of the MLE (- inverse of the Fisher Infor-
mation), if demanded.

Author(s)

Grigory Alexandrovich, Florian Schwaiger

References

Chen, J. and Tan,X. "Inference for Multivariate Normal Mixtures", Journal of Multivariate Analysis.
(2009)
Chen, J. and Li, P., "Hypothesis Test for Normal Mixture Models: The EM approach", The Annals
of Statistics. (2009)
Grigory Alexandrovich. An exact Newton’s method for ML estimation in a penalized Gaussian
mixture model.

Examples

#one dimensional case
m1 <- createNormalMixtureModel(p = c(0.3,0.4), mu = c(1,3,3.5), sigma = c(0.8,0.8,0.8))
plot(m1)
x <- simulate(object = m1, nsim = 250)
gaussianMixtureMLE(x = x, k = 3, object = m1)$estimatedModel
gaussianMixtureMLE(x = x, k = 3, penSig = 1, penP = 1, object = m1)$estimatedModel

#2 dimensional case
sigma <- array(dim=c(2,2,2))
sigma[,,1] <- 0.2*c(1,0.8,0.8,1)
sigma[,,2] <- 0.4*c(1,-0.5,-0.5,1)
m2 <- createNormalMixtureModel(p = 0.7, mu = cbind(c(1,1),c(3,3)), sigma = sigma)
plot(m2)

8 logliDerivatives

x <- simulate(object = m2, nsim = 700)
estimate <- gaussianMixtureMLE(x = x, k = 2, penSig = 1)

logliDerivatives Calculates the analytical derivatives of the penalized log-likelihood
function in the multivariate case.

Description

Calculates the analytical derivatives of the penalized log-likelihood

loglike(µ1, . . . , µk, L1, . . . , Lk, q1, . . . , qk−1|X1, . . . , Xn) + c · penalty(L1, . . . , Lk)

of a multivariate (dimension D > 1) normal mixture with respect to the parameter vector θ.

Usage

logliDerivatives(object = NULL, parameter = NULL, x, prop = 0,
pen = 0, grad = TRUE, hess = TRUE, parallel = TRUE)

Arguments

object An object of the class normalMixtureModel. The derivatives are eval-
uated at the parameters stored in this object. If not supplied, the argument
parameter must be supplied.

parameter A kD + kD(D + 1)/2 + k − 1 vector at which the derivatives are evaluated.
k is the number of components and D is the dimension. If it is not supplied,
object must be supplied. If both supplied, only parameter is used.

x Data matrix. Each row must be a vector of length D.

prop Internal parameter.

pen Positive real number or zero. The weight of the penalization term.

grad Logical. If TRUE the gradient of the penalized log likelihood will be calculated.

hess Logical. If TRUE the hessian of the penalized log likelihood will be calculated.

parallel If TRUE, some parts of the calculation are carried out in parallel using OpenMP
interface.

Details

The parameter vector is given by

θ = (µ1, . . . , µk, L
∆
1 , . . . , L

∆
k , q1, . . . , qk−1),

where µi is a D-vector (mean of the component i), L∆
i is a D(D + 1)/2 vector, it is the half-

vectorization of the Cholesky factor of the inverse of the i’th covariance matrix: LiL
T
i = Σ−1

i

and q1, . . . , qk−1 are the weight parameters. The weight of the i’th compoment is thereby given by
q2

i

q2
1+...+q2

k−1+1
. The length of θ is kD + kD(D + 1)/2 + k − 1.

mat2vec 9

Value

A list with 3 entries:

loglikelihood
A number. The value of the penalized log likelihood at the supplied parameter.

gradient A vector. The gradient of the penalized log likelihood at the supplied parameter.

hessian A matrix. The Hessian at the supplied parameter.

References

Alexandrovich, G., "An exact Newton’s method for ML estimation in a penalized Gaussian mixture
model".

Examples

define means and covariaces of the components of a two-dimensional two-component mixture.

means
mu = cbind(c(1,1),c(3,3))

covariances
sigma = array(dim=c(2,2,2))
sigma[,,1] = 0.2*c(1,0.8,0.8,1)
sigma[,,2] = 0.4*c(1,-0.5,-0.5,1)

Create a normalMixtureModel object
object <- createNormalMixtureModel(p = 0.7, mu = mu, sigma = sigma)

simulate 700 points from the mixture
x <- simulate(object = object, nsim = 700)

estimate the parameters of the mixture from the simulated sample
estimate <- gaussianMixtureMLE(x = x, k = 2, penSig = 1)

calculate the derivatives of the log-likelihood
devs <- logliDerivatives(object = estimate$estimatedModel, x = x)

.. or alternative
extract the parameters from the returned object and convert them into a vector
pars <- convert_object(estimate$estimatedModel)
devs_2 <- logliDerivatives(parameter = pars, x = x)

mat2vec This function produces a row wise half-vectorization of a D ×D ma-
trix.

Description

This function converts a D × D matrix into a vector. It takes only the diagonal and the elements
under the diagonal.

10 maxAposteriori

Usage

mat2vec(mat)

Arguments

mat A square matrix (typically a symmetric or a lower triangular).

Value

A vector with lengthD(D+1)/2, where the elements are concatenated row wise up to the diagonal.

Examples

#create a lower triangular matrix and convert it into a vector.
mat <- rbind(c(1,0),c(2,3))
vec <- mat2vec(mat)

maxAposteriori maximum a posteriori estimates

Description

Find the maximum a posteriori estimates for all data points given a normal mixture model.

Usage

maxAposteriori(x,object,detail = FALSE,plot = TRUE,levels = NULL)

Arguments

x a vector resp. matrix containing the dataset

object normal mixture model which should be used, see normalMixtureModel-class
or createNormalMixtureModel, possibly an estimated model using gaussianMixtureMLE

detail when detail equals TRUE also the maximum a posteriori probabilities are re-
turned

plot If TRUE and datadimension is 1 or 2 a plot will be produced.

levels If plot = TRUE, optionally a vector with entries in (0,1). Then the contours of
the according levels are ploted (see function ellipse from package ellipse).

Value

Depending on the input value of detail, either the a posteriori clustering or also the a posteriori
probabilities.

normalMixtureModel-class 11

Examples

#one dimensional case
m1 = createNormalMixtureModel(p = c(0.5), mu = c(1,3), sigma = c(0.8,0.8))
x1 = simulate(object = m1, nsim = 250)
fit1 = gaussianMixtureMLE(x = x1, k = 2, penSig = 1, penP = 1, object = m1)$estimatedModel
clust1 = maxAposteriori(object = fit1, x = x1, detail = FALSE, plot = TRUE)

#2 dimensional case
sigma <- array(dim=c(2,2,2))
sigma[,,1] <- 0.2*c(1,0.8,0.8,1)
sigma[,,2] <- 0.4*c(1,-0.5,-0.5,1)
m2 <- createNormalMixtureModel(p = 0.7, mu = cbind(c(1,1),c(3,3)), sigma = sigma)
x2 <- simulate(object = m2, nsim = 700)
fit2 = gaussianMixtureMLE(x = x2, k = 2, penSig = 1, object = m2)$estimatedModel
#first plot
maxAposteriori(object = fit2, x = x2, detail = FALSE, plot = TRUE)
#second plot
maxAposteriori(object = fit2, x = x2, detail = TRUE,levels=c(0.4,0.9))

normalMixtureModel-class
class for normal mixtures

Description

This class formalizes normal mixture models.

Objects from the Class

Objects can be created by calls of the function createNormalMixtureModel, using new()
or as a part of the returned value of gaussianMixtureMLE.

Slots

p: weights of the mixture components

mu: means of the k components

sigma: standard deviations or covariance matrices of the k components

dimension: dimension of the dataset

Methods

plot see plot-methods

simulate simulate-methods

12 plotComponents

Examples

#one dimensional case
m0 = createNormalMixtureModel(p=c(0.3,0.4),mu=c(1,3,3.5),sigma=c(0.8,0.8,0.8))
plot(m0)

#2 dimensional case
s0 = array(dim=c(2,2,2))
s0[,,1] = 0.2*c(1,0.8,0.8,1)
s0[,,2] = 0.4*c(1,-0.5,-0.5,1)
model2 = createNormalMixtureModel(p=0.7,mu=cbind(c(1,1),c(3,3)),sigma=s0)
plot(model2)

plot-methods plot the density of a normal mixture

Description

This generic function plots the density of a given normal mixture model (e.g. of an object of type
normalMixtureModel-class).

Methods

signature(x = "normalMixtureModel")

See Also

plotComponents

Examples

#one dimensional case
m0 = createNormalMixtureModel(p=c(0.5),mu=c(1,2),sigma=c(0.8,0.8))
plot(m0)

#2 dimensional case
sigma <- array(dim=c(2,2,2))
sigma[,,1] <- 0.2*c(1,0.8,0.8,1)
sigma[,,2] <- 0.4*c(1,-0.5,-0.5,1)
m2 <- createNormalMixtureModel(p = 0.7, mu = cbind(c(1,1),c(3,3)), sigma = sigma)
plot(m2)

plotComponents plot single components of a normal mixture

Description

This function plots the weighted single components of a given normal mixture in one figure.

Usage

plotComponents(object, add = FALSE, main = "")

show-methods 13

Arguments

object normal mixture model which should be used, see normalMixtureModel-class
or createNormalMixtureModel, possibly an estimated model using gaussianMixtureMLE

add select TRUE, to add the plot to an existing plot
main main title of the plot

See Also

plot-methods

Examples

m0 = createNormalMixtureModel(p=c(0.3,0.4),mu=c(1,3,3.5),sigma=c(0.8,0.8,0.8))
plotComponents(object=m0)

show-methods output on the console of a mixture model

Description

This function is only necessary to provide a nice output of a normal mixture model on the console.

Examples

m0 = createNormalMixtureModel(p=c(0.5),mu=c(1,2),sigma=c(0.8,0.8))
m0

simulate-methods simulate data of a normal mixture

Description

This generic function simulates a dataset of a given normal mixture model (e.g. of an object of type
normalMixtureModel-class).

Methods

signature(object = "normalMixtureModel", nsim = "numeric")

Examples

#one dimensional case
m1 <- createNormalMixtureModel(p = c(0.3,0.4), mu = c(1,3,3.5), sigma = c(0.8,0.8,0.8))
x <- simulate(object = m1, nsim = 250)
plot(density(x))

#2 dimensional case
sigma <- array(dim = c(2,2,2))
sigma[,,1] <- 0.2*c(1,0.8,0.8,1)
sigma[,,2] <- 0.4*c(1,-0.5,-0.5,1)
m2 <- createNormalMixtureModel(p = 0.7, mu = cbind(c(1,1),c(3,3)), sigma = sigma)
x <- simulate(object = m2, nsim = 700)
plot(x, pch = 19, cex = 0.7)

Index

∗Topic Gaussian mixture log
likelihood derivatives

logliDerivatives, 8
∗Topic classes

normalMixtureModel-class, 11
∗Topic methods

plot-methods, 12
show-methods, 13
simulate-methods, 13

∗Topic package, gaussian mixture,
mle, penalized, newton
algorithm, unbounded
likelihood

pGME-package, 2

convert_object, 3
createNormalMixtureModel, 4, 10, 11,

13

gaussianMixtureMLE, 2, 3, 5, 10, 11, 13

logliDerivatives, 3, 8

mat2vec, 3, 9
maxAposteriori, 2, 3, 10

normalMixtureModel-class, 11

pGME (pGME-package), 2
pGME-package, 2
plot,normalMixtureModel-method

(plot-methods), 12
plot-methods, 12
plotComponents, 3, 12, 12

show,normalMixtureModel-method
(show-methods), 13

show-methods, 13
simulate,normalMixtureModel,numeric-method

(simulate-methods), 13
simulate-methods, 13

14

	pGME-package
	convert_object
	createNormalMixtureModel
	gaussianMixtureMLE
	logliDerivatives
	mat2vec
	maxAposteriori
	normalMixtureModel-class
	plot-methods
	plotComponents
	show-methods
	simulate-methods
	Index

