Main content
Neural Networks
(dt. Neuronale Netze)
Level, degree of commitment in original study programme | Advanced module, compulsory elective module |
Forms of teaching and learning, workload |
Lecture (2 SWS), recitation class (2 SWS), 180 hours (60 h attendance, 120 h private study) |
Credit points, formal requirements |
6 CP Translation missing. German original: Studienleistung: Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben und mündliche Präsentation der Lösung von mindestens zwei der Übungsaufgaben. Prüfungsleistung: Mündliche Prüfung oder Klausur |
Language, Grading |
German,The grading is done with 0 to 15 points according to the examination regulations for study course M.Sc. Computer Sciences. |
Original study programme | M.Sc. Informatik / Vertiefungsbereich Informatik |
Duration, frequency |
One semester, each summer semester |
Person in charge of the module's outline | Prof. Dr. Alfred Ultsch |
Contents
- Biological neural networks
- Supervised learning procedures
- Unsupervised learning procedures
- Theoretical Analysis of Neural Networks
- Self-organization and emergence
- Experiment design and analysis
- Capabilities and limits of the models
Qualification Goals
The students shall
- have an insight into the theory of neural networks and an overview of the different architectures, chances and limitations of artificial neural networks,
- in addition to the common supervised learning networks, acquire knowledge of unsupervised learning neural networks and the paradigm of self-organization and emergence,
- be able to design a data-driven solution for artificial neural networks based on a concrete problem using predefined program libraries,
- practice scientific working methods (recognizing, formulating, solving problems, training the ability to abstract),
- practice oral communication skills in the exercises by practicing free speech in front of an audience.
Prerequisites
Translation is missing. Here is the German original:
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen zur Informatik vermittelt werden.
Recommended Reading
- N. Cristianini and J. Shawe-Taylo: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2000. Raul Rojas: Theorie der neuronalen Netze, Springer.
- Ritter, H: Neuronale Nezte, Addison-Wesley.
Please note:
This page describes a module according to the latest valid module guide in Wintersemester 2018/19. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- WiSe 2016/17 (no corresponding element)
- SoSe 2018 (no corresponding element)
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.