Main content

German original

Temporal Data Mining
(dt. Temporales Data Mining)

Level, degree of commitment in original study programme Advanced module, compulsory elective module
Forms of teaching and learning,
Lecture (2 SWS), recitation class (2 SWS),
180 hours (60 h attendance, 120 h private study)
Credit points,
formal requirements
6 CP
Translation missing. German original:
Studienleistung: Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben und mündliche Präsentation der Lösung von mindestens zwei der Übungsaufgaben.
Prüfungsleistung: Mündliche Prüfung
The grading is done with 0 to 15 points according to the examination regulations for study course M.Sc. Data Science.
Original study programme M.Sc. Data Science / Informatik Vertiefungsmodule
One semester,
each summer semester
Person in charge of the module's outline Prof. Dr. Alfred Ultsch


  • practical use of explorative statistical methods to describe and analyse the data
  • Theory and practice of Fourier transformations for time series
  • Theory and practice of wavelet transformations for time series
  • Modeling Stochastic Processes (ARMA, GARCH)
  • Markov Models
  • Neural networks for the analysis and prognosis of time series
  • Temporal Knowledge Discovery

Qualification Goals

The students shall

  • learn about scientific approaches to the analysis of time series in order to discover new and previously unknown temporal patterns,
  • acquire knowledge of key analytical techniques such as Fourier and wavelet analysis,
  • get to know statistical statistical modelling possibilities of time series,
  • learn methods to create symbolic pattern descriptions from time series,
  • practice scientific working methods (recognizing, formulating, solving problems, training the ability to abstract),
  • practice oral communication skills in the exercises by practicing free speech in front of an audience.


Translation is missing. Here is the German original:

Keine. Empfohlen werden die Kompetenzen, die in den Modulen Objektorientierte Programmierung, Algorithmen und Datenstrukturen sowie Knowledge Discovery vermittelt werden.

Recommended Reading

  • S. Mallat: A Wavelet Tour on Signal Processing, Academic Press 1999.
  • D.B. Percival, A.T Walden: Wavelet Methods for Time Series Analysis, Cambridge 2002.
  • J. Franke, W. Härdle, C. Hafner: Statistik der Finanzzeitreihen, Springer 2003.
  • J. Hartung, B. Elpelt: Multivariate Statistik, Oldenburg, 1999.

Please note:

This page describes a module according to the latest valid module guide in Wintersemester 2018/19. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:

The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.

The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.