Main content
Combinatorics (Large Specialization Module)
(dt. Kombinatorik (Großes Vertiefungsmodul))
Level, degree of commitment in original study programme | Advanced module, compulsory elective module |
Forms of teaching and learning, workload |
Lecture (4 SWS), recitation class (2 SWS), 270 hours (90 h attendance, 180 h private study) |
Credit points, formal requirements |
9 CP Translation missing. German original: Studienleistung: Erreichen von mindestens 50 Prozent der Punkte aus den wöchentlich zu bearbeitenden Übungsaufgaben. Prüfungsleistung: Klausur oder mündliche Prüfung |
Language, Grading |
German,The grading is done with 0 to 15 points according to the examination regulations for study course M.Sc. Mathematics. |
Original study programme | M.Sc. Mathematik / Vertiefungsbereich Mathematik |
Duration, frequency |
One semester, irregular |
Person in charge of the module's outline | Prof. Dr. Volkmar Welker |
Contents
Basic combinatorial structures (e.g. set systems, graphs, etc.) are introduced and their central properties are derived. The competence for a deeper analysis of the structures is imparted by means of extreme, probabilistic, geometric or algebraic methods.
Qualification Goals
Students can
- derive basic properties of combinatorial structures,
- recognize and analyze combinatorial structures in different contexts,
- apply methods from other areas of mathematics to the analysis of combinatorial structures.
They deepen
- the practice of mathematical methods (development of mathematical intuition and its formal justification, training of the ability to abstract, proof methods),
- in the recitation classes, their oral communication skills through discussion and free speech in front of an audience.
Prerequisites
Translation is missing. Here is the German original:
Keine. Empfohlen werden die Kompetenzen, die in den Basismodulen und im Aufbaumodul Diskrete Mathematik vermittelt werden, sowie ggf. je nach Schwerpunktsetzung eines der Aufbaumodule Elementare Stochastik oder Algebra.
Recommended Reading
- N. Alon, J. Spencer, The probabilistic method, Wiley, 2008.
- I. Anderson, Combinatorics of finite sets, Dover, 2011.
- S. Jukna, Extremal combinatorics, Springer, 2011.
- B. Sturmfels, E. Miller, Combinatorial commutative algebra, Springer, 2005.
Please note:
This page describes a module according to the latest valid module guide in Wintersemester 2018/19. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- WiSe 2016/17 (no corresponding element)
- SoSe 2018 (no corresponding element)
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.