Main content
Parallel Computing
(dt. Parallelverarbeitung)
Level, degree of commitment in original study programme | Advanced module, compulsory elective module |
Forms of teaching and learning, workload |
Lecture (4 SWS), recitation class (2 SWS), 270 hours (90 h attendance, 180 h private study) |
Credit points, formal requirements |
9 CP Course requirement: Successful completion of at least 50 percent of the points from the weekly exercises as well as at least 2 presentations of the tasks. Examination type: Oral or written examination |
Language, Grading |
German,The grading is done with 0 to 15 points according to the examination regulations for study course M.Sc. Data Science. |
Original study programme | M.Sc. Data Science / Informatik Vertiefungsmodule |
Duration, frequency |
One semester, Regelmäßig alle 3 bis 4 Semester |
Person in charge of the module's outline | Prof. Dr. Rita Loogen |
Contents
1. Introduction: Models/Concepts of Parallel Computing
2. Design of parallel programs
3. Memory-coupled systems: The PRAM model, PRAM algorithms: Sorting and matrix algorithms, thread-based programming, synchronization and communication via shared variables (semaphore, monitors), programming of memory-coupled multiprocessors -> The OpenMP standard
4. Message-coupled systems: Networks, Distributed Algorithms, Programming Message-Coupled Multiprocessors -> The MPI Library (Message-Passing-Interface)
5. Accelerator-based systems: GPGPU programming with CUDA
6. Alternative approaches
Qualification Goals
- Learning and classifying different parallel programming models,
- Comparing different methods for parallel problem solving,
- Learning parallel programming techniques,
- Writing parallel programs,
- Developing and analysing parallel algorithms,
- Evaluating parallel algorithms and programs,
- Practicing scientific working methods (recognition, formulation, solving problems, training of abstraction skills),
- Training oral communication skills in the exercises by practicing free speech in front of an audience and during discussion
Prerequisites
None. The competences taught in the following module are recommended: Object-oriented Programming.
Recommended Reading
- A. Grama, A. Gupta, G. Karypis, V. Kumar: Introduction to Parallel Computing, Pearson Education, 2003.
- M. Quinn: Parallel Programming in C with MPI and OpenMP, Mc Graw Hill 2003
- I. Foster: Designing and Building Parallel Programs, Addison Wesley 1995
- A. Gibbons, W. Rytter: Efficient Parallel Algorithms, Cambridge University Press 1988
Please note:
This page describes a module according to the latest valid module guide in Wintersemester 2019/20. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- WiSe 2016/17 (no corresponding element)
- SoSe 2018 (no corresponding element)
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.