Main content

German original

Fourier Integral Operators
(dt. Fourier-Integraloperatoren)

Level, degree of commitment in original study programme Advanced module, compulsory elective module
Forms of teaching and learning,
workload
Lecture (4 SWS), recitation class (2 SWS),
270 hours (90 h attendance, 180 h private study)
Credit points,
formal requirements
9 CP
Course requirement: Successful completion of at least 50 percent of the points from the weekly exercises.
Examination type: Written or oral examination
Language,
Grading
German (Standard) und English (bei Bedarf),
The grading is done with 0 to 15 points according to the examination regulations for study course M.Sc. Mathematics.
Original study programme M.Sc. Mathematik / Vertiefungsbereich Mathematik
Duration,
frequency
One semester,
Regelmäßig im Wechsel mit anderen advanced moduleen im Gebiet Analysis
Person in charge of the module's outline Prof. Dr. Pablo Ramacher

Contents

  • Oscillatory integrals
  • Fourier integral operators and pseudo-differential operators in Euclidean space
  • Pseudo-differential operators on manifolds and their spectral theory, Sobolev spaces
  • Hamilton-Jacobi theory, symplectic geometry, Lagrangian submanifolds
  • Global theory of Fourier integral operators on manifolds

Qualification Goals

The students shall

  • to get to know and use the theory of Fourier integral operators as a central area of analysis and be introduced to questions of current research,
  • Apply knowledge from functional analysis, Fourier and distribution theory to the modern theory of partial differential equations,
  • practice mathematical working methods (development of mathematical intuition and its formal justification, training of the ability to abstract, proof techniques),
  • improve their oral communication skills in the exercises by practicing free speech in front of an audience and during discussion.

Prerequisites

None. The competences taught in the following modules are recommended: either Analysis I and Analysis II or Basic Real Analysis, Complex Analysis and Vector Analysis, Functional Analysis, Partial Differential Equations.


Recommended Reading

  • Shubin, M. A., Pseudodifferential operators and spectral theory; Grigis, A. and Sjoestrand, J., Microlocal analysis for differential operators; Duistermaat, J.J., Fourier integral operators.



Please note:

This page describes a module according to the latest valid module guide in Wintersemester 2020/21. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:

The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.

The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.