Main content
Elementary Algebraic Geometry
(dt. Elementare Algebraische Geometrie)
Level, degree of commitment in original study programme | Intermediate module, compulsory elective module |
Forms of teaching and learning, workload |
Lecture (4 SWS), recitation class (2 SWS), 270 hours (90 h attendance, 180 h private study) |
Credit points, formal requirements |
9 CP Course requirement: Successful completion of at least 50 percent of the points from the weekly exercises. Examination type: Written or oral examination |
Language, Grading |
German,The grading is done with 0 to 15 points according to the examination regulations for study course B.Sc. Mathematics. |
Original study programme | B.Sc. Mathematik / Mathematik Wahlpflichtmodule |
Duration, frequency |
One semester, Regelmäßig im Wechsel mit den anderen intermediate moduleen |
Person in charge of the module's outline | Prof. Dr. Thomas Bauer |
Contents
Geometry in affine, euclidean and projective spaces; comparison of the underlying transformations and invariants, as well as the respective ways of working.
Geometry of plane algebraic curves: curves and their equations, Bézout's theorem, singularities, linear systems.
Qualification Goals
The students shall
- get to know different ways of working with geometry,
- learn about the interaction of geometric and algebraic-analytical methods,
- practice mathematical working methods (development of mathematical intuition and its formal justification, training of the ability to abstract, proof techniques),
- improve their oral communication skills in the exercises by practicing free speech in front of an audience and during discussion.
Prerequisites
None. The competences taught in the following modules are recommended: either Foundations of Mathematics and Linear Algebra I and Linear Algebra II or Basic Linear Algebra, either Analysis I and Analysis II or Basic Real Analysis.
Recommended Reading
- Coxeter: Introduction to Geometry, John Wiley & Sons
- Fischer, G.: Ebene algebraische Kurven, Vieweg
- Koecher, Krieg: Ebene Geometrie, Springer
- Agricola, Friedrich: Elementargeometrie, Vieweg
Please note:
This page describes a module according to the latest valid module guide in Wintersemester 2022/23. Most rules valid for a module are not covered by the examination regulations and can therefore be updated on a semesterly basis. The following versions are available in the online module guide:
- WiSe 2016/17 (no corresponding element)
- SoSe 2018 (no corresponding element)
- WiSe 2018/19
- WiSe 2019/20
- WiSe 2020/21
- SoSe 2021
- WiSe 2021/22
- WiSe 2022/23
The module guide contains all modules, independent of the current event offer. Please compare the current course catalogue in Marvin.
The information in this online module guide was created automatically. Legally binding is only the information in the examination regulations (Prüfungsordnung). If you notice any discrepancies or errors, we would be grateful for any advice.