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A comparison of the eigenvalues of the Dirac and
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Abstract. We compare the eigenvalues ofthe Dirac and Laplace operator on a two-dimensio-
nal torus with respect to the trivial spin structure. In particular, we compute their variation
up to order 4 upon deformation of the flat metric, study the corresponding Hamiltonian and
discuss several families of examples.

1. Introduction

We consider a two-dimensional tori€ equipped with a flat metrig, as well as
a conformally equivalent metrig,

8= h4ga-

Denote byA, the Laplace operator acting on functions andlgtbe the Dirac
operator. The following estimates for the first positive eigenvalu€g) and)»f(g)
of A, and D§ are known (see [2] and [7]):

22(g0) 22(g0)  1a(go) 141(80)
8) - =M@ =g s SmE s g
max min max min

wherehmin (hmax) denotes the minimum (maximum) of the conformal factor,
1

b < —.

) 1a(g) < Vol(TZ )

In case the spin structure of the torfi$ is nontrivial, the Dirac operator has no
kerneland, moreover, there exists a constatépending on the conformal structure
fixed on72 and on the spin structure such that

2
A1(g) = Wz,g)

I. Agricola, T. Friedrich: Humboldt-Universitat zu Berlin, Institut fir Mathematik,
Sitz: Ziegelstral3e 13a, Unter den Linden 6, D-10099 Berlin, Germany.
e-mail: agricola@mathematik.hu-berlin.de; friedric@mathematik.hu- berlin.de

B. Ammann: Universitat Freiburg, Mathematisches Institut, Eckerstr. 1, D-79104 Freiburg,
Germany. e-mail: ammann@mathematik.uni-freiburg.de

Mathematics Subject Classification (19938G25, 53A05



232 I. Agricola et al.

(see [8]). However, explicit formulas for the constants are not known. In this respect,
the situation or¥"2 clearly differs from the case of the two-dimensional spt#re
where

4
vol(S52, g)

holds for any metrig (see [3], [6], [8]).

In this paper we comparei(g) andxf(g) for the trivial spin structure and a
metric withS1-symmetry. We will construct deformatiogg of the flat metric such
that volgr) = vol(g,) andu1(gg) < Af(gE) holds for any parametdf # O near
zero. For this purpose we calculate, in complete generality, the formulas for the first
and second variation of the spectral functimsmdxf. Itturns outthatfor any local
deformation of the flat metric, the first minimal eigenvalue of the Laplace operator
is always smaller than the corresponding eigenvalue of the Dirac operator up to
second order. The question whether or not there exists a Riemanniangreetiice
two-dimensional torus such thaf(g) < u1(g) remains open. Denote by (g; 1)
andu1(g; k) the first eigenvalue of the Dirac and Laplace operator, respectively,
such that its eigenspace contains the representation of weaiggpectivelyk. The
discussion in the final part of this paper suggests the conjecture that for same index
[ =k, the eigenvaluesf(g, [) and (g, 1), are closely related, more precisely,
that the Laplace eigenvalue is always smaller than the Dirac eigenvalue and that
their difference should be measurable by some other geometric quantity.

The Dirac equation for eigenspinors of index 0 can be integrated explicitly.
In case of index # 0, the Hamiltonian describing the Dirac equation is a positive
Sturm- Liouville operator. First, this observation yields an upper bouncfigr, /).
On the other hand, it proves the existence of many eigenspinors without zeros.

We furthermore apply the general variation formulas in order to study the eigen-
values of the Laplace and Dirac operator for the family of metrics

22(g) =

ge = (1+ E cos2r N1)(di? + dy?)

in more detail. In cas&v = 2, the Laplace equation is reduced to the classical
Mathieu equation. A similar reduction of the Dirac equation yields a special Sturm—
Liouville equation whose solutions we shall therefore d4dlthieu spinorsWe
investigate the eigenvalues of this equation and compute (for topological index
[ = 1) the first terms in the Fourier expansion of these Mathieu spinors. These
computer calculations have been done by Heike Pahlisch and our grateful thanks
are due to her for this. Furthermore, we thank M. Shubin for interesting discussions
on Sturm-Liouville equations.

2. The first positive eigenvalues of the Dirac and Laplace operators

Let g andg, be two conformally equivalent metrics @#. Then the Laplace and
Dirac operators are related by the well-known formulas
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1 gradh)

Dg:ﬁDQ—i_ h3 )

where gradh) denotes the gradient of the functibmwith respect to the metrig,.

Let us fix the trivial spin structure ofi2. In this case the kernel of the operator
D, coincides with the space of all parallel spinor fields, in particular, any solution
of the equatiorD, (y,) = 0 has constant length. The kernel of the operdigiis
given by

1
ker(Dg) = {Z% 2 Do(Yo) = 0} .

The squard)g of the Dirac operator preserves the decomposifiea S*™ @ S~ of
the spinor bundles. Moreover,D§ acts on the space of all sections®f with the
same eigenvalues. Therefore, the first positive eigen\}eﬁ(ga of the 0peratorD§

can be computed using sections in the bursifieonly. Any sectiomy € I'(S™) is
given by a functionf and a parallel spinor fielgr, € T'(S™):

V=M.

The spinor fieldy is L2-orthogonal to the kernel of the operalﬁg if and only if
[ bvar? = f? [ ptarz = o
T2 T2

holds, wherelT? anddT2 = h*dT? are the volume forms of the metrigs and
g. The Rayleigh quotient for the operatblé% is given by

/ Dedr? [ i grad ) + 2 gradin) a7
2 T2

T
T2 T2

Finally, we obtain the following formulas for the first positive eigenvaluég),
k%(g) of the Laplz_;lce o_peratoﬁg and the squaré)éz, of the Dirac operator with
respect to the trivial spin structure:

/ | grad f)|%dT?

2
wi(g) = inf - ;/fh“de:O

2,4 2 T2
/f hdT?
T2
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/ \h - grad f) + 2f - gradh)|2dT?
T2

A2(g) = inf :/fh4dT02=O
/f2h6dT2 72
T2

A direct calculation yields the formula

/ |h - grad f) + 2f gradh)|?d T2
T2

= f h2f A, (f)dT? + / (@ gradh)|* + 3 A,(h?)) f2dT?.
T2

T2

Let us use this formula in case thatis an eigenfunction of the Laplace operator,
ie.,

Ao(f) = pa(g)h* f.

Then itimplies the following inequality between the first eigenvalues of the Laplace
and Dirac operator:

/ (4| gradh)|? + %Ao(hz)) 1212
2 r2
r1(g) < pna(g) +

/ F2h8dT?
T2
We are now looking foi.2-estimates in case the metgadmits ans®-symmetry.
Indeed, let us suppose that the mepris defined o0, 1] x [0, 1] by
g = h*(Dg, = h* () (dr* + dy?),

where the conformal factd* depends on the variabd@nly. Moreover, we assume
that the functior (¢) has the symmetry

h(t) =h(d—1).

Then any functionf () with f(t) = — f (1 — t) satisfies the condition

/ fh*dT? =0
T2
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and, consequently, yields upper boundsfetg) andi1(g):

1
/ P
0

pa(g) < - = Bj(g: f)

/ F2()h*(1)dt
0

1
2
[ (o +2r0n o) ar
HOEE - = BY(g: ) .

/ F2)h8(r)dt
0

3. The first and second variations ofu1(g) and xi(g)

We consider a Riemannian metric
g = h*(t)go = h* (1) (d1* + dy?)

onT? (0 <t <1, 0 <y < 1) and denote byE(r1(g)) and E(A3(g)) the
eigenspaces ofthe Laplace and the Dirac operators corresponding to the first positive
eigenvalue. The isometry grouf} acts on these eigenspaces and therefore they
decompose into irreducible representations

Eui(@) =Y (k)@ @& (kn) and EQZ(g) =Y (1) @& Y (),
where " (k) denotes the 1-dimensionst-representation of weigfit

Proposition 1. The weightﬁg of the first positive eigenvalye; (g) of the Laplace
operator are always bounded by one:

K2 <1

o

The weightd? of the first positive eigenvalugZ(g) of the Dirac operator are
bounded by one under the condition

max(

W ()
h(t)

‘:0§t§1>§371.
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Proof. Suppose that
£, y) = A@)e

is an eigenfunction of the Laplace operatay, f = w1(g) f. Then the function
A(¢) is a solution of the Sturm—-Liouville equation

—A"0) = {nan o) — 4x 22} A,
Then consider the function
F(t,y) = A(t)e®™

and remark that

F
AgF = pa()F + 4L~ kD) 7.

Since/ FdTg2 = 0, we obtain, in case of the first positive eigenvalue, that

T2

/ Ag(F)FdT} / |F|?dT?

T2 T2

= p1+ 4721 - k)

= ———

2 2 2.4 2

/|F| dTg /|F|th0
T2 T2

The latter inequality yield$§ < 1 immediately. The corresponding result for the
Dirac operator follows from the formula

1
452 -1 W (¢t
LR S — <1—12>/|F|2dT3+T/|F(r>|2 O 4l

h(t)
/|F|2h4dT02 T2

T2

where we have already used the differential equatien for A that will be derived
in the next paragrapho

Solutions of the Laplace equatidyy, f = u1(g) f are given by solutions of the
Sturm-Liouville equation

—A"(1) = {na(g)h*(t) — 4n%k?)A(r) (*)

with k = 0, £1. In a similar way we can reduce the Dirac equation to an ordinary
differential equation. The Dirac operatdy, acts on spinor fields via the formula

1 /(0i @) (0i 1 /0-1
be =120y (i 0) "t 30 (i 0) Tz <1 0 )3y.
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Suppose that a spinor field € I'(ST) is a solution of the equationg(w) =
A%(g)m/f. Theny is given by a solution of the Sturm—Liouville equation

4 _ 1 2 l
MO0 ~ 2007 _ g2 4 g M}A(t)

h2(1) h(r)
(k)

—A"(t) = {A%(g)h“(r) +

with/ = 0, +1. In casd = 0, this equation can be solved.
Proposition 2. The eigenvalues of the Sturm—Liouville equaties) for/ = Oare
given by(n € 7)

2 A72n?
A= 5

1
( / hz(t)dt)
0

Proof. The Sturm—Liouville operator

1 d? B h(OR' (1) — 2(K (1))?
T hA(@) di? h8(t)

admits a square root, namely

i d
VH(-) = h3_(t)Z(h(t) -).

Since we have h2(1)A(1)A(1) = 0, any solution of the equation

d

i
h3_(t)Z(h(t)A(t)) = AA(1)

satisfies the condition

AQ)| = const
lA(D)] = oR

Consequently, it makes sense to define a funcfiolR — R by the formula
h(D) A1) = /D,

for which we easily obtain the differential equationi’(r) = Ah?(r). But since
A(¢) is a periodic solution, we have the condition

1

1
27n =/f’(t)dt =)\/h2(t)dt
0 0

for some integen € Z, thus yielding the result.o
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Corollary. Let12(g) be an eigenvalue of the Dirac operator on the two-dimensio-
nal torus 72 with respect to the trivial spin structure and a Riemannian metric

g = W} 0)(dt? + dy?)

with isometry groups®. Moreover, suppose that the eigenspinoSisinvariant
(I =0). Then

22(g)vol(T?, g) > 4n?

holds.
1
Proof. Since the volume is given by ud?, g) = /h4(t)dt, the inequality fol-

0
1 2 1

lows directly from the Cauchy-Schwarz inequal %hz(l‘)dt < /h4(t)dt

0 0
and the previous Propositionz

Remark.This corollary should be compared with the following fact. Fix a re-
presentatiork (k) and denote by1(g; k) the first eigenvalue of the Laplace oper-
ator such that its eigenspace contains the representatibn In casek # 0 the
solution A(r) of equation(x) is positive (see [9], page 207) and consequently the
inequality

1
/ (ark? - wate: (o)) = 0
0

is valid. We thus obtain the estimate
4r2k? = juag; k) vol(T?, g)
and equality holds if and only if the metric is flat. In particular= +1) we have
472 = pa(g)vol(T?, g)

for the first positive eigenvalue of the Laplace operator in case that its eigenspace
contains the representatiai(41).

Let us introduce the Hamiltonian operatéy defined by the Sturm-Liouville
equation(xx) for 12 = 0:
d? W) k@K' @) — 2 (1))2

Hj = —— + 471? — 47l
P g T oG n2(t)

Proposition 3. For [ # 0, the Hamiltonian operatorg; are strictly positive H,
is a hon-negative operator.
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Proof. A direct calculation yields the formula

1 1
’ 2
[ 11 (50 01— [ (2r120 90V g
h(t) ) h(t) h() k(@)
0 0

whereg(t) is any periodic function. The equatiom 2(¢) — ¢’(t) = 0 does not
admit a periodic, non-trivial solution in case£ 0. ConsequentlyH, is a strictly
positive operator fof # 0. O

Corollary. Fix an S-representations (/). Let)&(g, 1) be the first eigenvalue of
the Dirac operator on the two-dimensional torfi8 with respect to the trivial spin
structure and ars-invariant metric

g = h*(1)(di® + dy?

such that the representation(/) occurs in the decomposition of the eigenspace.
Then the multiplicity of (/) is one and the eigenspinor does not vanish anywhere
(I #0).

Proof. Since H; is strictly positive, the eigenvalug?(g) is the unique positive
number? such that

inf sped H; — A2h4) =0.

The corresponding real solution of this Sturm-Liouville equation is unique and
positive (see [9], p.207).0

Corollary. For a fixedS!-representationz (/) denote byr2(g, 1) the first eigen-
value of the Dirac operator such that the eigenspazxai(g, [)) contains the
representatiors (/). Then the inequality

1

/ rlp(t) — ¢'(1))? J
> t
he(t)

0
2(g. 1) <

f W2 ()2 (t)dt

0

holds for any periodic functiop(z).

Proof. Since inf spetH; — A%(g, Hh* = 0, we have

1 1
/H, (%) %(r)dt —A{(g,z)/hz(r)wz(t)dt >0
0 0

for any periodic functiorp(r). O
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In case of the flat metrig, = dr2 +dy? we haveu1(g,) = 22(g,) = 42 and
E(11(80) = (0 @ Z(0) ® (1) @ =(—1) = EG3(g0))-

The space& (1) correspond to the case thiat= [ = +1 and are generated by the
constant function. The two spac&g0) are generated by the functions @nr),
cog2rt).

Notation. We introduce now a few notations which will be used throughout this
article. Let us consider a deformatigp = h‘é(r)go of the flat metrigg,, depending
on some parametdt. We assume that

Ry (1) = hE(1 —1)

holds for all parameters of the deformation. The eigenvaluiés,) andkf(go) of
multiplicity four split into three eigenvalues

11(80) +> {1(E), u2(E), ua(E)},  22(g,) > (A2(E), A3(E), A3(E)).

The eigenvalugi3(E) corresponds to the case thhat= +£1, has multiplicity
two, and its eigenfunction is a deformation of the constant function. The eigenvalues
n1(E) # u2(E) correspond to solutions of the Sturm—Liouville equatiehand
their eigenfunctions are deformations of € r) and cog2rt), respectively. The
situation is different for the Dirac equation: there, according to Proposition 2,
the trivial S'-representationt/ = 0) yields one eigenvaIuEE(E) of multiplicity
two and the non-trivial representatiofls= +1) define in general two distinct
eigenvalueslg(E), A%(E) of multiplicity one. However, in caseg (t) = hp(1—1),
the spectral functionx%(E) andA%(E) coincide. Obviously, for small valugs ~ 0
we have

pa(ge) = min{ui(E), pa(E), pa(E)},  A5(gp) = min{(A{(E), A3(E), A3(E)}.
We will compute the first and second variation.Qf(E) and)%(E) atE =0.
For this purpose we introduce the following notation: Kdie a function depending

both onE and:. ThenA denotes the derivative with respec@ndA’ the derivative
with respect ta. Moreover, we expand the functiahi(t) in the form

he(t) =14 EH(t) + E?G(t) + O(E3).
Theorem 1. Consider a deformation
ge = (1+ EH(t) + E*G(t) + O(E®))g, = hi()go
of the flat metric on the torug? such that:% (t) = h';.(1 — t). Moreover, suppose

that for E # 0 andk = Othe eigenvalueg1(E) # u2(E) are simple eigenvalues
of the Sturm—Liouville equatiogx). Then
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1 1
a) /11(0) = —8712/H(t)sin2(2nt)dt, [2(0) = —8712/H(t) co€ (27rt)dt
0 0
1
[3(0) = —4x? / H(t)dr.
0

1
b) 43(0) = A5(0) = A5(0) = —4n2f H(t)dt.
0

In particular, we obtain

(21(0) 4 £12(0) = 2423(0) = 242(0).

Corollary. Suppose that the deformation
ge = (L+ EH(D) + E?G(1) + O(E®))g,
of the flat metrigg, satisfies the condition
Ht)=H1—1)

as well as
1 1
/H(t)sinz(Zm)dt ;é/H(t) co€(2nt)dt.
0 0

Then, for all parameter& # 0 near zero we have the strict inequality

ni(ge) < A2(gk).

Next we compute the second variation of our spectral functions under the as-
sumption that the first variation is trivial.

Theorem 2. Consider a deformation
ge = L+ EH() + E*G(1) + O(E®)g, = h3()g,
of the flat metrigg, on the torusT'? and suppose that the conditions
(6 =hpA—1)

and
1 1
/H(t) sin2(2m)dt:/H(t)co§ (2rt)dt =0
0 0

are satisfied. Moreover, suppose thatioe: 0andk = Othe eigenvalueg1(E) #
w2(E) are simple eigenvalues of the Sturm—Liouville equation Then



242 I. Agricola et al.

1 1
a) ji1(0) = —16712/G(t)sin2(2m)dt — 1672 | H(t)C(t)sin(2nt)dt, where
C(t) isthe perio(()jic solution of the diﬁerentigl equation
C"(t) = —4x2H (1) sin(2rt) — 47C(1).
1 1
b) jio(0) = —16712/G(t)cos°-(2m) — 1672 | H(t)C(t) co27t)dt, where
C(t) is the period?c solution of the differenti%l equation

C"(t) = —47%H (1) coq2rt) — 4w 2C(t).

1 1
c) ii3(0) = —87r2f G(t)dt — 8n2/H(t)C(t)dt, whereC(t) is the periodic
0 0

solution of the differential equation

C'(t) = —47%H ().

1 1
d) 22(0) = —SnZ/G(t)dt—i-ZnZ/Hz(t)dz
0 0

1 1 1
e) i3(0) = X3(0) = —SJTZ/G(t)dt + 4712/ H%(t)dt — 8712/ H()C(t)dt
0 0 0

1
—2n / H'(t)C(t)dt,

0
whereC(¢) is the periodic solution of the differential equation

C'(t) = —4x%H(t) — wH'(1).

Proof of Theorem 1 and TheoremThe formulas for the derivatives aff(E) are

a direct consequence of Proposition 2. We will prove the variation formul&%for
and just remark that one can investigate the other spectral functions in a similar
way. Moreover, since all the calculations we make are up to order two with respect
to E, we may assume for simplicity that

hi(t) =1+ EH(t) + E?G(1).
We compute

hehly, — 2(h';)?
2
hE

H//+ EG// 5 2 (H/+EG/)2
1+ EH + E2G) 16 (1+ EH + E2G)2

1
~a
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and, consequently, we obtain the formulas

R e I T ()
dE n2 ro A dE\he/p-0 4

d? (hEhg - 2(h’E)2)
2 2
dE h2 o

The spectral functiomg(E) is defined by a periodic solutioAg(¢) of the
Sturm-Liouville equation

1(G// H//H) S(H/)Z
2 8 '

AL (1) = = M3(E)h (1) AR(1)

hE(OR(t) — 2(h(1))? ) Wy (1)
— 47°A — 4
) Ag(t) +4n°Ap (@) )

AEg(t)
with the initial conditions\3(0) = 472, A,(t) = 1. Therefore, we obtain

. . . 1 .

Al(r) = —A3(0) — A2 H (1) — 42 A, (1) — 2H' O+ 42 A, (1) — TH' (1)
in this case and, consequently,

1
13(0) = —4n? / H(r)dr.
0

Let us now compute the second variation in case &) = 0 = i3(0). We
differentiate the Sturm-Liouville equation twice &t= 0:

Al(r) = —33(0) — 872G (1) — 812 H (1) A, (1)

5 / 2 1 " "
+oH )7 = 5(6" 0~ H'OH®)

1H”A 27 H'(t)A 4dd2Ih
5 (B)Ao(t) — 2 H' (1) Ao (t) — ﬂa(@(n( E(l)))E=0>~

Then we obtain
1 1

1
22(0) = —8712/ G(t)dt — 87r2/ H(t)A,(t)dt + (g — %) /(H’(t))zdt
0

0 0

1 1
—% f H"(1)A,(t)dt — 27 / H'(1)A,(t)dt.
0 0

SinceA,(r) is a solution of the differential equation

Al(t) = —4n?H (1) — %H”(t) —nH' @),
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we have

1 1
—%/H”(t)Ao(t)dt = —%/H(I)Ag(t)dt
0 0

1 i ( 2 1, >
=+—/H(r) A H(t)+ -H"(t) | dt
2 4
0

1 1
= 2712/ H?%(t)dt — é/(H’(t))zdt
0

0
and, consequently, we obtain

1 1
X2(0) = —8n2/G(t)dt+2n2/H2(t)dt
0 0

1 1
—SnZ/H(t)Ao(t)dt —zn/H/(r)Ao(t)dt
0 0

1 1

- —8n2/G(t)dt+4n2/H2(t)dt
0 0

1 1
—87r2/H(t)C(t)dt—Zn/H’(t)C(t)dt,
0 0

whereC(7) := A, (1) + %H(r) is a solution of the differential equation

C’'(t) = —4x%H(t) —nH'(t). O

1
Corollary. 33(0) = i3(0) + ZnZ/ H?(t)dt.
In particular, for all parameterfo;é 0 near zero we have the inequality
u3(E) < A3(E).
Moreover, the first positive eigenvalpg (gg) of the Laplace operator is always
smaller then the corresponding eigenvauﬁs{gE) of the Dirac operator for any

metricgg nearE ~ 0, i.e.,

n1(ge) < A3(gE).
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Remark.The explicit formulas in Theorem 1 and Theorem 2 can be generalized
to the case of an arbitrary conformal deformation. Fix a Riemannian mgtoa
a surfaceM? and consider the deformation

¢g = (14 EH + E>G + O(E®)g,

of the metric. Moreover, suppose that(E) is the deformation of the eigenvalue
of the Laplace operator anf} is the corresponding family of eigenfunctions. Then
the following formulas hold:

/ Hf2am?
a) 11(0) = —u1(0) M
/ f2am?
M2
f (Gf? + Cf)dM?

b) ji1(0) = —2u1(0) ,
| siam?
MZ

where the functiorC is the solution of the differential equation

AoC = n1(0Hfo + 11(0)C.

The corresponding expression for the variation of the eigenval(g) of the Dirac
operator can also be computed:

/ H - [, [2dM?
0) 41(0) = —11(0) 2
2 / 1ol 2d M?

MZ

and a similar formula holds for the second variation.

Once again, a similar, though even more intricate computation yields the fourth
variation ofxg(E) under the assumption that all previous variatiorv%QE) vanish.
This is needed for the discussion of the example in Sect. 5.

Theorem 3. Consider a deformation
ge =1+ EH())go

of the flat metrigg, on the torus7'2 and suppose that the following conditions are
satisfied:

a) Ho)=H@A —1);
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b) i3(0) = X3(0) =25(0) = 0.
Then the fourth derivativgr3(0)]" of the spectral function3(E) at E = 0 is
given by the formula

1 1
(130" =6 / H3(t)H" (1)dt + 4?5 / H2(1)(H'(1))%d1
0 0

(16712H(t) + H”(t))Cg(t)dt
+ (S(H’m)z + 2H(r>H”(r)) Co(t)dt

(15(H’(t))2 + 6H”(t)H(t)>H(t)C1(t)dt,

O\H O\H O\H

where the function€1(z), C2(z), C3(¢) are periodic solutions of the equations
Cl(t) = —4n°H (1) — %H”(r) —nH' 1)
Cy(t) = %H(Z)H”(l) + g(H’(t))2 + 27 H (t)H (¢)
— <8n2H(t) + %H”(t) + ZnH’(z)) C1(t)
Ci(1) = — GH”@)H%) + ?H(t)(H’(t))z + 67TH/(t)H2(t))
+ <§H(t)H”(t) + g(H’(t))Z + 6H(t)H’(t)) C1(1)

— <3nH’(t) + %H”(t) + 4712H(t)) Ca(?).

Remark.In the special case df”(r) = —1672H (¢) the derivativg15(0)]™ does
not depend oi€'3(¢) and the formulas become much simpler. Such a metric will be
the object of Sect. 5.

4. Examples
4.1. The variatiorgy = (1+ E cos2nt))g,

The volume volT?, gr) = 1 of this variation of the flat metrig, is constant and
all first derivatives at£ = 0 vanish since
1 1

/cos(Zm)co@(Zm) - /cos(Zm) sin?(2rt) = 0.

0 0
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AJ(E) H2(E)

\

4005

H1(E) u3(E) A(E)=A5(E)
Fig. 1.

A computation of the second derivatives yields the following numerical values:

. 2 } 10 )
#1(0) = —5772, ii2(0) = EJTZ, jiz = —4n?
%2(0) = 72, i2(0) = 32(0) = —32.

In particular, we obtain

n1(ge) < A3(gk)

for all parameter& # 0 near zero. The eigenspinor corresponding to the minimal
positive eigenvalue of the Dirac operator does not vanish anywhere (Fig. 1).

4.2. The Mathieu deformatiogy = (1 + E cog4rt))g, of the flat metric

This deformation of the flat metric again preserves the volume, and the Laplace

equation essentially reduces to the classical Mathieu equation

u” (x) + (a + 16g cog(2x))u(x) = 0.

In this case the first variation is trivial only for the Dirac equation. Indeed, we have

11(0) = 272, [12(0) = =272, [3(0) =0

200 =i30) =30 =0.
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H2(E)  H1(E)

-
- -
- -
~~o -

H3(E)
03 0.2 0.1 0.1 0.2 0.3

385 |

Fig. 2.

Even for the Mathieu deformation we conclude that

11(ge) < A5(gk)

for E # 0 near zero. A computation of the second derivatives yields the following
result (Fig. 2):
ji30) = —7?, i§(0) =n? 35(0) =350 =0.

For a detailed discussion of this metric, we refer to the next section.

4.3. The variatiorgg = (1+ E co927 Nt))g,, N >3

Since
1 1
/cos(ZnNt) coSL(2rt)dt = /COS(ZnN[)SiﬂZ(ert)dt =0
0 0

for N > 3, the first variations of our spectral functions vanish. We compute the
second variation using the algorithm in Theorem 2:

472 472

i11(0) = [i2(0) = _m, i3(0) = _W

MO =7, J5(E) = 35(0) = <1 - —> 72,
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2 2 2
M(E) A2(E)=A3(E)
vy 3949 ¢ ;o
\ \ I 1
\ \ !
v )
vy h li
\\ \‘ h ,I
\ !y
\ 39485 !y
\\ \ /’ /
\ \ 7 ,’
\\\\ /,//
AR S’
3/Ys
\\* ’/
9.475
0.1 /-0.06 05 \ 0.1

H3(E)  Hu(E)=H2(E)

Fig. 3.

In particular, we obtain again

A3(gE) > na(ge)

for all parameter€& £ 0 near zero (Fig. 3).

5. The Mathieu deformation of the flat metric

In the previous examples, the deformation
ge = (1+ E cog4nt))g,

of the flat metricg,, plays an exceptional role, because the derivafivgd), (i2(0)
# 0 are non- zero. Therefore, we study the behaviour of the first positive eigenvalue
for the Laplace and Dirac operator in more detail. First of all, the lower bound

2

4
hmax

< na(E), A3(E)

yields the estimate

42

< ui(E), \2(E
1Jr|EI_M( ), A1(E)
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for all parameters-1 < E < 1. In case of the functioif (r) = sin(27t) the upper
boundBj (g, f) of Section 2 leads to the estimate

8r2

2+ |E|’

ni(E) <

i.e., for all parameters-1 < E < 1 the inequality
72 < ui(E) < 8r?
1+ 1E =" =24 E

holds. On the other hand, for the Dirac operator the function

f(1) = (1+ E cog4nt))1 sin2rt)

gives an upper bouns},(gg, f) for its first eigenvalue with the property
lim BY =572,
Sm Bp(ge. f) =5

We will thus investigate the Iimitg Iirrlwl(E) as well asE Iim1 Af(E). The eigen-
—— ——
valueu(E) is related with a periodic solution of the Sturm—Liouville equation

A1) = —ul(E)(l +E cos(4m)>A(t) T 472K2A 1),

wherek = 0, +1 (see Proposition 1). Let us introduce the functiB¢x) :=
A (%x) where 0< x < 27. Then the Sturm—Liouville equation is equivalent to
the classical Mathieu equation

B (x) + (a + 169 cog2x))B(x) = O,
where the parametersandg are given by

ui(E) 5 Epa(e)

= 2 4= 2

A 16(47m <)

For E — —1 the parameters of the Mathieu equation are related by

, k=0,%x1

a=—-16g—k? , k=0,=+1
Using the estimates fqQr1(E) we obtain

8
272 < lim E) < —x?
T EI—>—1M1( )_37r,

. 1 1 .
ie.,, — — <qg <—— IincaseE = -1
24=9="732
A numerical computation shows that, under these restrictions, the Mathieu equation
has a unique periodic solution féar= 0 andg ~ 0,04113. This solutiomB(x)
is the first Mathieu functione; (x, ¢), which is the deformation of the function
sin(x). Consequently, we have

lim wi(E)=—16-q - 47 ~ 2, 63237°.
E—-1
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The limits of the spectral functions;(E) andus(E) can be computed in a similar
way:

i N . (472 i ~ 42
E"_)ﬁlluz(E) 1,79 (4n%), E|I_>m_1pL3(E) 0,9 (479).

These limits correspond to the Mathieu functiaas(x, ¢) andce,(x, g) for the
parameterg ~ —0, 112 in case ofu2(E) andg ~ —0, 056296 in case ofi3(E)
(see Fig. 4).

4

(3.6)

(2,66)T2
(2,632

lower bound

212

L L L L
-0.8 -0.6 -0.4 -0.2

Fig. 4.

Approximation of the periodic solution for u1(E), E — —1 (Fig. 5):

NDSolve[{y”[x] + 32(0.04113)(Sin[x])"2 y[x] == O,
yixl= =0,y[0l =1 },y,{x,0,10 Pi}]

Plot[Evaluate[y[x]/.% , { x, 0,10 Pi}

Approximation of the periodic solution for u2(E), E — —1 (Fig. 6):

NDSolve[{y”[x] + 32(0.1112)(Sin[x])"2 y[x] == O,
yx] = =1,y[00==0 },y,{x,0,10 Pi}]

Plot[Evaluate[y[x]/.% , { x, 0,10 Pi}

Approximation of the periodic solution for u3(E), E — —1 (Fig. 7):
NDSolve[{y”[x] + 32(0.056296)(Sin[x])"2 - 1)
y[x] == 0, )
y0] = =1,y[0]==0 },y,{Xx,0, 10 Pi}]

Plot[Evaluate[y[x]/.% , { x, 0,10 Pi}
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1.5f
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5 10 15 20 25 30

Fig. 7.
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5Te 50
(4,92) Te

y 4TP

lower bound

2718 ‘ ‘ ‘ ‘
- -0.8 -0.6 -0.4 -0.2

Fig. 8.
The eigenvaluesg(E) of the Dirac operator are related with the periodic so-

lutions of the Sturm—Liouville equation

” _ ’ 2 ’
ROR0) — 20001 _ 4722 +4nlm}A(t).

h2(t) h(r)

—A"(t) = {xzh“(t) +

For the Mathieu deformation we have

RO (1) — 2(h' ()2 , E+cos4nr) + LE sir(4r1)
= —4n“E
h2(1) (1+ E cog4nrt))?

First we discuss the case that= 0. Then the first positive eigenvalue of the
Dirac equation is given by

472
1 2"

/ h2(t)dt

0

22 =

In case of the Mathieu deformation we obtain

1 1

Jm [ 2w = [ VI=cos@mar = 2v2

/4
0 0

and, finally (see Fig. 8)

. 1
lim A%(E) = =n%~ (4,92)7>.
E—~-1 2
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We now investigate the cage= 1. Let us consider the Hamiltonian operator
Hp, given by the Sturm—Liouville equation fa? = 0:

2 l " _ l 2 2
Hy — _d_+4n2_4nh (1) h@K"@®) =20@)* _ d

dr? h(t) h2(1) T

+ pe(®),

where the potentigbg (¢) is given by the formula

Eﬂ24 cog4rn1)+4sindnt)+ E siif(4rnt)+2E (2+sin(8rt))

_ 2
PE() = 47"+ (1+E cos4r1))?

For all parameters-1 < E < 0 the Hamiltonian operataffg is strictly positive
(see Proposition 3). Consequently, the eigenva@(eE) is the first number such
that

inf spec(Hg — A2(1 + E cog4rt))) = 0,
and the corresponding solution of the Sturm—Liouville equation
AL@) = (pe(t) — A5(E)(L + E o4 1) A (1)
is unique and everywhere positive. In particular, the solution satisfies the condition
Ap(t+3) = Ap(0).

Since Ag(¢) is a positive periodic solution of the Sturm- Liouville equation, we
obtain the condition

1
/(pE(t) — A2(E)(1+ E cog4nt)))dt > 0
0

and thus an upper bound fmg(E) (Fig. 9):

1

A2(E) < /pE(t)dt.
0

We notice that this upper bound faé(E) grows and reflects, indeed, the real
behaviour ofx%(E) nearE = 0. To see this, we use Theorem 3 to compute the
fourth variation of this spectral function (the third variation vanishes s&@@f)

has to be a symmetric function ). One obtains the following result:

27
301" = 7?0,
Onthe other hand, using well-known approximation techniques for Sturm—Liouville

equations with periodic coefficients (see [10]) we can approxinﬁt&) for afixed
parametef . Indeed, one replaces the potential in the Sturm-Liouville equation by
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41 ¢

40.75

upper bound for A 5(E)

40.5 |

Fig. 9.

the first terms of its Fourier series. This reduces the computation of the approxima-
tive eigenvalue to a finite-dimensional eigenvalue problem. For example, in case of
E = —0.3 the mentioned methods yields the result

23(—0.3) ~ 39.6733

Let us study the behaviour of the spectral functkng) for E — —1. More
generally, denote by?(E, 1) the first eigenvalue of the Dirac operator such that the
corresponding eigenspace containsSamepresentation of weiglit In particular,

we haver3(E) = A%(E, 1) = A2(E, —1). We apply the Corollary of Proposition

3 to the functiom (1) = &I+ E cog4r 1) and conclude that

1

1
o 2
/(ango(t) A QP Y / J1+ E cosdnn)g?(t)dt > 0
0 0

1+ Ecog4nt)

holds for any periodic functiop(z). Fix a test functiorp(z) and consider the limit
E — —1. Then we obtain the inequality

1
rlo(t) — ¢'(1))? J
| sin(2rt)|

Tim AX(E, D) <
E—~-1

NI
o

1
/ | sin(2t)|¢?(t)dt
0

We apply this estimate to the function

coq2rt) +1sin(2rt)
202+ D

o) =
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Then 2tlg; (1) — ¢;(t) = sin(2rt) and we obtain the following
Proposition 4.

622+ D7

im AX(E,l) < 6m?——.
pm AE D =6t

Remark.At E = 0 we haver2(0, ) = 472I2. On the other hand, far> 3 the
inequality

(12 +1)2

2
Ty <Y

holds, i.e., Elim 1A2(E, I) < A%0,1) >3

The latter inequality means that the eigenvaldéE, [) decreases foE — —1
(I = 3.

The behaviour oh3(E) = A%(E, 1) for I = 1 is completely different. This
spectral function increases fé&r — —1. Using the formula

1 / 2
Crle(t) — ¢ (1))

v 14+ EcoY4rt)

.0
A3(E) = inf
3( ) p>0 1

f V1+ E cos4rt)¢?

0

we can approximate the positive minimizivathieu spinoMS (E, ¢t) of topolog-
ical index! = 1 by expanding it in its Fourier series. We thus obtain for example:

E =-0.9: 13(-0.9) ~ 40.1464

MS(-0.9,t)=(Sqrt[Sqrt[1+ (-0.9)Cos[4 Pi t]]]) Sqrt[1+ (0.44)Sin[4 Pi t]

+ (0.15)Cos[4 Pi t] + (0.09)Sin[8 Pi t] + (0.17)Cos[8 Pi t]
(0.028)Sin[16 Pi t] + (0.051)Cos[16 Pi t] + (0.051)Sin[12 Pi f{]
(0.085)Cos[12 Pi t] + (0.016)Sin[20 Pi t] + (0.026)Cos[20 Pi t]
(0.01)Sin[24 Pi t] + (0.014)Cos[24 Pi t] + (0.005)Sin[28 Pi t]
(0.007)Cos[28 Pi t] + (0.0033)Sin[32 Pi t] + (0.0044)Cos[32 Pi t]]

+

+ 4+ 4+

E =-0.95 13(—0.9) ~ 44.6024

MS(-0.95,t)=(Sqri[Sqri{1+(-0.95)Cos[4 Pi t[[)Sqri{1+(0.585)Sin[4 Pi ]

+ (0.049)Cos[4 Pit ]+ ( 0.1)Sin[8 Pi ] + (0.08)Cos[8 Pi {]
(0.063)Sin[12 Pi ] + (0.063)Cos[12 Pi {] + (0.041)Sin[16 Pi ]
(0.04)Cos[16 Pi t] + (0.026)Sin[20 Pi ] + (0.026)Cos[20 Pi {]
(0.017)Sin[24 Pi 1] + (0.018)Cos[24 Pi f] + (0.012)Sin[28 Pi {]
(0.011)Cos[28 Pi ] + (0.008)Sin[32 Pi t] + (0.007)Cos[32 Pi t]]

+

+ + 4+
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Finally, we can compute the Iimét IirIv%(E) replacing again the potential in
.

the Sturm—Liouville equation by the first terms of its Fourier series.Aref —1
this amounts to studying the differential equation

1
i) A" (1) = {§n2(9 — 3cog4nt) — 4 sin(4m)) — 22 sin4(2m)} A(t)
and the finite-dimensional approximation yields the result
; 2
E) ~ 472437,
A, A5(E) 3

Remark.The second variation formulas prove that, in case of the family
g = (14 Ecog2rt))g, (N = 1), the minimal positive eigenvalues of the
Laplace and Dirac operator decrease (see Example 4.1) and are smallet than 4
The numerical evaluation @f3(E) andx%(E) yields the following table:

E| 0O -01 -03 -05 -07 -09 -09 -099 -1
u3 | 472 39.284 37.897 35741 33.378 31.09 30.5 30.1 30.013
A% 472 39.333 38.353 36.714 34.983 33.331 33.2830 36.6436.2

6. Final remarks

As shown previously, any local deformatig of the flat metric realizes the in-
equality

n1(ge) < A3 (gr)

between the first eigenvalues of the Laplace and Dirac operator up to second order.
We are notable to give an example of a Riemannian mgtitZ'2 such thakf(g) <

n1(g) holds. Moreover, denote again b%(g; 1) the first positive eigenvalue of the
Dirac operator such that the eigenspace containsampresentation of weight

[ € Z. The corresponding eigenvalue of the Laplace operator we shall denote by
u1(g; D). It is a matter of fact that in all families of Riemannian metrics we have
discussed these two eigenvalues are very close. Let us consider, for example, the
metric gg given by the function

he(t) = e%(sin(Zm)fZ cog2r1))

For the parameteE = 1 we obtain the following numerical values using the
approximation method described before in the space spanned by the functions
1, sin(2rnt), cox2rnt) (1 <n < 5):

32(g;1) ~ 611056 , pa(g: 1) ~ 5.19025

However, even in this case we already have the inequalityr; 1) < A%(gE; 1)
and the following figure (Fig. 10) shows the graph of the two spectral functions for
0 < E < 1 (for the first and the second positive eigenvalue):
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