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Abstract. We compare the eigenvalues of the Dirac and Laplace operator on a two-dimensio-
nal torus with respect to the trivial spin structure. In particular, we compute their variation
up to order 4 upon deformation of the flat metric, study the corresponding Hamiltonian and
discuss several families of examples.

1. Introduction

We consider a two-dimensional torusT 2 equipped with a flat metricgo as well as
a conformally equivalent metricg,

g = h4go.

Denote by1g the Laplace operator acting on functions and letDg be the Dirac
operator. The following estimates for the first positive eigenvaluesµ1(g) andλ2

1(g)

of 1g andD2
g are known (see [2] and [7]):

a)
λ2

1(go)

h4
max

≤ λ2
1(g) ≤ λ2

1(go)

h4
min

,
µ1(go)

h4
max

≤ µ1(g) ≤ µ1(go)

h4
min

,

wherehmin (hmax) denotes the minimum (maximum) of the conformal factor,

b) µ1(g) ≤ 16π

vol(T 2, g)
.

In case the spin structure of the torusT 2 is nontrivial, the Dirac operator has no
kernel and, moreover, there exists a constantC depending on the conformal structure
fixed onT 2 and on the spin structure such that

λ2
1(g) ≥ C

vol(T 2, g)
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(see [8]). However, explicit formulas for the constants are not known. In this respect,
the situation onT 2 clearly differs from the case of the two-dimensional sphereS2,
where

λ2
1(g) ≥ 4π

vol(S2, g)

holds for any metricg (see [3], [6], [8]).
In this paper we compareµ1(g) andλ2

1(g) for the trivial spin structure and a
metric withS1-symmetry. We will construct deformationsgE of the flat metric such
that vol(gE) ≡ vol(go) andµ1(gE) < λ2

1(gE) holds for any parameterE 6= 0 near
zero. For this purpose we calculate, in complete generality, the formulas for the first
and second variation of the spectral functionsµ1 andλ2

1. It turns out that for any local
deformation of the flat metric, the first minimal eigenvalue of the Laplace operator
is always smaller than the corresponding eigenvalue of the Dirac operator up to
second order. The question whether or not there exists a Riemannian metricg on the
two-dimensional torus such thatλ2

1(g) < µ1(g) remains open. Denote byλ2
1(g; l)

andµ1(g; k) the first eigenvalue of the Dirac and Laplace operator, respectively,
such that its eigenspace contains the representation of weightl respectivelyk. The
discussion in the final part of this paper suggests the conjecture that for same index
l = k, the eigenvaluesλ2

1(g, l) andµ1(g, l), are closely related, more precisely,
that the Laplace eigenvalue is always smaller than the Dirac eigenvalue and that
their difference should be measurable by some other geometric quantity.

The Dirac equation for eigenspinors of indexl = 0 can be integrated explicitly.
In case of indexl 6= 0, the Hamiltonian describing the Dirac equation is a positive
Sturm- Liouville operator. First, this observation yields an upper bound forλ2

1(g, l).
On the other hand, it proves the existence of many eigenspinors without zeros.

We furthermore apply the general variation formulas in order to study the eigen-
values of the Laplace and Dirac operator for the family of metrics

gE = (1 + E cos(2πNt))(dt2 + dy2)

in more detail. In caseN = 2, the Laplace equation is reduced to the classical
Mathieu equation.A similar reduction of the Dirac equation yields a special Sturm–
Liouville equation whose solutions we shall therefore callMathieu spinors. We
investigate the eigenvalues of this equation and compute (for topological index
l = 1) the first terms in the Fourier expansion of these Mathieu spinors. These
computer calculations have been done by Heike Pahlisch and our grateful thanks
are due to her for this. Furthermore, we thank M. Shubin for interesting discussions
on Sturm–Liouville equations.

2. The first positive eigenvalues of the Dirac and Laplace operators

Let g andgo be two conformally equivalent metrics onT 2. Then the Laplace and
Dirac operators are related by the well-known formulas

1g = 1

h4 1o,
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Dg = 1

h2 Do + grad(h)

h3 ,

where grad(h) denotes the gradient of the functionh with respect to the metricgo.
Let us fix the trivial spin structure onT 2. In this case the kernel of the operator
Do coincides with the space of all parallel spinor fields, in particular, any solution
of the equationDo(ψo) = 0 has constant length. The kernel of the operatorDg is
given by

ker(Dg) =
{

1

h
ψo : Do(ψo) = 0

}
.

The squareD2
g of the Dirac operator preserves the decompositionS = S+ ⊕ S− of

the spinor bundleS. Moreover,D2
g acts on the space of all sections ofS± with the

same eigenvalues. Therefore, the first positive eigenvalueλ2
1(g) of the operatorD2

g

can be computed using sections in the bundleS+ only. Any sectionψ ∈ 0(S+) is
given by a functionf and a parallel spinor fieldψo ∈ 0(S+):

ψ = (f · h)ψo.
The spinor fieldψ isL2-orthogonal to the kernel of the operatorD2

g if and only if

∫
T 2

(ψ, 1
h
ψo)dT

2
g = |ψo|2

∫
T 2

f h4dT 2
o = 0

holds, wheredT 2
o anddT 2

g = h4dT 2
o are the volume forms of the metricsgo and

g. The Rayleigh quotient for the operatorD2
g is given by

∫
T 2

|Dg(ψ)|2dT 2
g

∫
T 2

|ψ |2dT 2
g

=

∫
T 2

|h · grad(f )+ 2f grad(h)|2dT 2
o

∫
T 2

f 2h6dT 2
o

.

Finally, we obtain the following formulas for the first positive eigenvalueµ1(g),
λ2

1(g) of the Laplace operator1g and the squareD2
g of the Dirac operator with

respect to the trivial spin structure:

µ1(g) = inf




∫
T 2

| grad(f )|2dT 2
o

∫
T 2

f 2h4dT 2
o

:
∫
T 2

f h4dT 2
o = 0
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λ2
1(g) = inf




∫
T 2

|h · grad(f )+ 2f · grad(h)|2dT 2
o

∫
T 2

f 2h6dT 2
o

:
∫
T 2

f h4dT 2
o = 0



.

A direct calculation yields the formula

∫
T 2

|h · grad(f )+ 2f grad(h)|2dT 2
o

=
∫
T 2

h2f1o(f )dT
2
o +

∫
T 2

(4| grad(h)|2 + 1
21o(h

2))f 2dT 2
o .

Let us use this formula in case thatf is an eigenfunction of the Laplace operator,
i.e.,

1o(f ) = µ1(g)h
4f.

Then it implies the following inequality between the first eigenvalues of the Laplace
and Dirac operator:

λ2
1(g) ≤ µ1(g)+

∫
T 2

(
4| grad(h)|2 + 1

21o(h
2)
)
f 2dT 2

o

∫
T 2

f 2h6dT 2
o

.

We are now looking forL2-estimates in case the metricg admits anS1-symmetry.
Indeed, let us suppose that the metricg is defined on[0,1] × [0,1] by

g = h4(t)go = h4(t)(dt2 + dy2),

where the conformal factorh4 depends on the variablet only. Moreover, we assume
that the functionh (t) has the symmetry

h(t) = h(1 − t).

Then any functionf (t) with f (t) = −f (1 − t) satisfies the condition

∫
T 2

f h4dT 2
o = 0
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and, consequently, yields upper bounds forµ1(g) andλ1(g):

µ1(g) ≤

1∫
0

|f ′(t)|2dt

1∫
0

f 2(t)h4(t)dt

:= BuL(g; f )

λ2
1(g) ≤

1∫
0

(
h(t)f ′(t)+ 2f (t)h′(t)

)2
dt

1∫
0

f 2(t)h6(t)dt

:= BuD(g; f ) .

3. The first and second variations ofµ1(g) and λ2
1(g)

We consider a Riemannian metric

g = h4(t)go = h4(t)(dt2 + dy2)

on T 2 (0 ≤ t ≤ 1, 0 ≤ y ≤ 1) and denote byE(µ1(g)) andE(λ2
1(g)) the

eigenspaces of the Laplace and the Dirac operators corresponding to the first positive
eigenvalue. The isometry groupS1 acts on these eigenspaces and therefore they
decompose into irreducible representations

E(µ1(g)) = ∑
(k1)⊕ · · · ⊕∑

(km) and E(λ2
1(g)) = ∑

(l1)⊕ · · · ⊕∑
(ln),

where
∑
(k) denotes the 1-dimensionalS1-representation of weightk.

Proposition 1. The weightsk2
α of the first positive eigenvalueµ1(g) of the Laplace

operator are always bounded by one:

k2
α ≤ 1.

The weightsl2β of the first positive eigenvalueλ2
1(g) of the Dirac operator are

bounded by one under the condition

max

(∣∣∣∣h′(t)
h(t)

∣∣∣∣ : 0 ≤ t ≤ 1

)
≤ 3π.
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Proof. Suppose that

f (t, y) = A(t)e2πkαiy

is an eigenfunction of the Laplace operator,1gf = µ1(g)f . Then the function
A(t) is a solution of the Sturm–Liouville equation

−A′′(t) =
{
µ1(g)h

4(t)− 4π2k2
α

}
A(t).

Then consider the function

F(t, y) = A(t)e2πiy

and remark that

1gF = µ1(g)F + 4π2(1 − k2
α)
F

h4 .

Since
∫
T 2

FdT 2
g = 0, we obtain, in case of the first positive eigenvalue, that

µ1 ≤

∫
T 2

1g(F )F̄ dT
2
g

∫
T 2

|F |2dT 2
g

= µ1 + 4π2(1 − k2
α)

∫
T 2

|F |2dT 2
o

∫
T 2

|F |2h4dT 2
o

.

The latter inequality yieldsk2
α ≤ 1 immediately. The corresponding result for the

Dirac operator follows from the formula

λ2
1 ≤ λ2

1 + 4π2

∫
T 2

|F |2h4dT 2
o


(1 − l2)

∫
T 2

|F |2dT 2
o + l − 1

π

1∫
0

|F(t)|2h
′(t)
h(t)

dt


 ,

where we have already used the differential equation(∗∗) forA that will be derived
in the next paragraph.ut

Solutions of the Laplace equation1gf = µ1(g)f are given by solutions of the
Sturm–Liouville equation

−A′′(t) = {µ1(g)h
4(t)− 4π2k2}A(t) (∗)

with k = 0,±1. In a similar way we can reduce the Dirac equation to an ordinary
differential equation. The Dirac operatorDg acts on spinor fields via the formula

Dg = 1

h2(t)

(
0 i
i 0

)
∂t + h′(t)

h3(t)

(
0 i
i 0

)
+ 1

h2(t)

(
0 −1
1 0

)
∂y.
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Suppose that a spinor fieldψ ∈ 0(S+) is a solution of the equationD2
g(ψ) =

λ2
1(g)ψ . Thenψ is given by a solution of the Sturm–Liouville equation

−A′′(t) =
{
λ2

1(g)h
4(t)+ h(t)h′′(t)− 2(h′(t))2

h2(t)
− 4π2l2 + 4πl

h′(t)
h(t)

}
A(t)

(∗∗)
with l = 0,±1. In casel = 0, this equation can be solved.

Proposition 2. The eigenvalues of the Sturm–Liouville equation(∗∗) for l = 0 are
given by(n ∈ Z)

λ2 = 4π2n2
 1∫

0

h2(t)dt




2 .

Proof. The Sturm–Liouville operator

H = − 1

h4(t)

d2

dt2
− h(t)h′′(t)− 2(h′(t))2

h6(t)

admits a square root, namely

√
H(−) = i

h3(t)

d

dt
(h(t)−).

Since we haved
dt
h2(t)A(t)Ā(t) = 0, any solution of the equation

i

h3(t)

d

dt
(h(t)A(t)) = λA(t)

satisfies the condition

|A(t)| = const

h(t)
.

Consequently, it makes sense to define a functionf : R → R by the formula

h(t)A(t) = eif (t),

for which we easily obtain the differential equationf ′(t) = λh2(t). But since
A(t) is a periodic solution, we have the condition

2πn =
1∫

0

f ′(t)dt = λ

1∫
0

h2(t)dt

for some integern ∈ Z, thus yielding the result.ut
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Corollary. Letλ2(g) be an eigenvalue of the Dirac operator on the two-dimensio-
nal torusT 2 with respect to the trivial spin structure and a Riemannian metric

g = h4(t)(dt2 + dy2)

with isometry groupS1. Moreover, suppose that the eigenspinor isS1-invariant
(l = 0). Then

λ2(g) vol(T 2, g) ≥ 4π2

holds.

Proof. Since the volume is given by vol(T 2, g) =
1∫

0

h4(t)dt , the inequality fol-

lows directly from the Cauchy-Schwarz inequality


 1∫

0

h2(t)dt




2

≤
1∫

0

h4(t)dt

and the previous Proposition.ut
Remark.This corollary should be compared with the following fact. Fix a re-
presentation6(k) and denote byµ1(g; k) the first eigenvalue of the Laplace oper-
ator such that its eigenspace contains the representation6(k). In casek 6= 0 the
solutionA(t) of equation(∗) is positive (see [9], page 207) and consequently the
inequality

1∫
0

(
4πk2 − µ1(g; k)h4(t)

)
dt ≥ 0

is valid. We thus obtain the estimate

4π2k2 ≥ µ1(g; k) vol(T 2, g)

and equality holds if and only if the metric is flat. In particular(k = ±1) we have

4π2 ≥ µ1(g) vol(T 2, g)

for the first positive eigenvalue of the Laplace operator in case that its eigenspace
contains the representation6(±1).

Let us introduce the Hamiltonian operatorHl defined by the Sturm–Liouville
equation(∗∗) for λ2 = 0:

Hl = − d2

dt2
+ 4πl2 − 4πl

h′(t)
h(t)

− h(t)h′′(t)− 2(h′(t))2

h2(t)
.

Proposition 3. For l 6= 0, the Hamiltonian operatorsHl are strictly positive.Ho
is a non-negative operator.
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Proof. A direct calculation yields the formula

1∫
0

Hl

(
ϕ(t)

h(t)

)
ϕ(t)

h(t)
dt =

1∫
0

(
2πl

ϕ(t)

h(t)
− ϕ′(t)
h(t)

)2

dt ≥ 0,

whereϕ(t) is any periodic function. The equation 2πlϕ(t) − ϕ′(t) = 0 does not
admit a periodic, non-trivial solution in casel 6= 0. Consequently,Hl is a strictly
positive operator forl 6= 0. ut
Corollary. Fix an S1-representation6(l). Let λ2

1(g, l) be the first eigenvalue of
the Dirac operator on the two-dimensional torusT 2 with respect to the trivial spin
structure and anS1-invariant metric

g = h4(t)(dt2 + dy2)

such that the representation6(l) occurs in the decomposition of the eigenspace.
Then the multiplicity of6(l) is one and the eigenspinor does not vanish anywhere
(l 6= 0).

Proof. SinceHl is strictly positive, the eigenvalueλ2(g) is the unique positive
numberλ2 such that

inf spec(Hl − λ2h4) = 0.

The corresponding real solution of this Sturm–Liouville equation is unique and
positive (see [9], p.207).ut
Corollary. For a fixedS1-representation6(l) denote byλ2

1(g, l) the first eigen-
value of the Dirac operator such that the eigenspaceE(λ2

1(g, l)) contains the
representation6(l). Then the inequality

λ2
1(g, l) ≤

1∫
0

(2πlϕ(t)− ϕ′(t))2

h2(t)
dt

1∫
0

h2(t)ϕ2(t)dt

holds for any periodic functionϕ(t).

Proof. Since inf spec(Hl − λ2
1(g, l)h

4) = 0, we have

1∫
0

Hl

(ϕ
h

) ϕ
h
(t)dt − λ2

1(g, l)

1∫
0

h2(t)ϕ2(t)dt ≥ 0

for any periodic functionϕ(t). ut
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In case of the flat metricgo = dt2 + dy2 we haveµ1(go) = λ2
1(go) = 4π2 and

E(µ1(go)) = 6(0)⊕6(0)⊕6(1)⊕6(−1) = E(λ2
1(go)).

The spaces6(±1) correspond to the case thatk = l = ±1 and are generated by the
constant function. The two spaces6(0) are generated by the functions sin(2πt),
cos(2πt).

Notation. We introduce now a few notations which will be used throughout this
article. Let us consider a deformationgE = h4

E(t)go of the flat metricgo depending
on some parameterE. We assume that

h4
E(t) = h4

E(1 − t)

holds for all parameters of the deformation. The eigenvaluesµ1(go) andλ2
1(go) of

multiplicity four split into three eigenvalues

µ1(go) 7→ {µ1(E), µ2(E), µ3(E)}, λ2
1(go) 7→ {λ2

1(E), λ
2
2(E), λ

2
3(E)}.

The eigenvalueµ3(E) corresponds to the case thatk = ±1, has multiplicity
two, and its eigenfunction is a deformation of the constant function. The eigenvalues
µ1(E) 6= µ2(E) correspond to solutions of the Sturm–Liouville equation(∗) and
their eigenfunctions are deformations of sin(2πt) and cos(2πt), respectively. The
situation is different for the Dirac equation: there, according to Proposition 2,
the trivial S1-representation(l = 0) yields one eigenvalueλ2

1(E) of multiplicity
two and the non-trivial representations(l = ±1) define in general two distinct
eigenvaluesλ2

2(E),λ
2
3(E) of multiplicity one. However, in casehE(t) = hE(1− t),

the spectral functionsλ2
2(E)andλ2

3(E) coincide. Obviously, for small valuesE ≈ 0
we have

µ1(gE) = min {µ1(E), µ2(E), µ3(E)}, λ2
1(gE) = min {λ2

1(E), λ
3
2(E), λ

2
3(E)}.

We will compute the first and second variation ofµα(E) andλ2
α(E) atE = 0.

For this purpose we introduce the following notation: LetA be a function depending
both onE andt .ThenȦdenotes the derivative with respect toE andA′ the derivative
with respect tot . Moreover, we expand the functionh4

E(t) in the form

h4
E(t) = 1 + EH(t)+ E2G(t)+ O(E3).

Theorem 1. Consider a deformation

gE = (1 + EH(t)+ E2G(t)+ O(E3))go = h4
E(t)go

of the flat metric on the torusT 2 such thath4
E(t) = h4

E(1− t). Moreover, suppose
that forE 6= 0 andk = 0 the eigenvaluesµ1(E) 6= µ2(E) are simple eigenvalues
of the Sturm–Liouville equation(∗). Then
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a) µ̇1(0) = −8π2

1∫
0

H(t) sin2 (2πt)dt , µ̇2(0) = −8π2

1∫
0

H(t) cos2 (2πt)dt

µ̇3(0) = −4π2

1∫
0

H(t)dt.

b) λ̇2
1(0) = λ̇2

2(0) = λ̇2
3(0) = −4π2

1∫
0

H(t)dt .

In particular, we obtain

µ̇1(0)+ µ̇2(0) = 2µ̇3(0) = 2λ̇2
α(0).

Corollary. Suppose that the deformation

gE = (1 + EH(t)+ E2G(t)+ O(E3))go

of the flat metricgo satisfies the condition

H(t) = H(1 − t)

as well as

1∫
0

H(t) sin2 (2πt)dt 6=
1∫

0

H(t) cos2(2πt)dt.

Then, for all parametersE 6= 0 near zero we have the strict inequality

µ1(gE) < λ2
1(gE).

Next we compute the second variation of our spectral functions under the as-
sumption that the first variation is trivial.

Theorem 2. Consider a deformation

gE = (1 + EH(t)+ E2G(t)+ O(E3))go = h4
E(t)go

of the flat metricgo on the torusT 2 and suppose that the conditions

h4
E(t) = h4

E(1 − t)

and

1∫
0

H(t) sin2 (2πt)dt =
1∫

0

H(t) cos2 (2πt)dt = 0

are satisfied. Moreover, suppose that forE 6= 0andk = 0 the eigenvaluesµ1(E) 6=
µ2(E) are simple eigenvalues of the Sturm–Liouville equation(∗). Then
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a) µ̈1(0) = −16π2

1∫
0

G(t) sin2 (2πt)dt − 16π2

1∫
0

H(t)C(t) sin(2πt)dt , where

C(t) is the periodic solution of the differential equation

C′′(t) = −4π2H(t) sin(2πt)− 4π2C(t).

b) µ̈2(0) = −16π2

1∫
0

G(t) cos2(2πt) − 16π2

1∫
0

H(t)C(t) cos(2πt)dt , where

C(t) is the periodic solution of the differential equation

C′′(t) = −4π2H(t) cos(2πt)− 4π2C(t).

c) µ̈3(0) = −8π2

1∫
0

G(t)dt − 8π2

1∫
0

H(t)C(t)dt , whereC(t) is the periodic

solution of the differential equation

C′′(t) = −4π2H(t).

d) λ̈2
1(0) = −8π2

1∫
0

G(t)dt + 2π2

1∫
0

H 2(t)dt

e) λ̈2
2(0) = λ̈2

3(0) = −8π2

1∫
0

G(t)dt + 4π2

1∫
0

H 2(t)dt − 8π2

1∫
0

H(t)C(t)dt

−2π

1∫
0

H ′(t)C(t)dt ,

whereC(t) is the periodic solution of the differential equation

C′′(t) = −4π2H(t)− πH ′(t).

Proof of Theorem 1 and Theorem 2.The formulas for the derivatives ofλ2
1(E) are

a direct consequence of Proposition 2. We will prove the variation formulas forλ2
3

and just remark that one can investigate the other spectral functions in a similar
way. Moreover, since all the calculations we make are up to order two with respect
toE, we may assume for simplicity that

h4
E(t) = 1 + EH(t)+ E2G(t).

We compute

hEh
′′
E − 2(h′

E)
2

h2
E

= 1

4
E

H ′′ + EG′′

(1 + EH + E2G)
− 5

16
E2 (H ′ + EG′)2

(1 + EH + E2G)2
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and, consequently, we obtain the formulas

d

dE

(
hEh

′′
E − 2(h′

E)
2

h2
E

)
E=0

= 1

4
H ′′ ,

d

dE

(
h′
E

hE

)
E=0

= 1

4
H ′

d2

dE2

(
hEh

′′
E − 2(h′

E)
2

h2
E

)
E=0

= 1

2
(G′′ −H ′′H)− 5

8
(H ′)2.

The spectral functionλ2
3(E) is defined by a periodic solutionAE(t) of the

Sturm–Liouville equation

A′′
E(t) = − λ2

3(E)h
4
E(t)AE(t)

− hE(t)h
′′
E(t)− 2(h′

E(t))
2

h2
E(t)

AE(t)+ 4π2AE(t)− 4π
h′
E(t)

hE(t)
AE(t)

with the initial conditionsλ2
3(0) = 4π2, Ao(t) ≡ 1. Therefore, we obtain

Ȧ′′
o(t) = −λ̇2

3(0)− 4π2H(t)− 4π2Ȧo(t)− 1

4
H ′′(t)+ 4π2Ȧo(t)− πH ′(t)

in this case and, consequently,

λ̇2
3(0) = −4π2

1∫
0

H(t)dt.

Let us now compute the second variation in case thatλ̇2
1(0) = 0 = λ̇2

3(0). We
differentiate the Sturm–Liouville equation twice atE = 0:

Ä′′
o(t) = −λ̈2

3(0)− 8π2G(t)− 8π2H(t)Ȧo(t)

+5

8
(H ′(t))2 − 1

2

(
G′′(t)−H ′′(t)H(t)

)

−1

2
H ′′(t)Ȧo(t)− 2πH ′(t)Ȧo(t)− 4π

d

dt

(
d2

dE2 (ln (hE(t)))E=0

)
.

Then we obtain

λ̈2
3(0) = −8π2

1∫
0

G(t)dt − 8π2

1∫
0

H(t)Ȧo(t)dt +
(

5

8
− 1

2

) 1∫
0

(H ′(t))2dt

−1

2

1∫
0

H ′′(t)Ȧo(t)dt − 2π

1∫
0

H ′(t)Ȧo(t)dt.

SinceȦo(t) is a solution of the differential equation

Ȧ′′
o(t) = −4π2H(t)− 1

4
H ′′(t)− πH ′(t),
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we have

−1

2

1∫
0

H ′′(t)Ȧo(t)dt = −1

2

1∫
0

H(t)Ȧ′′
o(t)dt

= +1

2

1∫
0

H(t)

(
4π2H(t)+ 1

4
H ′′(t)

)
dt

= 2π2

1∫
0

H 2(t)dt − 1

8

1∫
0

(H ′(t))2dt

and, consequently, we obtain

λ̈2
3(0) = −8π2

1∫
0

G(t)dt + 2π2

1∫
0

H 2(t)dt

−8π2

1∫
0

H(t)Ȧo(t)dt − 2π

1∫
0

H ′(t)Ȧo(t)dt

= −8π2

1∫
0

G(t)dt + 4π2

1∫
0

H 2(t)dt

−8π2

1∫
0

H(t)C(t)dt − 2π

1∫
0

H ′(t)C(t)dt,

whereC(t) := Ȧo(t)+ 1
4H(t) is a solution of the differential equation

C′′(t) = −4π2H(t)− πH ′(t). ut

Corollary. λ̈2
3(0) = µ̈3(0)+ 2π2

1∫
0

H 2(t)dt .

In particular, for all parametersE 6= 0 near zero we have the inequality

µ3(E) < λ2
3(E).

Moreover, the first positive eigenvalueµ1(gE) of the Laplace operator is always
smaller then the corresponding eigenvalueλ2

1(gE) of the Dirac operator for any
metricgE nearE ≈ 0, i.e.,

µ1(gE) < λ2
1(gE).
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Remark.The explicit formulas in Theorem 1 and Theorem 2 can be generalized
to the case of an arbitrary conformal deformation. Fix a Riemannian metricgo on
a surfaceM2 and consider the deformation

gE = (1 + EH + E2G+ O(E3))go

of the metric. Moreover, suppose thatµ1(E) is the deformation of the eigenvalue
of the Laplace operator andfE is the corresponding family of eigenfunctions. Then
the following formulas hold:

a) µ̇1(0) = −µ1(0)

∫
M2

Hf 2
o dM

2
o

∫
M2

f 2
o dM

2
o

b) µ̈1(0) = −2µ1(0)

∫
M2

(Gf 2
o + Cfo)dM

2
o

∫
M2

f 2
o dM

2
o

,

where the functionC is the solution of the differential equation

1oC = µ1(0)Hfo + µ1(0)C.

The corresponding expression for the variation of the eigenvalueλ1(E) of the Dirac
operator can also be computed:

c) λ̇1(0) = −λ1(0)

∫
M2

H · |ψo|2dM2
o

2
∫
M2

|ψo|2dM2
o

and a similar formula holds for the second variation.

Once again, a similar, though even more intricate computation yields the fourth
variation ofλ2

3(E)under the assumption that all previous variations ofλ2
3(E)vanish.

This is needed for the discussion of the example in Sect. 5.

Theorem 3. Consider a deformation

gE = (1 + EH(t))go

of the flat metricgo on the torusT 2 and suppose that the following conditions are
satisfied:

a) H(t) = H(1 − t);
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b) λ̇2
3(0) = λ̈2

3(0) =···
λ

2
3 (0) = 0 .

Then the fourth derivative[λ2
3(0)](IV) of the spectral functionλ2

3(E) at E = 0 is
given by the formula

[λ2
3(0)](IV) = 6

1∫
0

H 3(t)H ′′(t)dt + 45

2

1∫
0

H 2(t)(H ′(t))2dt

−
1∫

0

(
16π2H(t)+H ′′(t)

)
C3(t)dt

+
1∫

0

(
5

2
(H ′(t))2 + 2H(t)H ′′(t)

)
C2(t)dt

−
1∫

0

(
15(H ′(t))2 + 6H ′′(t)H(t)

)
H(t)C1(t)dt,

where the functionsC1(t), C2(t), C3(t) are periodic solutions of the equations

C′′
1(t) = −4π2H(t)− 1

4
H ′′(t)− πH ′(t)

C′′
2(t) = 1

2
H(t)H ′′(t)+ 5

8
(H ′(t))2 + 2πH ′(t)H(t)

−
(

8π2H(t)+ 1

2
H ′′(t)+ 2πH ′(t)

)
C1(t)

C′′
3(t) = −

(
3

2
H ′′(t)H 2(t)+ 15

4
H(t)(H ′(t))2 + 6πH ′(t)H 2(t)

)

+
(

3

2
H(t)H ′′(t)+ 5

8
(H ′(t))2 + 6H(t)H ′(t)

)
C1(t)

−
(

3πH ′(t)+ 3

4
H ′′(t)+ 4π2H(t)

)
C2(t).

Remark.In the special case ofH ′′(t) = −16π2H(t) the derivative[λ2
3(0)](IV) does

not depend onC3(t) and the formulas become much simpler. Such a metric will be
the object of Sect. 5.

4. Examples

4.1. The variationgE = (1 + E cos(2πt))go

The volume vol(T 2, gE) = 1 of this variation of the flat metricgo is constant and
all first derivatives atE = 0 vanish since

1∫
0

cos(2πt) cos2(2πt) =
1∫

0

cos(2πt) sin2(2πt) = 0.
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λ2(Ε)

λ2(Ε)=λ2(Ε)µ1(Ε) µ3(Ε)

µ2(Ε)
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39.48

39.49

1

3

Fig. 1.

A computation of the second derivatives yields the following numerical values:

µ̈1(0) = −2

3
π2, µ̈2(0) = 10

3
π2, µ̈3 = −4π2

λ̈2
1(0) = π2, λ̈2

2(0) = λ̈2
3(0) = −3π2.

In particular, we obtain

µ1(gE) < λ2
1(gE)

for all parametersE 6= 0 near zero. The eigenspinor corresponding to the minimal
positive eigenvalue of the Dirac operator does not vanish anywhere (Fig. 1).

4.2. The Mathieu deformationgE = (1 + E cos(4πt))go of the flat metric

This deformation of the flat metric again preserves the volume, and the Laplace
equation essentially reduces to the classical Mathieu equation

u′′(x)+ (a + 16q cos(2x))u(x) = 0.

In this case the first variation is trivial only for the Dirac equation. Indeed, we have

µ̇1(0) = 2π2, µ̇2(0) = −2π2, µ̇3(0) = 0

λ̇2
1(0) = λ̇2

2(0) = λ̇2
3(0) = 0.
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2 3

Fig. 2.

Even for the Mathieu deformation we conclude that

µ1(gE) < λ2
1(gE)

for E 6= 0 near zero. A computation of the second derivatives yields the following
result (Fig. 2):

µ̈3(0) = −π2, λ̈2
1(0) = π2, λ̈2

2(0) = λ̈2
3(0) = 0.

For a detailed discussion of this metric, we refer to the next section.

4.3. The variationgE = (1 + E cos(2πNt))go, N ≥ 3

Since

1∫
0

cos(2πNt) cos2(2πt)dt =
1∫

0

cos(2πNt) sin2(2πt)dt = 0

for N ≥ 3, the first variations of our spectral functions vanish. We compute the
second variation using the algorithm in Theorem 2:

µ̈1(0) = µ̈2(0) = − 4π2

N2 − 4
, µ̈3(0) = −4π2

N2

λ̈2
1(0) = π2, λ̈2

2(E) = λ̈2
3(0) =

(
1 − 4

N2

)
π2.



Dirac and Laplace operators on a two-dimensional torus 249

λ1(Ε)
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In particular, we obtain again

λ2
1(gE) > µ1(gE)

for all parametersE 6= 0 near zero (Fig. 3).

5. The Mathieu deformation of the flat metric

In the previous examples, the deformation

gE = (1 + E cos(4πt))go

of the flat metricgo plays an exceptional role, because the derivativesµ̇1(0), µ̇2(0)
6= 0 are non- zero. Therefore, we study the behaviour of the first positive eigenvalue
for the Laplace and Dirac operator in more detail. First of all, the lower bound

4π2

h4
max

≤ µ1(E), λ
2
1(E)

yields the estimate

4π2

1 + |E| ≤ µ1(E), λ
2
1(E)
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for all parameters−1< E < 1. In case of the functionf (t) = sin(2πt) the upper
boundBuL(g, f ) of Section 2 leads to the estimate

µ1(E) ≤ 8π2

2 + |E| ,

i.e., for all parameters−1< E < 1 the inequality

4π2

1 + |E| ≤ µ1(E) ≤ 8π2

2 + |E|
holds. On the other hand, for the Dirac operator the function

f (t) = (1 + E cos(4πt))
1
4 sin(2πt)

gives an upper boundBuD(gE, f ) for its first eigenvalue with the property

lim
E→−1

BuD(gE, f ) = 5π2.

We will thus investigate the limits lim
E→−1

µ1(E) as well as lim
E→−1

λ2
1(E). The eigen-

valueµ1(E) is related with a periodic solution of the Sturm–Liouville equation

A′′(t) = −µ1(E)
(
1 + E cos(4πt)

)
A(t)+ 4π2k2A(t),

wherek = 0,±1 (see Proposition 1). Let us introduce the functionB(x) :=
A
( 1

2π x
)

where 0≤ x ≤ 2π . Then the Sturm–Liouville equation is equivalent to
the classical Mathieu equation

B ′′(x)+ (a + 16q cos(2x))B(x) = 0,

where the parametersa andq are given by

a = µ1(E)

4π2 − k2 , q = Eµ1(e)

16(4π2)
, k = 0,±1.

ForE → −1 the parameters of the Mathieu equation are related by

a = −16q − k2 , k = 0,±1.

Using the estimates forµ1(E) we obtain

2π2 ≤ lim
E→−1

µ1(E) ≤ 8

3
π2,

i.e., − 1

24
≤ q ≤ − 1

32
in caseE = −1.

A numerical computation shows that, under these restrictions, the Mathieu equation
has a unique periodic solution fork = 0 andq ≈ 0,04113. This solutionB(x)
is the first Mathieu functionse1(x, q), which is the deformation of the function
sin(x). Consequently, we have

lim
E→−1

µ1(E) = −16 · q · 4π2 ≈ 2,6323π2.
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The limits of the spectral functionsµ2(E) andµ3(E) can be computed in a similar
way:

lim
E→−1

µ2(E) ≈ 1,79 · (4π2), lim
E→−1

µ3(E) ≈ 0,9 · (4π2).

These limits correspond to the Mathieu functionsce1(x, q) andceo(x, q) for the
parametersq ≈ −0,112 in case ofµ2(E) andq ≈ −0,056296 in case ofµ3(E)

(see Fig. 4).

-1 -0.8 -0.6 -0.4 -0.2

25

30

35

µ3(Ε)

µ1(Ε) lower bound

BL
u

4π2

2π2

(2,63)π2

(2,66)π2

(3,6)π2

Fig. 4.

Approximation of the periodic solution for µ1(E), E → −1 (Fig. 5):

NDSolve[{y’’[x] + 32(0.04113)(Sin[x])ˆ2 y[x] == 0,
y[x] = = 0 , y’[0] == 1 } , y , {x , 0 , 10 Pi}]

Plot[Evaluate[y[x]/.% , { x , 0 , 10 Pi}]

Approximation of the periodic solution for µ2(E), E → −1 (Fig. 6):

NDSolve[{y’’[x] + 32(0.1112)(Sin[x])ˆ2 y[x] == 0,
y[x] = = 1 , y’[0] == 0 } , y , {x , 0 , 10 Pi}]

Plot[Evaluate[y[x]/.% , { x , 0 , 10 Pi}]

Approximation of the periodic solution for µ3(E), E → −1 (Fig. 7):

NDSolve[{y’’[x] + 32(0.056296)(Sin[x])ˆ2 - 1)
y[x] == 0,
y[0] = = 1 , y’[0] == 0 } , y , {x , 0 , 10 Pi}]

Plot[Evaluate[y[x]/.% , { x , 0 , 10 Pi}]
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The eigenvaluesλ2
α(E) of the Dirac operator are related with the periodic so-

lutions of the Sturm–Liouville equation

−A′′(t) =
{
λ2h4(t)+ h(t)h′′(t)− 2(h′(t))2

h2(t)
− 4π2l2 + 4πl

h′(t)
h(t)

}
A(t).

For the Mathieu deformation we have

h(t)h′′(t)− 2(h′(t))2

h2(t)
= −4π2E

E + cos(4πt)+ 1
4E sin2(4πt)

(1 + E cos(4πt))2
.

First we discuss the case thatl = 0. Then the first positive eigenvalue of the
Dirac equation is given by

λ2 = 4π2
 1∫

0

h2(t)dt




2 .

In case of the Mathieu deformation we obtain

lim
E→−1

1∫
0

h2(t)dt =
1∫

0

√
1 − cos(4πt)dt = 2

√
2

π

and, finally (see Fig. 8)

lim
E→−1

λ2(E) = 1

2
π4 ≈ (4,92)π2.
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We now investigate the casel = 1. Let us consider the Hamiltonian operator
HE given by the Sturm–Liouville equation forλ2 = 0:

HE = − d2

dt2
+ 4π2 − 4π

h′(t)
h(t)

− h(t)h′′(t)− 2(h′(t))2

h2(t)
= − d2

dt2
+ pE(t),

where the potentialpE(t) is given by the formula

pE(t) = 4π2 + Eπ2 4 cos(4πt)+4 sin(4πt)+E sin2(4πt)+2E(2+sin(8πt))

(1+E cos(4πt))2
.

For all parameters−1 < E ≤ 0 the Hamiltonian operatorHE is strictly positive
(see Proposition 3). Consequently, the eigenvalueλ2

3(E) is the first number such
that

inf spec(HE − λ2(1 + E cos(4πt))) = 0,

and the corresponding solution of the Sturm–Liouville equation

A′′
E(t) = (pE(t)− λ2

3(E)(1 + E cos(4πt)))AE(t)

is unique and everywhere positive. In particular, the solution satisfies the condition

AE(t + 1
2) = AE(t).

SinceAE(t) is a positive periodic solution of the Sturm- Liouville equation, we
obtain the condition

1∫
0

(pE(t)− λ2
3(E)(1 + E cos(4πt)))dt > 0

and thus an upper bound forλ2
3(E) (Fig. 9):

λ2
3(E) <

1∫
0

pE(t)dt.

We notice that this upper bound forλ2
3(E) grows and reflects, indeed, the real

behaviour ofλ2
3(E) nearE = 0. To see this, we use Theorem 3 to compute the

fourth variation of this spectral function (the third variation vanishes sinceλ2
3(E)

has to be a symmetric function inE). One obtains the following result:

[λ2
3(0)](IV) = 27

4
π2 > 0.

On the other hand, using well-known approximation techniques for Sturm–Liouville
equations with periodic coefficients (see [10]) we can approximateλ2

3(E) for a fixed
parameterE. Indeed, one replaces the potential in the Sturm–Liouville equation by
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the first terms of its Fourier series. This reduces the computation of the approxima-
tive eigenvalue to a finite-dimensional eigenvalue problem. For example, in case of
E = −0.3 the mentioned methods yields the result

λ2
3(−0.3) ≈ 39.6733.

Let us study the behaviour of the spectral functionλ2
3(E) for E → −1. More

generally, denote byλ2(E, l) the first eigenvalue of the Dirac operator such that the
corresponding eigenspace contains anS1-representation of weightl. In particular,
we haveλ2

3(E) = λ2(E,1) = λ2(E,−1). We apply the Corollary of Proposition
3 to the functionhE(t) = 4

√
1 + E cos(4πt) and conclude that

1∫
0

(2πlϕ(t)− ϕ′(t))2√
1 + E cos(4πt)

− λ2(E, l)

1∫
0

√
1 + E cos(4πt)ϕ2(t)dt ≥ 0

holds for any periodic functionϕ(t). Fix a test functionϕ(t) and consider the limit
E → −1. Then we obtain the inequality

lim
E→−1

λ2(E, l) ≤ 1

2

1∫
0

(2πlϕ(t)− ϕ′(t))2

| sin(2πt)| dt

1∫
0

| sin(2πt)|ϕ2(t)dt

.

We apply this estimate to the function

ϕl(t) = cos(2πt)+ l sin(2πt)

2(l2 + 1)π
.
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Then 2πlϕl(t)− ϕ′
l (t) = sin(2πt) and we obtain the following

Proposition 4.

lim
E→−1

λ2(E, l) ≤ 6π2 (l
2 + 1)2

(1 + 2l2)
.

Remark.At E = 0 we haveλ2(0, l) = 4π2l2. On the other hand, forl ≥ 3 the
inequality

6 · (l
2 + 1)2

1 + 2l2
< 4l2

holds, i.e., lim
E→−1

λ2(E, l) < λ2(0, l) l ≥ 3.

The latter inequality means that the eigenvalueλ2(E, l) decreases forE → −1
(l ≥ 3).

The behaviour ofλ2
3(E) = λ2(E, l) for l = 1 is completely different. This

spectral function increases forE → −1. Using the formula

λ2
3(E) = inf

ϕ>0

1∫
0

(2πlϕ(t)− ϕ′(t))2√
1 + E cos(4πt)

1∫
0

√
1 + E cos(4πt)ϕ2

we can approximate the positive minimizingMathieu spinorMS(E, t) of topolog-
ical indexl = 1 by expanding it in its Fourier series. We thus obtain for example:

E = −0.9: λ2
3(−0.9) ≈ 40.1464

MS(-0.9,t)=(Sqrt[Sqrt[1+ (-0.9)Cos[4 Pi t]]]) Sqrt[1+ (0.44)Sin[4 Pi t]
+ (0.15)Cos[4 Pi t] + (0.09)Sin[8 Pi t] + (0.17)Cos[8 Pi t]
+ (0.028)Sin[16 Pi t] + (0.051)Cos[16 Pi t] + (0.051)Sin[12 Pi t]
+ (0.085)Cos[12 Pi t] + (0.016)Sin[20 Pi t] + (0.026)Cos[20 Pi t]
+ (0.01)Sin[24 Pi t] + (0.014)Cos[24 Pi t] + (0.005)Sin[28 Pi t]
+ (0.007)Cos[28 Pi t] + (0.0033)Sin[32 Pi t] + (0.0044)Cos[32 Pi t]]

E = −0.95: λ2
3(−0.9) ≈ 44.6024

MS(-0.95,t)=(Sqrt[Sqrt[1+(-0.95)Cos[4 Pi t]]])Sqrt[1+(0.585)Sin[4 Pi t]
+ (0.049)Cos[4 Pi t ] + ( 0.1)Sin[8 Pi t] + (0.08)Cos[8 Pi t]
+ (0.063)Sin[12 Pi t] + (0.063)Cos[12 Pi t] + (0.041)Sin[16 Pi t]
+ (0.04)Cos[16 Pi t] + (0.026)Sin[20 Pi t] + (0.026)Cos[20 Pi t]
+ (0.017)Sin[24 Pi t] + (0.018)Cos[24 Pi t] + (0.012)Sin[28 Pi t]
+ (0.011)Cos[28 Pi t] + (0.008)Sin[32 Pi t] + (0.007)Cos[32 Pi t]]
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Finally, we can compute the limit lim
E→−1

λ2
3(E) replacing again the potential in

the Sturm–Liouville equation by the first terms of its Fourier series. ForE = −1
this amounts to studying the differential equation

sin2(2πt)A′′(t) =
{

1

2
π2
(
9 − 3 cos(4πt)− 4 sin(4πt)

)
− 2λ2

3 sin4(2πt)

}
A(t)

and the finite-dimensional approximation yields the result

lim
E→−1

λ2
3(E) ≈ 47.2437.

Remark.The second variation formulas prove that, in case of the family
gE = (1 + E cos(2πt))go (N = 1), the minimal positive eigenvalues of the
Laplace and Dirac operator decrease (see Example 4.1) and are smaller than 4π2.
The numerical evaluation ofµ3(E) andλ2

3(E) yields the following table:

E 0 −0.1 −0.3 −0.5 −0.7 −0.9 −0.95 −0.99 −1

µ3 4π2 39.284 37.897 35.741 33.378 31.09 30.5 30.1 30.013

λ2
3 4π2 39.333 38.353 36.714 34.983 33.331 33.2830 36.04≈ 36.2

6. Final remarks

As shown previously, any local deformationgE of the flat metric realizes the in-
equality

µ1(gE) < λ2
1(gE)

between the first eigenvalues of the Laplace and Dirac operator up to second order.
We are not able to give an example of a Riemannian metricg onT 2 such thatλ2

1(g) <

µ1(g) holds. Moreover, denote again byλ2
1(g; l) the first positive eigenvalue of the

Dirac operator such that the eigenspace contains anS1-representation of weight
l ∈ Z. The corresponding eigenvalue of the Laplace operator we shall denote by
µ1(g; l). It is a matter of fact that in all families of Riemannian metrics we have
discussed these two eigenvalues are very close. Let us consider, for example, the
metricgE given by the function

hE(t) = e
E
π
(sin(2πt)−2 cos(2πt)).

For the parameterE = 1 we obtain the following numerical values using the
approximation method described before in the space spanned by the functions
1, sin(2πnt), cos(2πnt) (1 ≤ n ≤ 5):

λ2
1(g; 1) ≈ 6.11056 , µ1(g; 1) ≈ 5.19025.

However, even in this case we already have the inequalityµ1(gE; 1) < λ2
1(gE; 1)

and the following figure (Fig. 10) shows the graph of the two spectral functions for
0 ≤ E ≤ 1 (for the first and the second positive eigenvalue):
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