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E8 in the Media / March 2007. . .

AIM Press release headline: A calculation the size of Manhattan + picture
(answer is a matrix – compare it to an area)

• articles in: The New York Times, Times (London), Scientific American,
Nature, Le Monde, Spiegel, Berliner Zeitung. . .

• TV spots on CNN, NBC, BBC. . .

• Coverage in the following languages: Chinese – Dutch – Finnish – French –
German – Greek – Hebrew – Hungarian – Italian – Portugese – Vietnamese

• Jerry McNerney (D-California) delivered a statement to Congress about the
result

In this talk:

• What is E8?

• Why is it interesting?

• What was the computation and why is it important?
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Classical Lie groups

Appear in families associated with certain types of geometry:

Family A: (Pseudo-)Hermitian geometry

• SL(n, R) := {A ∈ GL(n, R) : detA = 1} (non compact)

h: a Hermitian product, for example h(x, y) = xtȳ:

• SU(n) := {A ∈ GL(n, C) : h(x, y) = h(Ax, Ay) ∀x, y ∈ C
n} (compact)

– both are real forms of their complexification SL(n, C) –

Family B and D: (Pseudo-)Riemannian geometry

g : a scalar product of signature (p, q), p + q = n =

{

odd: family B
even: family D

• SO(p, q) = {A ∈ SL(n, R) : g(x, y) = g(Ax, Ay) ∀x, y ∈ Rn}

– all of them are real forms of SO(n, C) –
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Family C: Symplectic geometry

Ω ∈ Λ2(C2n): a generic 2-form (i. e. with dense GL(2n, C)-orbit in Λ2(C2n))

• Sp(n, C) := {A ∈ GL(n, C) : Ω(Ax, Ay) = Ω(x, y)}

has again compact and non compact real forms

Linearisation of a Lie group

For any Lie group G: g := TeG is a vector space with a natural skew-symmetric
bilinear product [, ] satisfying the

Jacobi identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all X,Y,Z ∈ g

and called the Lie algebra of G.

N.B. For the Lie algebra of a matrix group, [, ] is just the commutator of
matrices: [X,Y ] = X · Y − Y · X for all X,Y ∈ g ⊂ gl(n, C) = End(Cn)

– as a vector space, g is a much more tractable object than G ! –
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Dfn. A Lie algebra g is called simple if its only ideals m (⇔ [m, g] ⊂ m) are 0
and g.

All classical complex Lie algebras (6= so(4, C)) are simple.

Thm (W. Killing, 1889). The only simple complex Lie algebras are
so(n, C), sp(n, C), sl(n, C) as well as five exceptional Lie algebras,

g2 := g14
2 , f524 , e786 , e1337 , e2488 .

(upper index: dimension, lower index: rank)

Notation:

• E8, e8: complex Lie group, Lie algebra [exa.: SO(p + q, C)]

It has 3 real forms:

• Ec
8, ec

8: compact real form of E8, e8 [exa.: SO(p + q)]

• E∗
8 , e∗8: non compact split real form of E8, e8 [exa.: SO(p, p), i. e. p = q]

• Er
8, er

8: non compact non split real form of E8, e8 [exa.: all other SO(p, q)]
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Klassifizierung der einfachen komplexen Lie-Algebren

14G2
r(2r�1)Drso(2r;C)

66D6so(12;C)
248E8133E7

78E6
45D5so(10;C)

28D4so(8;C)
r(r+2)Arsl(r + 1;C)

35A5sl(6;C)
24A4sl(5;C)

15D3 = 15A3so(6;C) = sl(4;C)
8A2sl(3;C)

r(2r+1)Brso(2r + 1;C)
55B5so(11;C)

36B4so(9;C) 52F4
21B3so(7;C)

r(2r+1)Crsp(2r;C)
55C5sp(10;C)

36C4sp(8;C)
21C3sp(6;C)

10B2 = 10C2so(5;C) = sp(4;C)

3A1 = 3B1 = 3C1sl(2;C) = so(3;C) = sp(2;C)

6D2 = 3A1 � 3A1so(4;C) = sl(2;C)� sl(2;C) Notation: dimXrang

248E8
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Root Geometry

Idea of classification: Choose a maximal abelian subalgebra h (‘Cartan subal-
gebra’) and find a basis of g on which it acts diagonally:

g = h
⊕

α∈h∗

gα, [H, X ] = α(H)X ∀H ∈ h, X ∈ gα.

• 0 6= α ∈ h∗: ‘roots’; all roots together ⊂ h∗ form the ‘root diagram’ and
span the ‘root lattice’

• gα: ‘root spaces’; they are all 1-dimensional

• dim h: ‘rank of g’

• h is the zero eigenspace under its own action; by dfn, 0 is not a root

• multiplication: [gα, gβ] =

{

gα+β if α + β is a root
0 otherwise

KEY FACT: geometry of root diagram encodes almost everything you
(may) want to know about g
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Root diagrams of rank 2 (= dim h)

A2 = sl(3, C)
(hexagonal lattice)

exceptional G2

(hexagonal lattice)

B2 = C2 = sp(4, C) = so(5, C)

(quadratic lattice)
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Root diagram of E8

e1, . . . , e8: standard basis of C
8 = h∗(E8).

E8 roots:

• ±ei ± ej: makes 112 roots
(= roots of so(16, C))

• 1
2(±e1± e2± . . .± e8) with an even

number of −’s, yielding 128 roots

. . . 8+112+128 = 248 = dimE8!

• All roots have same length

Picture:
2-dimensional projection of E8 root
diagram, where each root is connec-
ted to its nearest neighbours by lines
(corners: 8 inscribed 30-gons)

. . . tells us: E8 is very symmetric, highly non-trivial, and extremely ‘crammed’
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Weyl group I

W is the group generated by reflections at hyperplanes Vα ⊂ h∗ orthogonal
to the roots:

 

1

1

2

2 3

3 4

W (A2) = 〈(12), (13), (23)〉

= S3, order 6

W (BC2) = 〈(23), (14), (12)(34), (13)(24)〉

= (Z2)
2 ⋊ S2, order 8
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Weyl group II

1

23

4

5 6

W (G2) = 〈rπ/3, s〉 = D6 :

dihedral group of order 12

More generally:

• W (An) = Sn+1 of order (n + 1)!

• W (BCn) = (Z2)
n ⋊ Sn

of order 2nn!

• W (Dn) = (Z2)
n−1 ⋊ Sn

of order 2n−1n!

In particular:

|W (A8)| = 9! = 362 880

|W (BC8)| = 288! = 10 321 920

|W (D8)| = 278! = 5 160 960

. . . and what about E8?
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Weyl group II

1

23

4

5 6

W (G2) = 〈rπ/3, s〉 = D6 :

dihedral group of order 12

More generally:

• W (An) = Sn+1 of order (n + 1)!

• W (BCn) = (Z2)
n

⋊ Sn

of order 2nn!

• W (Dn) = (Z2)
n−1

⋊ Sn

of order 2n−1n!

In particular:

|W (A8)| = 9! = 362 880

|W (BC8)| = 288! = 10 321 920

|W (D8)| = 278! = 5 160 960

|W (E8)| = 21435527 = 696 729 600

and it is a group of high complexity!
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This has dramatic consequences for all computational questions

• that need an explicit realisation of W

• whose complexity grows like a polynomial in |W |

Example:

Any representation V of G is determined by a ‘highest weight’ λ in the lattice

H: subgroup of G with Lie algebra h

eα: the function on H induced by α ∈ h∗ ∼= h

χ(V ): character of G-repr. on V , viewed as function on H, dimV = χ(V )(e)

̺: a certain fixed element in h∗

sgn(s) = ±1 (even/odd number of reflections)

Thm (H. Weyl, 1925) χ(V ) =

∑

s∈W

sgn(s)es(λ+̺)

∑

s∈W

sgn(s)es̺
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What makes E8 interesting?

E8 appears in connection with

• sphere packing problems (∗)

• the ‘Monster’, the largest of the (finite) sporadic groups

• superstring theory (∗)

• quasicrystals with 5-fold symmetry

. . . and than there are wild speculations about E8 as explanation for every-
thing, ranging from Fermat’s Theorem to elementary particles
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Sphere packings

In n-dimensional Euclidean space, consider the following questions:

Sphere Packing Problem (SPP): Given a huge number of equal spheres,
what is the densest way to pack them together? (∼ global problem)

Kissing Number Problem (KNP): How many spheres can be arranged so
that they all touch one central sphere of the same size? (∼ local problem)

Step I: represent spheres by their centers; these
will sometimes form a lattice.

For n = 2, the answer to both problems is
given mainly by the hexagonal lattice:

density = circle area
circumscr. hexagon a.

= π√
12

= 0, 9069 . . .

kissing number = 6
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The case n = 3 – a still open problem

The classical root systems A3 and D3 generate the same lattice – the fcc
lattice (‘face-centered cubic’)

density = π√
18

= 0,7405. . . , kissing number = 12

Thm (Gauss, 1831).The fcc lattice is the densest lattice packing for n = 3.

But. . .

• nonlattice packings are known that are as dense as the fcc lattice (‘hcp
packing’, still periodical)

• local partial packings of higher density are known

Thm (Bender, 1874). In 3 dimensions, the highest possible kissing number
is 12.

But there are infinitely many possible arrangements
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Highe values of n

Thm (Korkine-Zolotarev, 1872/77)

The D4 and D5 lattices are the densest lattice packings in 4 and 5 dimensions.

Furthermore, they described E6, E7, E8 and conjectured that they are also
optimal among lattices!

Thm (Blichfeldt, 1935)

The E6, E7, E8 lattices are the densest lattice packings in 6,7,8 dimensions.

These are the best known packings in these dimensions.

For the KNP, only two case (besides n = 2, 3) are settled:

Thm (Odlyzko-Sloane, 1979).

a) The highest kissing number in n = 8 is 240 and realized only by the E8

lattice;

b) The highest kissing number in n = 24 is 196 560 and realized only by the
Leech lattice.
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E8 and supersymmetric theories

Objective: Unification of standard model of elementary particles and general
gravity

Since 1980ies: Construction of field theories with local supersymmetries,
i. e. transformations that exchange fermions and bosons.

Models with 3-dimensional space-time

• are instructive toy models for higher-dimensional physical theories

• appear in dimensional reductions of lowe and higher dimensional theories

N : # of supersymmetries – increasing N means increasing the geometric
constraints on the ‘target manifold’ M !

Study

• commutator relations of extended supersymmetry algebra

• its possible ‘supermultiplets’ = representations and

• compatibility conditions with Langragian
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Supersymmetric theories II

N : # of supersymmetries, dN : # of bosonic states, k: # of supermultiplets

dimM = k·dN
N 1 2 3 4 5 6 7 8 9 10 12 16
dN 1 2 4 4 8 8 8 8 16 32 64 128

a) Compute isotropy group of supersymmetry algebra: SO(N) × H

Want: Hol(M) ⊂ SO(N) × H and acts irreducibly on TM

N = 1: any Riemannian manifold as ‘target space’ M

N = 2: Kähler manifold (dimM/2 ∈ N)

N = 3, 4: 3 almost complex structures (quaternionic or product of two
quaternionic spaces; dimM/4 ∈ N)

N ≥ 5: Einstein space, Scal < 0, and SO(N) × H has no transitive sphere
action! Berger’s theorem ⇒ M is a non-compact symmetric space

For N ≥ 9, k = 1 (the target space is unique) and

For N = 16: M = E∗
8/SO(16)

(N = 9, 10, 12: F4, E6, E7-spaces) [Marcus-Schwarz ’83; de Wit-Nicolai-Tollstén ’93]
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E8 and computations

In the 1980ies, the character of Lie algebra computations changed drastically:

• Fast recursion algorithms were derived, making (some) sums over Weyl
groups unnecessary [Typical idea: introduce partial orderings on weights]

• Suitable software then implemented these algorithms

• Typically, E8 was used as a test case

In the beginning, the results were published as long lists of tables in journals,
then books – see for example

McKay, W.G., Patera, J. Tables of dimensions, indices, and branching rules for representations

of simple Lie algebras, Marcel Dekker, 1981.

Bremner, M.R., Moody, R.V., Patera, J., Tables of dominant weight multiplicities for

representations of simple Lie algebras, Marcel Dekker, 1985.

McKay, W.G., Patera, J., Rand, D.W., Tables of representations of simple Lie algebras.

Volume I: Exceptional simple Lie algebras, Montréal/Centre de Recherches Mathématiques,

1990.
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Since July 1996, LiE is publically available for free (Centre for Mathematics
and Computer Science/Amsterdam).

With LiE, problems that were unsolvable became accessible for any graduate
student!

LiE was used to answer many problems of representation theory, like

• big problem: Kostant’s conjecture on subgroups of exceptional Lie
groups (relates the Coxeter number to finite simple groups in simple complex
Liwe groups)

• tiny erxercise: Adam’s conjecture on antisymmetric tensor powers of funda-
mental representations for E8

From the beginning, it was one of LiE’s objectives to provide implementations
for computing Kazhdan-Lusztig polynomials.

— LiE offline demo: —
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Hecke Algebras

• W : a Weyl group (more generally: a Coxeter group)

• S ⊂ W : a set of reflections generating W

‘Braid relations’: For s, s′ ∈ S, m(s, s′) := ord(ss′)

(ss′)m(s,s′) = 1 ⇔ ss′ss′ . . . = s′ss′s . . . (m(s, s′)-times)

Dfn. Let A := Z[v, v−1] and consider all formal elements Tw for w ∈ W .

Then the Hecke algebra of (W, S) is the associative algebra H :=
⊕

w∈W

A ·Tw

with the relations

a) TsTs′Ts . . . = Ts′TsTs′ . . . for m(ss′) < ∞, (‘braid relations’)

b) T 2
s = (v−1 − v)Ts + 1 for all s ∈ S. (‘quadratic relations’)

Comments:

• Te = 1 and T−1
s = Ts + (v − v−1)

• If w = s1 . . . sn is a reduced expression for w, then Tw = Ts1 . . . Tsn

• For v = 1, this is just the group algebra of W
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In particular, the elements Tw form a basis of H.

Involution d: Set d(v) := v−1 and d(Ts) = T−1 = Ts + (v − v−1)

→ extends to a ring homomorphism d : H → H.

Thm (Kazhdan-Lusztig, 1979). H has a unique basis {Cw}w∈W such that

a) d(Cw) = Cw,

b) Cw ∈ Tw +
⊕

w′∈W

v · Z[v]Tw′.

These are called the Kazhdan-Lusztig polynomials of (W, S).

Example. Take W = S2 = {12 = e, 21}, the Weyl group of type A2.

• C12 = T12 = 1,

• C21 = T21 + vT12

check: d(T21 + v) = T21 + (v − v−1) + v−1 = T21 + v (o.k.)
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Easy Kazhdan-Lusztig polynomials

Kazhdan-Lusztig polynomials for Weyl group of type A1:

C12 = T12

C21 = T21 + vT12

Kazhdan-Lusztig polynomials for Weyl group of type A2:

C123 = T123

C132 = T132 + vT123

C213 = T213 + vT123

C231 = T231 + vT132 + vT213 + v2T123

C312 = T312 + vT132 + vT213 + v2T123

C321 = T321 + vT231 + vT312 + v2T132 + v2T213 + v3T123

Kazhdan-Lusztig polynomials for Weyl group of type A3:

T1234// T1243 + vT1234 // T1324 + vT1234 // T2134 + vT1234

T1342 + vT1243 + vT1324 + v2T1234// T1423 + vT1243 + vT1324 + v2T1234
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T2143 + vT1243 + vT2134 + v2T1234// T2314 + vT1324 + vT2134 + v2T1234

T3124 + vT1324 + vT2134 + v2T1234

T1432 + vT1342 + vT1423 + v2T1243 + v2T1324 + v3T1234

T3214 + vT2314 + vT3124 + v2T1324 + v2T2134 + v3T1234

T2341 + vT1342 + vT2143 + vT2314 + v2T1243 + v2T1324 + v2T2134 + v3T1234

T2413 + vT1423 + vT2143 + vT2314 + v2T1243 + v2T1324 + v2T2134 + v3T1234

T3142 + vT1342 + vT2143 + vT3124 + v2T1243 + v2T1324 + v2T2134 + v3T1234

• T2431+vT1423+vT2431+vT2413+v2T1342+v2T1423+v2T2143+v2T2314+v3T1243+

v3T1324 + v3T2134 + v4T1234

• T3241+vT2341+vT3142+vT3214+v2T1342+v2T2143+v2T2314+v2T3124+v3T1243+

v3T1324 + v3T2134 + v4T1234

... [7 are missing]

• T4231 +vT2431 +vT3241 +vT4132 +vT4213 +v2T1432 +v2T2341 +v2T2413 +v2T3142 +

v2T3214 + +v2T4123 + v3T1342 + v3T1423 + (v3 + v)T2143 + v3T2314 + v3T3124 + (v4 +

v2)T1243 + v4T1324 + (v4 + v2)T2134 + (v5 + v3)T1234
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The meaning of KL polynomials

KL (1979)

KL Conjecture

Thm
Beilinson−Bernstein

KL (1980)Thm

Brylinski−Kashiwara

algebraic geometry

combinatorics analytical representation theory

(1981)

KL polynomials
of Weyl group

W of G

characters of highest
weight and Verma

modules of G
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The meaning of KL polynomials

KL (1979)

KL Conjecture

Thm
Beilinson−Bernstein

KL (1980)Thm

Brylinski−Kashiwara

algebraic geometry

combinatorics analytical representation theory

(1981)

KL polynomials
of Weyl group

W of G

characters of highest
weight and Verma

modules of G

intersection homology of
Schubert varieties Xw

G/B =
⋃

w∈W

Xw

1983: extension to representations of real simple Lie groups (L-Vogan)
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The ‘Atlas of Lie groups and representations’ Project

Ultimate goal: website with information on complex & real semisimple Lie
groups; in particular, their infinite-dimensional unitary representations in code.

2002: Started by J. Adams, now a team of 18 mathematicians (including F.
du Cloux, M. van Leeuwen, D. Vogan)

Nov. 2005: KL polynomials for all real forms of F4, E6, E7 and the non-split
form Er

8 of E8: holds in a 73 4102 triangular integer matrix.

For E∗
8 : character table holds in a 453 0602 triangular integer matrix (eval. at

1 of KL polynomials).

Trick: compute KL polynomials modm for m = 253, 255, 256, then use
Chinese Remainder Theorem to reconstruct answer mod253 · 255 · 256 =
16 515 840 → saves memory!

. . . . . .
Monday Januar 8, 2007: Result for E∗

8 was written to disk (60 GB) by ‘sage’,
a computer at the University of Seattle.
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Summary

Mathematical ‘monsters’ like E8 are in many senses similar to the monsters
of your childhood:

• they are frightening, at least at the beginning,

• they are nevertheless exciting & fascinating,

• they do not really exist if you think it over seriously.

Hence, there are two types of monster stories:

• the excellent ones involving great plots and heroic efforts,

• the ‘Loch Ness’ type fairy tales that you should not believe in.

I.A.


