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Eg in the Media / March 2007. . .

AIM Press release headline: A calculation the size of Manhattan + picture
(answer is a matrix — compare it to an area)

e articles in: The New York Times, Times (London), Scientific American,
Nature, Le Monde, Spiegel, Berliner Zeitung. . .

e TV spots on CNN, NBC, BBC. ..

e Coverage in the following languages: Chinese — Dutch — Finnish — French —
German — Greek — Hebrew — Hungarian — Italian — Portugese — Vietnamese

e Jerry McNerney (D-California) delivered a statement to Congress about the
result

In this talk:
e What is Eg?
e Why is it interesting?

e What was the computation and why is it important?



Classical Lie groups

Appear in families associated with certain types of geometry:

Family A: (Pseudo-)Hermitian geometry

e SL(n,R) :={A € GL(n,R) : det A =1} (non compact)

h: a Hermitian product, for example h(z,y) = 2'y:

e SU(n):={A € GL(n,C) : h(x,y) = h(Az, Ay) Va,y € C"} (compact)
— both are real forms of their complexification SL(n,C) -

Family B and D: (Pseudo-)Riemannian geometry

odd: family B

g : a scalar product of signature (p,q), p+q=n = { even: family D

e SO(p,q) ={A € SL(n,R) : g(z,y) = g(Az, Ay) Vx,y € R"}

— all of them are real forms of SO(n,C) -



Family C: Symplectic geometry

Q) € A?(C?"): a generic 2-form (i.e. with dense GL(2n, C)-orbit in A?(C?"))
e Sp(n,C) :={A € GL(n,C) : Q(Az, Ay) = Q(z,y)}
has again compact and non compact real forms

Linearisation of a Lie group

For any Lie group G: g := T.G is a vector space with a natural skew-symmetric
bilinear product [, ] satisfying the

Jacobi identity: [X,[Y, Z]| + [Y,[Z, X]] + [Z,[X,Y]]=0forall X,Y,Z € g
and called the Lie algebra of G.

N.B. For the Lie algebra of a matrix group, [,] is just the commutator of
matrices: [X,Y]=X-Y —-Y - X forall X,Y € g C gl(n,C) = End(C")

— as a vector space, g is a much more tractable object than G | —



Dfn. A Lie algebra g is called simple if its only ideals m (< [m,g] C m) are 0
and g.

All classical complex Lie algebras (£ so(4,C)) are simple.

Thm (W. Killing, 1889). The only simple complex Lie algebras are
so(n,C), sp(n,C), sl(n,C) as well as five exceptional Lie algebras,

.14 52 78 133 .248
92 -_927 4786787 788 .

(upper index: dimension, lower index: rank)

Notation:

o [lg, eg: complex Lie group, Lie algebra [exa.: SO(p + q, C)]
It has 3 real forms:

o IS, e5: compact real form of Ej, es [exa.: SO(p + q)]

o I3, eg: non compact split real form of Eyg, eg [exa.: SO(p, p), i.e. p = q]

e Fg, ei: non compact non split real form of Eg, eg  [exa.: all other SO(p, q)]
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Root Geometry

|dea of classification: Choose a maximal abelian subalgebra h (‘Cartan subal-
gebra’) and find a basis of g on which it acts diagonally:

0=b(D g, [HX]=a(H)X VHED XE g
aeh*

e 0 # a € h™: ‘roots’; all roots together C h* form the ‘root diagram’' and
span the ‘root lattice’

® g,: root spaces’; they are all 1-dimensional

e dimb: ‘rank of g’

e [) is the zero eigenspace under its own action; by dfn, 0 is not a root

e o if o+ 3 is a root
e multiplication: [ga, 83| = { g +P otherwiﬁse

KEY FACT: geometry of root diagram encodes almost everything you
(may) want to know about g



Root diagrams of rank 2 (= dim h)

A2 = 5[(3, (C)
(hexagonal lattice)

exceptional Gy

(hexagonal lattice)

By =C5 =5p(4,C) = s0(5,C)
SN (quadratic lattice)




Root diagram of Exg
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Weyl group |

W is the group generated by reflections at hyperplanes V,, C h* orthogonal
to the roots:

W(Az) = ((12), (13),(23)) W(BCs2) = ((23),(14),(12)(34), (13)(24))
= S5, order 6 = (Z2)? x S5, order 8 10



Weyl group Il

W (G2) = (rz/3,5) = Dg :
dihedral group of order 12

More generally:

e W(A,)= S,41 of order (n 4 1)!

e W(BC,) = (Z3)" x Sy,
of order 2"™n/!

e W(D,) = (Z)"! x S,
of order 2" 1p)

In particular:
W (Ag)| = 9! = 362880
W(BCg)| = 288! = 10321920
W (Ds)| = 278! = 5160 960

.. and what about FEg?
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Weyl group Il

W(G2) = (rz/3,5) = Dg :
dihedral group of order 12

More generally:

e W(A,) = Sp4+1 of order (n + 1)!
e W(BC,) = (Z3)" % Sy,

of order 2"n/!

e W(D,) = (Zs)" x S,
of order 2 1p)

In particular:
W (Ag)| = 9! = 362880
W(BCg)| = 288! = 10321920
W (Ds)| = 278! = 5160 960

W (Eg)| = 213°527 = 696 729 600
and it is a group of high complexity!
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This has dramatic consequences for all computational questions
e that need an explicit realisation of W
e whose complexity grows like a polynomial in [V

Example:

Any representation V of GG is determined by a ‘highest weight” X\ in the lattice
H: subgroup of GG with Lie algebra b

e“: the function on H induced by a € h* = |

x(V'): character of G-repr. on V, viewed as function on H, dim V = x(V)(e)
0: a certain fixed element in h*

sgn(s) = +1 (even/odd number of reflections)

Z sgn(s)e*A o)
Thm (H. Weyl, 1925) x(V) = &2

Z sgn(s)e®?

12



What makes Eg interesting?
Eg appears in connection with
e sphere packing problems ()
e the ‘Monster’, the largest of the (finite) sporadic groups
e superstring theory ()

e quasicrystals with 5-fold symmetry

.. and than there are wild speculations about Egs as explanation for every-
thing, ranging from Fermat’'s Theorem to elementary particles

13



Sphere packings
In n-dimensional Euclidean space, consider the following questions:

Sphere Packing Problem (SPP): Given a huge number of equal spheres,
what is the densest way to pack them together? (~ global problem)

Kissing Number Problem (KNP): How many spheres can be arranged so
that they all touch one central sphere of the same size? (~ local problem)

Step |: represent spheres by their centers; these
will sometimes form a /attice.

A

For n = 2, the answer to both problems is
given mainly by the hexagonal lattice:

. _ circle area T
denSIty ~ circumscr. hexagon a. /12 O’ 9069 . ...

kissing number = 6

14



The case n = 3 — a still open problem

The classical root systems A3 and D3 generate the same lattice — the fcc
lattice (‘face-centered cubic')

density = \/Ll_S = 0,7405. . ., kissing number = 12

Thm (Gauss, 1831).The fcc lattice is the densest lattice packing for n = 3.

But. ..

e nonlattice packings are known that are as dense as the fcc lattice (‘hcp
packing’, still periodical)

e local partial packings of higher density are known

Thm (Bender, 1874). In 3 dimensions, the highest possible kissing number
is 12.

But there are infinitely many possible arrangements

15



Highe values of n

Thm (Korkine-Zolotarev, 1872/77)
The D4 and Dy lattices are the densest lattice packings in 4 and 5 dimensions.

Furthermore, they described Eg, E/7, Es and conjectured that they are also
optimal among lattices!

Thm (Blichfeldt, 1935)
The Eg, E7, Eg lattices are the densest lattice packings in 6,7,8 dimensions.

These are the best known packings in these dimensions.
For the KNP, only two case (besides n = 2, 3) are settled:

Thm (Odlyzko-Sloane, 1979).

a) The highest kissing number in n = 8 is 240 and realized only by the Ejg
lattice;

b) The highest kissing number in n = 24 is 196 560 and realized only by the
Leech lattice.



Eg and supersymmetric theories

Objective: Unification of standard model of elementary particles and general
gravity

Since 1980ies: Construction of field theories with local supersymmetries,
I. e. transformations that exchange fermions and bosons.

Models with 3-dimensional space-time

e are instructive toy models for higher-dimensional physical theories

e appear in dimensional reductions of lowe and higher dimensional theories

N: # of supersymmetries — increasing N means increasing the geometric
constraints on the ‘target manifold” M|

Study

e commutator relations of extended supersymmetry algebra
e its possible ‘'supermultiplets’ = representations and

e compatibility conditions with Langragian

17



Supersymmetric theories |l

N: # of supersymmetries, dy: # of bosonic states, k: # of supermultiplets

N |1]2]|3|4]|5]6|7]8] 9 |10]12] 16
dy [1[2[4]4[8[8]8]8]16|32]64 128

dim M = de

a) Compute isotropy group of supersymmetry algebra: SO(N) x H
Want: Hol(M) € SO(N) x H and acts irreducibly on T'M

N = 1: any Riemannian manifold as ‘target space’ M
N = 2: Kahler manifold (dim M /2 € N)

N = 3,4: 3 almost complex structures (quaternionic or product of two
quaternionic spaces; dim M /4 € N)

N > 5: Einstein space, Scal < 0, and SO(/N) x H has no transitive sphere
action! Berger's theorem = M is a non-compact symmetric space

For N > 9, k =1 (the target space is unique) and
For N =16: M = E}/SO(16)
(N =9,10,12: Fy, Eg, E7-spaces) [Marcus-Schwarz '83; de Wit-Nicolai-Tollstén 93] 4



Es and computations

In the 1980ies, the character of Lie algebra computations changed drastically:

e Fast recursion algorithms were derived, making (some) sums over Wey!
groups unnecessary [Typical idea: introduce partial orderings on weights]

e Suitable software then implemented these algorithms
e Typically, E5 was used as a test case

In the beginning, the results were published as long lists of tables in journals,
then books — see for example

McKay, W.G., Patera, J. Tables of dimensions, indices, and branching rules for representations
of simple Lie algebras, Marcel Dekker, 1981.

Bremner, M.R., Moody, R.V., Patera, J., Tables of dominant weight multiplicities for
representations of simple Lie algebras, Marcel Dekker, 1985.

McKay, W.G., Patera, J., Rand, D.W., Tables of representations of simple Lie algebras.

Volume I: Exceptional simple Lie algebras, Montréal /Centre de Recherches Mathématiques,
1990.



Since July 1996, LiE is publically available for free (Centre for Mathematics
and Computer Science/Amsterdam).

With LiE, problems that were unsolvable became accessible for any graduate
student!

LiE was used to answer many problems of representation theory, like

e big problem: Kostant's conjecture on subgroups of exceptional Lie
groups (relates the Coxeter number to finite simple groups in simple complex
Liwe groups)

e tiny erxercise: Adam’s conjecture on antisymmetric tensor powers of funda-
mental representations for Eyg

From the beginning, it was one of LiE’s objectives to provide implementations
for computing Kazhdan-Lusztig polynomials.

— LiE offline demo: —
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*}) Form interface to LiE - Mozilla Firefox —

Eile Edit “iew History Bookmarks Tools Help

<§| % z IQ_:] "lj} ||_| hitp:dhwaw-math. univ-poitiers fi/~maavl/LiE/farm. htm| |v| Ep-| |v|

#mozilla.org [ SUSE - The Linux Exp...
LIE online service

With this form you can request a selection of the computations that are possible in LIiE to be performed remotely, and the
outcome will be presented to you. To specify the type of computation to be done, you must fill out the form below; most
computations require some additional parameters, and will ask to fill out a second form to specify these.

What do you wish to be shown or computed? | Dynkin diagram |
For which type of simple group? | E jls | (i Dynkin diagram elected is marked *).

Froceed | "

Dimension of a module
Character multiplicities

Full character

Tensor product decomposition
Symmetrised tensor power
Plethysm

Symmetric group character *
| Littlewood-Richardsaon rule *




) Dimension of a module for E8 - Mozilla Firefox -

Eile Edit “iew History Bookmarks Tools Help

@ = ﬁ& = @ "lj} ||_| http:.ﬁ'yuung.spzmi.univ—puitiers.frfcgi—binffnrm-prep.-’marc.-fLiE_form.act|'| lib-| |-|

#mozilla.org [ SUSE - The Linux Exp...

Computation of the dimension of a E8-module

Enter the highest weight of the irreducible E&-module for which you want to compute the dimension.

Highest weight:
1j.|0 j.lﬂ j-lU Ll.lﬂ j.IU j.IU j.ID ~|] Reset | start |

[FoRE R T, RS Ir-._x ~ o




i Dimension of [1,0,0,0,0,0,0,0] in EB - Mozilla Firefox
Eile Edit “iew History Bookmarks Tools Help

=] [x

<»E| = x @-’1 'S} :|_| http:i;’yuung.spzmi.univ—puitiers.frfcgi—binffurm—prepimarcmimensiun_au!1-_|F| TIEH

e mozilla.org [ SUSE - The Linux Exp...
Dimension of [1,0,0,0,0,0,0,0] in E8

The dimension of the irreducible E&-module with highest weight [1,0,0,0,0,0,0,0] is

3875.

It factors as 53 * 31 . The computation was done by LIE using Weyl's character formula.

If you like, you may look at the implementation that was used (function simp_dim_irron page 1).

You may go back and try another example.




) Symmetrised tensor power for E8 - Mozilla Firefox =

File Edit \iew History Bookmarks Tools Help

@ ! > @ 'Ifl} ||_| http:.-ffyuung.spzmi.univ—puitiers.frfcgi—binffnrm-prepimarc.-fLiE_form.act|'| Eﬁ-| ||:|v|

#mozilla.org [ SUSE - The Linux Exp...

Decomposition of a symmetric or alternating tensor
power for E8

Enterthe highest weight of an irreducible EB-module, and the kind of tensor power of it that you want to decompose into
irreducible factors.

Highestweight: |1 =]]1 =|]o =|]o =||o =|fo ~|[o ~|fo ~]]

Compute the |2nd >|falternating . ~| tensor power,

Reset | Start |
alternating




EU hitp:/Avoung. sp2mi.univ-poitiers. fifcgi-binffarm-prep/marc/sym-alt. act? I'| [ib~| ||§|v|

=
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+
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+
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+
+
+
LT

Decomposition of the 2nd alternating tensor power of
Below you find the decompaosition of the 2nd alternating tensor power of the irreducible E&-module with highest weight
[1,1,0,0,0,0,0,0] into its irreducible factors, as computed by LIE. Each term represents a different highest weight of an
irreducible module occurring in the decompaosition, prefixed by its multiplicity of occurrence. The 2nd alternating tensor
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Hecke Algebras

e WW: a Weyl group (more generally: a Coxeter group)
e S C W: a set of reflections generating W

‘Braid relations’: For s,s" € S, m(s,s’) := ord(ss’)
(ss")m(s:5) =1 < s¢'ss’ ... = §'ss's... (m(s,s)-times)

Dfn. Let A := Z[v,v™!] and consider all formal elements T, for w € W.
Then the Hecke algebra of (W, S) is the associative algebra H := @ A-T,
with the relations weW

a) T TyTs ... =TyTsT, ... for m(ss’) < oo, (‘'braid relations’)
b) T? = (vt — )Ty +1 forall s € S. (‘quadratic relations’)

Comments:
eT.=1land T, ' =T, + (v—v1)

o If w=s;...5, Is a reduced expression for w, then T}, = T, ... T}

n

e For v =1, this is just the group algebra of W



In particular, the elements T, form a basis of H.

Involution d: Set d(v) :=v~ ! and d(T,) =Tt =T, + (v —v 1)

— extends to a ring homomorphism d : H — H.

Thm (Kazhdan-Lusztig, 1979). H has a unique basis {Cy, }wew such that
a) d(Cy) = Cy,

b) Cy € T + EP v+ Z[V]T.
w'eWw

These are called the Kazhdan-Lusztig polynomials of (W, .5).
Example. Take W = S5 = {12 = ¢, 21}, the Weyl group of type As.
o Ui =T =1,

o (o =Tz +vT1o

check: d(To1 +v) =T + (v — v‘l) +ov 7t =T+ v (ok)
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Easy Kazhdan-Lusztig polynomials

Kazhdan-Lusztig polynomials for Weyl group of type Aj:

Cio =T
Coy =151 +vT1o

Kazhdan-Lusztig polynomials for Weyl group of type As:

Cl23 = Ti23

Cl32 = Ti32 + v17123

C213 = 1213 + v17123

Cas1 = Tog1 + vT132 + vTo13 + v2 1123

C312 = Ta12 + vT132 + vT213 + 021123

Cso1 = T391 + v1a31 + vT312 + 021130 + v* 1513 + v°Tho3

Kazhdan-Lusztig polynomials for Weyl group of type As:

Ti234// Ti2a3 + vTi23a [/ Tizea + vTia3a /] To134 + vTia3a
Ti342 + vTh243 + vT1324 + v°Th234// Tiaoz + vT1243 + vTi324 + v°T1234

25



To1a3 + vT1243 + vTo134 + v T34 /] Tozra + vT1324 + vTo134 + v°Ti234
Ts124 + vTi324 + vT2134 + v Th234

Tas2 + vTiza2 + vT1a23 + v°Thoas + v Ths2a + v°Th234

Ts214 + vTo314 + vT3124 + v°Thz24 + v°To134 + v°Th234

Toza1 + vTiza2 + V12145 + vTo314 + v 11243 + v Tiz24 + v°To134 + v°Tha3s
Toa1 + vTia23 + vT2143 + vTo314 + v 11243 + V> Tiz24 + 07 To134 + v°Tha3s
Ts142 + vTi3a2 + V12143 + vT3124 + v T1243 + V>T304 + v°To134 + v°Tha3s

® Thyz1 4+ vT 1423+ vThus1 + vToa13 + > T340 + 0* Thgo3 + 07 Th143 + v Toz14 + v Thoss +
V3 T304 + v To134 + v T1234

® Tyou1 4+ vTh341 +vTa140 + v T3914 + > T340 + 0* Thra3 + 0> Thg14 + v T 3104 + 03 Thoas +
V3 T304 + v To134 + v T1234

: [7 are missing]

® Tyo31 +vTau31 + vTa041 + vT 132 + vT 4213 + v Tiasge + V2 Thsar + > Thars + v T3140 +
V2 T3014 + +0°Ty103 + V3 T340 + 03 Tig03 + (07 + 0)Th1az + v3Thg14 + v3 T4 + (v +
V) Thoas + v T304 + (v + ) To134 + (v° + v*)Thom
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The meaning of KL polynomials

combinatorics

KL polynomials
of Weyl group
W of G

KL Conjecture
e

KL (1979)

analytical representation the

characters of highest
weight and Verma
modules of GG
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The meaning of KL polynomials

combinatorics

KL polynomials
of Weyl group
W of G

Thm | KL (1980)

intersection homology of
Schubert varieties X,

G/B= | Xu

weW

algebraic geometry

KL Conjecture
|

KL (1979)

analytical representation the

characters of highest
weight and Verma
modules of GG
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The meaning of KL polynomials

combinatorics analytical representation the
KL polynomials _ characters of highest
of Weyl group KL Conjectﬂe weight and Verma
W of G KL (1979) modules of G
Thm | KL (1980)
Thm
(1981) Beilinson—-Bernstein

intersection homology of
Schubert varieties X,

G/B= ] Xu

weW

Brylinski-Kashiwara

algebraic geometry

1983: extension to representations of real simple Lie groups (L-Vogan)



The ‘Atlas of Lie groups and representations’ Project

Ultimate goal: website with information on complex & real semisimple Lie
groups; in particular, their infinite-dimensional unitary representations in code.

2002: Started by J. Adams, now a team of 18 mathematicians (including F.
du Cloux, M. van Leeuwen, D. Vogan)

Nov. 2005: KL polynomials for all real forms of Fy, Eg, E/7 and the non-split
form E% of Eg: holds in a 734107 triangular integer matrix.

For E%: character table holds in a 453 0607 triangular integer matrix (eval. at
1 of KL polynomials).

Trick: compute KL polynomials modm for m = 253,255,256, then use
Chinese Remainder Theorem to reconstruct answer mod 253 - 255 - 256 =
16515840 — saves memory!

Monday Januar 8, 2007: Result for E§ was written to disk (60 GB) by ‘sage’,
a computer at the University of Seattle.
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Summary

Mathematical ‘monsters’ like Fg are in many senses similar to the monsters

of your childhood:

e they are frightening, at least at the beginning,

e they are nevertheless exciting & fascinating,

e they do not really exist if you think it over seriously.
Hence, there are two types of monster stories:

e the excellent ones involving great plots and heroic efforts,

e the ‘Loch Ness' type fairy tales that you should not believe in.
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