Non-integrable geometries, torsion, and holonomy
II a): Geometric structures and connections

Prof. Dr. habil. Ilka Agricola
Philipps-Universität Marburg

Torino, Carnival Differential Geometry school
General philosophy:

Given a mnfd M^n with G-structure ($G \subset \text{SO}(n)$), replace ∇^g by a metric connection ∇ with skew torsion that preserves the geometric structure!

\[
\text{torsion: } T(X, Y, Z) := g(\nabla_X Y - \nabla_Y X - [X, Y], Z)
\]

Special case: require $T \in \Lambda^3(M^n)$ (\iff same geodesics as ∇^g)

\[
\Rightarrow \quad g(\nabla_X Y, Z) = g(\nabla^g_X Y, Z) + \frac{1}{2} T(X, Y, Z)
\]

1) representation theory yields

- a clear answer \textit{which} G-structures admit such a connection; if existent, it’s unique and called the ‘\textit{characteristic connection}’

- a \textit{classification scheme} for G-structures with characteristic connection:
 \[
 T_x \in \Lambda^3(T_x M) \overset{G}{\cong} V_1 \oplus \ldots \oplus V_p
 \]

2) Analytic tool: Dirac operator \mathcal{D} of the metric connection with torsion $T/3$: ‘\textit{characteristic Dirac operator}’ (generalizes the Dolbeault operator)
In this lecture:

1) Algebra of 3-forms, and in particular, a ‘Skew Holonomy Theorem’

2) Characteristic connections: Existence, examples, uniqueness

3) An important class of examples: Naturally reductive homogeneous spaces
Algebraic Torsion Forms in \mathbb{R}^n

Consider $T \in \Lambda^3(\mathbb{R}^n)$, an algebraic 3-form in $\mathbb{R}^n =: V$, fix a positive def. scalar product $\langle -, - \rangle$ on V.

- T defines a metric connection: $\nabla_X Y := \nabla^g_X Y + \frac{1}{2} T(X, Y, -)$.

- ∇ lifts to a connection on spinor fields $\psi : \mathbb{R}^n \longrightarrow \Delta_n$,

$$\nabla_X \psi := \nabla^g_X \psi + \frac{1}{4} (X \perp T) \cdot \psi$$

Dfn. For T 3-form, define [introduced in AFr, 2004]

- kernel: $\ker T = \{X \in \mathbb{R}^n \mid X \perp T = 0\}$ (for later)
- Lie algebra generated by its image: $\mathfrak{g}_T := \text{Lie} \langle X \perp T \mid X \in \mathbb{R}^n \rangle$

isotropy Lie algebra : $\mathfrak{h}_T := \{A \in \mathfrak{gl}(n, \mathbb{R}) \mid A^* T = 0\}$

\mathfrak{g}_T is not related in any obvious way to \mathfrak{h}_T!
Examples:

• \(n = 3, 4, \ T = e_{123} \): then \(e_i \bot T = e_{23}, -e_{13}, e_{12} \), so \(\mathfrak{g}_T = \mathfrak{so}(3) \), and \(\mathfrak{h}_T = \mathfrak{so}(3) \).

• \(n = 5 \): \(T = \varrho e_{125} + \lambda_{345} \neq 0 \), then
 * \(\varrho \lambda = 0 \): \(\mathfrak{g}_T = \mathfrak{so}(3), \ \mathfrak{h}_T = \mathfrak{so}(3) \oplus \mathfrak{so}(2) \)
 * \(\varrho \lambda \neq 0 \): \(\mathfrak{g}_T = \mathfrak{so}(5), \ \mathfrak{h}_T = \mathfrak{so}(2) \oplus \mathfrak{so}(2) \) (if \(\varrho \neq \lambda \)), else \(\mathfrak{h}_T = \mathfrak{u}(2) \).

• \(n = 7 \), \(= e_{127} + e_{135} - e_{146} - e_{236} - e_{245} + e_{347} + e_{567} \) a 3-form with stabilizer \(G_2 \), i.e. \(\mathfrak{h}_T = \mathfrak{g}_2 \). Moreover, \(\mathfrak{so}(7) \cong \mathfrak{g}_2 \oplus \mathfrak{m} \), where \(\mathfrak{m} \) is the space of all inner products \(X \bot T \). The Lie algebra generated by these elements is isomorphic to \(\mathfrak{so}(7) = \mathfrak{g}_T \).

• \(\mathfrak{g} \) a compact, semisimple Lie algebra acting on itself \(\mathfrak{g} \cong \mathbb{R}^n \) by the adjoint rep., \(\beta \) its Killing form, \(T(X, Y, Z) := \beta([X, Y], Z) \). Then \(\mathfrak{g}_T = \mathfrak{g} \).
Observe: \(g_T \) does not always act irreducibly on \(V = \mathbb{R}^n \).

Thm. The representation \((g_T, V)\) is reducible iff there exists a proper subspace \(W \subset \mathbb{R}^n \) and two 3-forms \(T_1 \in \Lambda^3(W) \) and \(T_2 \in \Lambda^3(W^\perp) \) such that \(T = T_1 + T_2 \). In this case, \(g_T = g_{T_1} \oplus g_{T_2} \).

Proof. Consider a \(g_T \)-invariant subspace \(W \), fix bases \(e_1, \ldots, e_k \) of \(W \), \(e_{k+1}, \ldots, e_n \) of \(W^\perp \). Then \(\forall X \in \mathbb{R}^n, \forall i = 1, \ldots, k, \alpha = k + 1, \ldots, n, \) we obtain \(T(X, e_i, e_\alpha) = 0 \).

Since \(T \) is skew-symmetric, we conclude

\[
T(e_i, e_j, e_\alpha) = 0 \quad \text{and} \quad T(e_i, e_\alpha, e_\beta) = 0.
\]

□

Next step: In its original version, Berger’s holonomy theorem is not suitable for generalization to connections with skew torsion.

Formulate a holonomy theorem in terms of \(g_T \)!
The skew torsion holonomy theorem

Dfn. Let $0 \neq T \in \Lambda^3(V)$, \mathfrak{g}_T as before, $G_T \subset SO(n)$ its Lie group. Hence, $X \perp T \in \mathfrak{g}_T \subset \mathfrak{so}(V) \cong \Lambda^2(V) \ \forall \ X \in V$. Then (G_T, V, T) is called a *skew-torsion holonomy system (STHS)*. It is said to be

- **irreducible** if G_T acts irreducibly on V,
- **transitive** if G_T acts transitively on the unit sphere of V,
- and **symmetric** if T is G_T-invariant.

Recall: The only transitive sphere actions are:

- $SO(n)$ on $S^{n-1} \subset \mathbb{R}^n$,
- $SU(n)$ on $S^{2n-1} \subset \mathbb{C}^n$,
- $Sp(n)$ on $S^{4n-1} \subset \mathbb{H}^n$,
- G_2 on S^6,
- $Spin(7)$ on S^7,
- $Spin(9)$ on S^{15}.

* [Montgomery-Samelson, 1943]

Thm (STHT). Let (G_T, V, T) be an irreducible STHS. If it is transitive, $G_T = SO(n)$. If it is not transitive, it is symmetric, and

- V is a simple Lie algebra of rank ≥ 2 w. r. t. the bracket $[X, Y] = T(X, Y)$, and G_T acts on V by its adjoint representation,
- T is unique up to a scalar multiple.

* [transitive: AFr 2004, general: Olmos-Reggiani, 2012; Nagy 2013]
The newer proofs are based on general holonomy theory. The statement about transitive actions is easily verified, for example:

Thm. Let \(T \in \Lambda^3(\mathbb{R}^{2n}) \) be a 3-form s.t. there exists a 2-form \(\Omega \) such that

\[
\Omega^n \neq 0 \quad \text{and} \quad [g_T, \Omega] = 0.
\]

Then \(T \) is zero, \(T = 0 \).

Sketch of Proof. Fix an ONB in \(\mathbb{R}^{2n} \) s.t. \(\Omega \) is given by

\[
\Omega = A_1 e_{12} + \ldots + A_k e_{2n-1,2n}, \quad A_1 \cdot \ldots \cdot A_k \neq 0.
\]

The condition \([\hat{g}_T, \Omega] = 0 \) is equivalent to \(\sum_{j=1}^{2n} \Omega_{\alpha j} \cdot T_{\beta j \gamma} = \sum_{j=1}^{2n} T_{\beta \alpha j} \cdot \Omega_{j \gamma} \) for any \(1 \leq \alpha, \beta, \gamma \leq 2n \). Using the special form of \(\Omega \) we obtain the equations \((1 \leq \alpha, \gamma \leq k)\):

\[
A_\alpha \cdot T_{\beta,2\alpha,2\gamma-1} = -A_\gamma \cdot T_{\beta,2\alpha-1,2\gamma}, \quad A_\alpha \cdot T_{\beta,2\alpha-1,2\gamma-1} = A_\gamma \cdot T_{\beta,2\alpha,2\gamma}.
\]

This system of algebraic equations implies that \(T = 0 \). \(\square \)

Want to apply this to *existence of characteristic connections!*
The characteristic connection of a geometric structure

Fix $G \subset \text{SO}(n)$, $\Lambda^2(\mathbb{R}^n) \cong \mathfrak{so}(n) = \mathfrak{g} \oplus \mathfrak{m}$, $\mathcal{F}(M^n)$: frame bundle of (M^n, g).

Dfn. A geometric G-structure on M^n is a G-PFB \mathcal{R} which is subbundle of $\mathcal{F}(M^n)$: $\mathcal{R} \subset \mathcal{F}(M^n)$.

Choose a G-adapted local ONF e_1, \ldots, e_n in \mathcal{R} and define **connection 1-forms of ∇^g**:

$$
\omega_{ij}(X) := g(\nabla^g_X e_i, e_j), \quad g(e_i, e_j) = \delta_{ij} \implies \omega_{ij} + \omega_{ji} = 0.
$$

Define a skew symmetric matrix Ω with values in $\Lambda^1(\mathbb{R}^n) \cong \mathbb{R}^n$ by $\Omega(X) := (\omega_{ij}(X)) \in \mathfrak{so}(n) = \mathfrak{g} \oplus \mathfrak{m}$ und set

$$
\Gamma := \text{pr}_\mathfrak{m}(\Omega).
$$

- Γ is a 1-Form on M^n with values in \mathfrak{m}, $\Gamma_x \in \mathbb{R}^n \otimes \mathfrak{m}$ ($x \in M^n$) ["intrinsic torsion", Swann/Salamon]
Fact: $\Gamma = 0 \Leftrightarrow \nabla^g$ is a G-connection $\Leftrightarrow \text{Hol}(\nabla^g) \subset G$

Via Γ, geometric G-structures $\mathcal{R} \subset \mathcal{F}(M^n)$ correspond to irreducible components of the G-representation $\mathbb{R}^n \otimes m$.

Thm. A geometric G-structure $\mathcal{R} \subset \mathcal{F}(M^n)$ admits a metric G-connection with antisymmetric torsion iff Γ lies in the image of Θ,

$$\Theta : \Lambda^3(M^n) \to T^*(M^n) \otimes m, \quad \Theta(T) := \sum_{i=1}^n e_i \otimes \text{pr}_m(e_i \triangleleft T).$$

[Fr, 2003]

If such a connection exists, it is called the characteristic connection ∇^c to replace the (unadapted) LC connection by ∇^c.

Thm. If $G \not\subset \text{SO}(n)$ acts irreducibly and not by its adjoint rep. on $\mathbb{R}^n \cong T_pM^n$, then $\ker \Theta = \{0\}$, and hence the characteristic connection of a G-structure on a Riemannian manifold (M^n, g) is, if existent, unique.

[A-Fr-Höll, 2013]
Uniqueness of characteristic connections

This is a consequence of the STHT:

Proof. $T \in \ker \Theta$ iff all $X \perp T \in \mathfrak{g} \subset \mathfrak{so}(n)$, that is,

$$\ker \Theta = \{ T \in \Lambda^3(\mathbb{R}^n) | \mathfrak{g}_T \subset \mathfrak{g} \},$$

so (T, G, \mathbb{R}^n) defines an irreducible STHS, which by assumption is non transitive (because $G \not\subset \text{SO}(n)$). By the STHT, it has to be a Lie algebra with the adjoint representation. Since this was excluded as well, it follows that $\ker \Theta = \{0\}$. □

For many G-structures, uniqueness can be proved directly case by case – including a few cases where the G-action is not irreducible.
U(n) structures in dimension 2n

- (S^6, g_{can}): $S^6 \subset \mathbb{R}^7$ has an almost complex structure J ($J^2 = -\text{id}$) inherited from "cross product" on \mathbb{R}^7.
- J is not integrable, $\nabla^g J \neq 0$
- **Problem (Hopf):** Does S^6 admit an (integrable) complex structure?

J is an example of a nearly Kähler structure: $\nabla^g_X J(X) = 0$

More generally: (M^{2n}, g, J) almost Hermitian mnfd: J almost complex structure, g a compatible Riemannian metric.

Fact: structure group $G \subset U(n) \subset SO(2n)$, but $\text{Hol}_0(\nabla^g) = SO(2n)$.

Examples: twistor spaces $(\mathbb{CP}^3, F_{1,2})$ with their nK str., compact complex mnfd with $b_1(M)$ odd (does not admit a Kähler metric) . . .
Thm. An almost hermitian manifold \((M^{2n}, g, J)\) admits a characteristic connection \(\nabla\) if and only if the Nijenhuis tensor
\[
N(X, Y, Z) := g(N(X, Y), Z)
\]
is skew-symmetric. Its torsion is then
\[
T(X, Y, Z) = -d\Omega(JX, JY, JZ) + N(X, Y, Z)
\]
and it satisfies: \(\nabla\Omega = 0\), \(\text{Hol}(\nabla) \subset U(n)\). [Fr-Ivanov, 2002]

‘Trivial case’: If \((M^{2n}, g, J)\) is Kähler \((N = 0\) and \(d\Omega = 0)\), then \(T = 0\), the LC connection \(\nabla^g\) is the characteristic connection.

In particular for \(n = 3\): [Gray-Hervella]

- \(\mathfrak{so}(6) = \mathfrak{u}(3) \oplus \mathfrak{m}^6, \Gamma \in \mathbb{R}^6 \otimes \mathfrak{m}^6|_{U(3)} \cong W_1^2 \oplus W_2^{16} \oplus W_3^{12} \oplus W_4^6\)
- \(N\) is skew-symmetric \(\Leftrightarrow\) \(\Gamma\) has no \(W_2\)-part
- \(\Gamma \in W_1\): nearly Kähler manifolds \((S^6, S^3 \times S^3, F(1, 2), \mathbb{C}P^3)\)
- \(\Gamma \in W_3 \oplus W_4\): hermitian manifolds \((N = 0)\)
Contact structures

- \((M^{2n+1}, g, \eta)\) contact mnfd, \(\eta\): 1-form \((\cong\) vector field)
- \(\langle \eta \rangle \perp\) admits an almost complex structure \(J\) compatible with \(g\)

- Contact condition: \(\eta \wedge (d\eta)^n \neq 0 \Rightarrow \nabla^g \eta \neq 0\), i.e. contact structures are never integrable! (no analogue on Berger’s list)

- Structure group: \(G \subset U(n) \subset SO(2n+1)\)

Examples: \(S^{2n+1} = \frac{SU(n+1)}{SU(n)}\), \(V_{4,2} = \frac{SO(4)}{SO(2)}\), \(M^{11} = \frac{G_2}{Sp(1)}\), \(M^{31} = \frac{F_4}{Sp(3)}\)

Thm. An almost metric contact manifold \((M^{2n+1}, g, \eta)\) admits a connection \(\nabla\) with skew-symmetric torsion and preserving the structure if and only if \(\xi\) is a Killing vector field and the tensor \(N(X, Y, Z) := g(N(X, Y), Z)\) is totally skew-symmetric. In this case, the connection is unique, and its torsion form is given by the formula

\[
T = \eta \wedge d\eta + d^\phi F + N - \eta \wedge \xi \perp N.
\]

[Fr-Ivanov, 2002]
A large class of almost metric contact manifolds thus admits a char. connection ∇, and for these: $\text{Hol}_0(\nabla) \subset U(n) \subset SO(2n + 1)$.

A special class: Sasaki manifolds: Riemannian manifolds (M^{2n+1}, g) equipped with a contact form η, its dual vector field ξ and an endomorphism $\varphi: TM^7 \to TM^7$ s.t.:

- $\eta \wedge (d\eta)^n \neq 0$, \hspace{1em} $\eta(\xi) = 1$, \hspace{1em} $g(\xi, \xi) = 1$
- $g(\varphi X, \varphi Y) = g(X, Y)$ and $\varphi^2 = -\text{Id}$ on $\langle \eta \rangle^\perp$,
- $\nabla^g_X \xi = -\varphi X$, \hspace{1em} $(\nabla^g_X \varphi)(Y) = g(X, Y) \cdot \xi - \eta(Y) \cdot X$.

For Sasaki manifolds, the formula is particularly simple,

$$g(\nabla^c_X Y, Z) = g(\nabla^g_X Y, Z) + \frac{1}{2} \eta \wedge d\eta(X, Y, Z),$$

and $\nabla T = 0$ holds. \hspace{2em} [Kowalski-Wegrzynowski, 1987]
G_2 structures in dimension 7

Fix $G_2 \subset SO(7)$, so$(7) = g_2 \oplus m^7 \cong g_2 \oplus \mathbb{R}^7$.

Intrinsic torsion Γ lies in $\mathbb{R}^7 \otimes m^7 \cong \mathbb{R}^1 \oplus g_2 \oplus S_0(\mathbb{R}^7) \oplus \mathbb{R}^7 =: \bigoplus_{i=1}^{4} \chi_i$

\Rightarrow four classes of geometric G_2 structures \cite{Fernandez-Gray, '82}

- Decomposition of 3-forms: $\Lambda^3(\mathbb{R}^7) = \mathbb{R}^1 \oplus S_0(\mathbb{R}^7) \oplus \mathbb{R}^7$.

G_2 is the isotropy group of a generic element of $\omega \in \Lambda^3(\mathbb{R}^7)$:

$$G_2 = \{ A \in SO(7) | A \cdot \omega = \omega \}.$$

Thm. A 7-dimensional Riemannian mfd (M^7, g, ω) with a fixed G_2 structure $\omega \in \Lambda^3(M^7)$ admits a characteristic connection ∇

\iff the g_2 component of Γ vanishes

\iff There exists a VF β with $\delta \omega = -\beta \lrcorner \omega$

The torsion of ∇ is then $T = -\ast d\omega - \frac{1}{6} (d\omega, \ast \omega)\omega + \ast (\beta \lrcorner \omega)$, and ∇ admits (at least) one parallel spinor. \cite{Fr-Ivanov, 2002}
<table>
<thead>
<tr>
<th>name</th>
<th>class</th>
<th>characterization</th>
</tr>
</thead>
</table>
| parallel G_2-manifold | $\{0\}$ | a) $\nabla^g \omega = 0$
b) \exists a ∇^g-parallel spinor |
| nearly parallel G_2-manifold | \mathcal{X}_1 | a) $d\omega = \lambda \ast \omega$ for some $\lambda \in \mathbb{R}$
b) \exists real Killing spinor |
| almost parallel or closed (or calibrated symplectic) G_2-m. | \mathcal{X}_2 | $d\omega = 0$ |
| balanced G_2-manifold | \mathcal{X}_3 | $\delta \omega = 0$ and $d\omega \wedge \omega = 0$ |
| locally conformally parallel G_2-m. | \mathcal{X}_4 | $d\omega = \frac{3}{4} \theta \wedge \omega$ and
$\quad \quad \quad \quad \quad \quad \quad d \ast \omega = \theta \wedge \ast \omega$ for some θ |
| cocalibrated (or semi-parallel or cosymplectic) G_2-manifold | $\mathcal{X}_1 \oplus \mathcal{X}_3$ | $\delta \omega = 0$ |
| locally conformally (almost) parallel G_2-manifold | $\mathcal{X}_2 \oplus \mathcal{X}_4$ | $d\omega = \frac{3}{4} \theta \wedge \omega$ |
| G_2T-manifold | $\mathcal{X}_1 \oplus \mathcal{X}_3 \oplus \mathcal{X}_4$ | a) $d \ast \omega = \theta \wedge \ast \omega$ for some θ
b) \exists char. connection ∇^c |
Easiest examples:

- $S^7 = \frac{\text{Spin}(7)}{G_2}$, $M_{k,l}^{AW} = \frac{\text{SU}(3)}{U(1)_{k,l}}$, $V_{5,2} = \frac{\text{SO}(5)}{\text{SO}(3)}$, \ldots

- Explicit constructions of G_2 structures:

[Friedrich-Kath, Fernandez-Gray, Fernandez-Ugarte, Aloff-Wallach, Boyer-Galicki, \ldots]

- Every orientable hypersurface in \mathbb{R}^8 carries a cocalibrated G_2-structure

- S^1-PFB over 6-dim. Kähler manifolds, nearly Kähler manifolds. \ldots
Example \[\text{[Fernandez-Ugarte, '98]}\]

\(N^6\): 3-dimensional complex solvable group, \(M^7 := N^6 \times \mathbb{R}^1\). There exists a left invariant metric and a left invariant \(G_2\)-structure on \(M^7\) such that the structural equations are:

\[
de_3 = e_{13} - e_{24}, \quad de_4 = e_{23} + e_{14}, \quad de_5 = -e_{15} + e_{26}, \quad de_6 = -e_{25} - e_{16},
\]

all other \(de_i = 0\).

\(M^7\) has a \(G_2\)-invariant characteristic connection \(\nabla^c\) and

- \(T = 2 \cdot e_{256} - 2 \cdot e_{234}, \quad \delta(T) = 0\).
- \(\text{Scal}^c = -16\).
- There are two \(\nabla^c\)-parallel spinors, and both satisfy \(T^c \cdot \Psi = 0\).
An interesting subclass of G_2-mnfds: 7-dim. 3-Sasaki mnfds

M^7: 3-Sasaki mnfd, corresponds to $SU(2) \subset G_2 \subset SO(7)$.

- 3 orth. Sasaki structures $\eta_i \in T^*M^7$, $[\eta_1, \eta_2] = 2 \eta_3$, $[\eta_2, \eta_3] = 2 \eta_1$, $[\eta_3, \eta_1] = 2 \eta_2$ and $\varphi_3 \circ \varphi_2 = -\varphi_1$ etc. on $\langle \eta_2, \eta_3 \rangle$

- Known: A 3-Sasaki mnfd is always Einstein and has 3 Riemannian Killing spinors, define $T^v := \langle \xi_1, \xi_2 \xi_3 \rangle$, $T^h = (T^v)\perp$

- each Sasaki structures η_i induces a characteristic connection ∇^i, but $\nabla^1 \neq \nabla^2 \neq \nabla^3$?!? \Rightarrow Ansatz: $T = \sum_{i,j=1}^3 \alpha_{ij} \eta_i \wedge d\eta_j + \gamma \eta_1 \wedge \eta_2 \wedge \eta_3$

Thm. Every 7-dimensional 3-Sasaki mnfd admits a \mathbb{P}^2-family of metric connections with skew torsion and parallel spinors. Its holonomy is G_2.

[A-Fr, 2003]

Thm. There exists a cocalibrated G_2-structure with char. connection ∇^c with parallel spinor ψ on M^7 with the properties:

- ∇^c preserves T^v and T^h, and $\nabla^c T = 0$
- $\xi_i \cdot \psi$ are the 3 Riemannian Killing spinors on M^7

[A-Fr, 2010]
Example: Naturally reductive spaces

- Homogeneous non symmetric spaces provide a rich source for manifolds with characteristic connection

Let \(M = G/H \) be reductive, i.e. \(\exists \) \(m \subset g \) s.t. \(g = h \oplus m \) and \([h, m] \subset m\); isotropy repr. \(\text{Ad} : H \to \text{SO}(m) \). \(\langle , \rangle \) a pos. def. scalar product on \(m \).

The PFB \(G \to G/H \) induces a distinguished connection on \(G/H \), the so-called canonical connection \(\nabla^1 \). Its torsion is

\[
T^1(X, Y, Z) = - \langle [X, Y]_m, Z \rangle
\]

\((= 0 \text{ for } M \text{ symmetric}) \)

Dfn. The metric \(\langle , \rangle \) is called naturally reductive if \(T^1 \) defines a 3-form,

\[
\langle [X, Y]_m, Z \rangle + \langle Y, [X, Z]_m \rangle = 0 \text{ for all } X, Y, Z \in m.
\]

They generalize symmetric spaces: \(\nabla^1 T^1 = 0, \nabla^1 R^1 = 0 \).
Naturally reductive spaces – basic facts

Thm. A Riemannian manifold equipped with a [regular] homogeneous structure, i.e. a metric connection ∇ with torsion T and curvature \mathcal{R} such that $\nabla \mathcal{R} = 0$ and $\nabla T = 0$, is locally isometric to a homogeneous space. [Ambrose-Singer, 1958, Tricerri 1993]

Hence: Naturally reductive spaces have a metric connection ∇ with skew torsion such that $\nabla T = \nabla \mathcal{R} = 0$

N.B. Well-known: Some mnfds carry several nat.red.structures, for exa.

$$S^{2n+1} = \text{SO}(2n+2)/\text{SO}(2n+1) = \text{SU}(n+1)/\text{SU}(n),$$

$$S^6 = G_2/\text{SU}(3), \ S^7 = \text{Spin}(7)/G_2, \ S^{15} = \text{Spin}(9)/\text{Spin}(7).$$

But, another consequence of the STHT:

Thm. If (M, g) is not loc. isometric to a sphere or a Lie group, then its admits at most one naturally reductive homogeneous structure. [Olmos-Reggiani, 2012]
Classical construction of naturally reductive spaces

General construction:
Consider $M = G/H$ with restriction of the Killing form to m:

$$\beta(X, Y) := -\text{tr}(X^t Y), \quad \langle X, Y \rangle = \beta(X, Y) \text{ for } X, Y \in m.$$

Suppose that m is an orthogonal sum $m = m_1 \oplus m_2$ such that

$$[\mathfrak{h}, m_2] = 0, \quad [m_2, m_2] \subset m_2.$$

Then the new metric, depending on a parameter $s > 0$

$$\tilde{\beta}_s = \beta|_{m_1} \oplus s \cdot \beta|_{m_2}$$

is naturally reductive for $s \neq 1$ w.r.t. the realisation as

$$M = (G \times M_2)/(H \times M_2) =: \overline{G/H}.$$

[Chavel, 1969; Ziller / D’Atri, 1979]

This description gets quickly rather tedious – thus, we shall usually describe nat. reductive spaces through their connections with parallel torsion and curvature.
Example: Lie groups

Let $M = G$ be a connected Lie group, $\mathfrak{g} = T_eG$.

the metric g on G is biinvariant

\[\Leftrightarrow L_a, R_a \text{ are isometries } \forall a \in G\]

\[\Rightarrow \text{ad}V \in \mathfrak{so}(\mathfrak{g}), \text{ i.e. } g(\text{ad}(V)X, Y) + g(X, \text{ad}(V)Y) = 0 \quad (\ast)\]

Easy: $\nabla^g_X Y = \frac{1}{2}[X, Y]$.

Ansatz: T proportional to $[,]$, i.e. $\nabla_X Y = \lambda[X, Y]

- **torsion:** $T^\nabla(X, Y) = (2\lambda - 1)[X, Y]$, hence $T \in \Lambda^3(G) \Leftrightarrow (\ast)$

- **curvature:**

\[
\mathcal{R}^\nabla(X, Y)Z = \lambda(1-\lambda)[Z, [X, Y]] = \begin{cases}
\frac{1}{4}[Z, [X, Y]] & \text{for LC conn.}(\lambda = \frac{1}{2}) \\
0 & \text{for } \lambda = 0, 1
\end{cases}
\]

[±-connection, Cartan-Schouten, 1926]
Interpretation in the framework of homogeneous spaces

Take $\tilde{G} = G \times G$ with involution $\theta(a, b) = (b, a)$.

- $K := \tilde{G}^{\theta} = \{(a, a) \in \tilde{G}\} = \Delta G$ with Lie alg. $\mathfrak{k} = \{(X, X) \mid X \in \mathfrak{g}\} \subset \tilde{\mathfrak{g}}$

To make $\tilde{G}/\Delta G$ symmetric, one usually chooses as complement of \mathfrak{k} in \mathfrak{g}

$$m_{sym} := \{(X, -X) \mid X \in \mathfrak{g}\},$$

for it satisfies $[m_{sym}, m_{sym}] \subset \mathfrak{k}$. But every space

$$m_t := \{X_t := (tX, (t - 1)X) \mid X \in \mathfrak{g}\}, \quad t \in \mathbb{R},$$

also defines a reductive complement, $[\mathfrak{k}, m_t] \subset m_t$.
Fact: Every reductive homogeneous space has a canonical connection ∇^c induced from the PFB $\tilde{G} \to \tilde{G}/\Delta G$ (the ∇^c-parallel tensors are exactly the \tilde{G}-invariant ones), $[\ , \] = [\ , \]_t + [\ , \]_m$

\[\nabla^c T^c = 0, \quad T^c(X, Y) = -[X, Y]_m, \]
\[\nabla^c R^c = 0, \quad R^c(X, Y) = -[[X, Y]_t, Z]. \]

This turns G into a naturally reductive space.

One checks for $X_t = (tX, (t - 1)X), \ Y_t = (tY, (t - 1)Y) \in m_t$

\[[X_t, Y_t] = (t^2[X, Y], (t - 1)^2[X, Y]) : \text{ hence } " \in m''_t \iff t = 0, 1 \]

i.e. $R^c = 0$ for $t = 0, 1$ – these are again the \pm-connections of Cartan-Schouten.

In particular, $\nabla T = 0$ for these connections on Lie groups.
Connections on homogeneous spaces – Wang’s Theorem

Wang’s Thm. [see Kobayashi-Nomizu]

Let $M^n = G/H$ be reductive, $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$. Then there is a bijection between $GL(n)$-invariant connections ∇ on M^n and maps $\Lambda : \mathfrak{m} \to \mathfrak{gl}(n)$ satisfying

$$\Lambda(Ad h)X = Ad(h)\Lambda(X)Ad(h)^{-1}$$

for all $h \in H$ and $X \in \mathfrak{m}$.

[Idea: Λ is the evaluation of the connection form at eH]

Comments:

• If $\Lambda : \mathfrak{m} \to \mathfrak{so}(n)$, the corresponding connection is metric
• $\Lambda = 0$ is a solution, corresponds to the canonical connection
• Torsion: $T(X, Y) = \Lambda(X)Y - \Lambda(Y)X - [X, Y]_m$
• Curvature: $R(X, Y)Z = \Lambda(X)\Lambda(Y)Z - \Lambda(Y)\Lambda(X)Z - Ad([X, Y]_\mathfrak{h})Z$
Example: The Berger sphere $M^5 = SU(3)/SU(2)$

$su(3) \subset M_3(\mathbb{C})$, $su(2) \cong \{ \begin{bmatrix} 0 & 0 \\ 0 & B \end{bmatrix} : B \in su(2) \}$, $m_0 := \{ \begin{bmatrix} 0 & -\bar{v}^t \\ v & 0 \end{bmatrix} : v \in \mathbb{C}^2 \}$

Hence, we get a reductive decomposition

$$su(3) = su(2) \oplus m, \ m = m_0 \oplus \langle \eta \rangle \text{ with } \eta = \frac{1}{\sqrt{3}} \text{diag}(-2i, i, i)$$

Basis of m_0: $e_1, \ldots e_4$ corresponding to $v = (1, 0)$, $(i, 0)$, $(0, 1)$, $(0, i)$.

Deform the Killing form $\beta(X, Y) = -\text{tr}(XY)/2$ of $su(3)$ on m to the family of metrics

$$g_\gamma := \beta|_{m_0} \oplus \frac{1}{\gamma} \beta|_{\langle \eta \rangle}, \ \gamma > 0.$$

- $\tilde{\eta} = \eta/\sqrt{\gamma} =: e_5$ and $\varphi := e_{12} + e_{34}$ defines an α-Sasakian on M^5, its characteristic connection is described by $\Lambda : m \rightarrow so(m)$

$$\Lambda(e_i) = 0 \text{ for } i = 1, \ldots, 4, \ \Lambda(e_5) = (\sqrt{3/\gamma} - \sqrt{3\gamma})(E_{12} + E_{34}).$$

- Torsion $T = \tilde{\eta} \wedge d\tilde{\eta} = \sqrt{3/\gamma}(e_{12} + e_{34}) \wedge e_5$
Link to Dirac operators

Without torsion:

- Classical Schrödinger-Lichnerowicz formula on Riemannian spin manifolds
- Parthasarathy formula on symmetric spaces: \((D^g)^2 = \Omega + \frac{1}{8} \text{Scal}^g\), where \(\Omega\) : Casimir operator

With torsion: Assume \((M^n, g)\) is manifold with \(G\)-structure and characteristic connection \(\nabla\) with torsion \(T\)

\(\mathcal{D}\): Dirac operator of connection with torsion \(T/3\)

- **Generalized SL formula:** \([A-Fr, 2003]\)

\[
\mathcal{D}^2 = \Delta_T + \frac{1}{4} \text{Scal}^g + \frac{1}{8} ||T||^2 - \frac{1}{4} T^2
\]

[\(1/3\) rescaling: Slebarski (1987), Bismut (1989), Kostant, Goette (1999), IA (2002)]

- Similarly, \(\mathcal{D}^2 = \Omega + \text{const}\) on naturally reductive homogeneous spaces \([Kostant 1999, A 2002]\)
Almost hermitian manifolds and their Dirac operators

Almost hermitian manifolds

Parthasarathy:
\[(D^g)^2 = \Omega + \frac{1}{8}\text{Scal}^g\]

Kostant:
\[\mathcal{D}^2 = \Omega + \text{const}\]

\[T = 0\] (integrable)

\[T \neq 0\] (non integrable)
Literature

