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General philosophy:

Given a mnfd M™ with G-structure (G C SO(n)), replace V9 by a metric
connection V with skew torsion that preserves the geometric structure!

torsion: T(X,Y,7Z) = g(VxY —VyX — [X,Y], 2)

Special case: require T € A3(M™) (< same geodesics as VY)

= g(VxY,Z) = g(V4Y,2)+3T(X,Y,2)
1) representation theory yields

- a clear answer which GG-structures admit such a connection: if existent,
it's unique and called the ‘characteristic connection’

- a c/assificationGscheme for GG-structures with characteristic connection:
T.e N(T,M)=V1&...8YV,

2) Analytic tool: Dirac operator D of the metric connection with torsion
T'/3: ‘characteristic Dirac operator’ (generalizes the Dolbeault operator) |



In this lecture:

1) Algebra of 3-forms, and in particular, a ‘Skew Holonomy Theorem'
2) Characteristic connections: Existence, examples, uniqueness

3) An important class of examples: Naturally reductive homogeneous
spaces



Algebraic Torsion Forms in R"

Consider T' € A?(R™), an algebraic 3-form in R"® =: V, fix a positive def.
scalar product (—,—) on V.

o T defines a metric connection: VxY := V%Y +1T(X,Y, —).

e V lifts to a connection on spinor fields ¢ : R — A,,,

Vi = Vg + (X 2T)

Dfn. For T' 3-form, define [introduced in AFr, 2004]

o kernel: kerT' = {X € R"|X 1T =0} (for later)
e Lie algebra generated by its image: g := Lie(X 1T | X € R")

isotropy Lie algebra : hr :={A € gl(n,R) | A*T =0}

gr 1s not related in any obvious way to hp!



Examples:

e N = 3, 4, T = €123- then €; | T = €23, —€13,€12, SO g1 — 50(3),
and hr = s0(3).

en =2>5:T = peqa5 + A345 # 0, then
* oA = 0: g7 = 50(3), by = 50(3) D 50(2)
* oA # 0: gpr = s0(5), by =s0(2) ®so(2) (if o # ), else hr = u(2) .

on =7, = €127+ €135 — €146 — €236 — €245 + €347 + €567 a 3-form with

stabilizer Go, i.e. b = go. Moreover, so0(7) @2 go @ m, where m is the
space of all inner products X 1T. The Lie algebra generated by these
elements is isomorphic to s0(7) = gr.

e g a compact, semisimple Lie algebra acting on itself g = R™ by
the adjoint rep., S its Killing form, T'(X,Y, Z) := B(|X,Y],Z). Then
gr = 9.



Observe: gr does not always act irreducibly on V' = R".

Thm. The representation (gr, V') is reducible iff there exists a proper
subspace W C R”™ and two 3-forms T} € A3(W) and T, € A3(W+) such
that T' =T} + T5. In this case, gr = g1, © 971,

Proof. Consider a gp-invariant subspace W, fix bases eq,--- , e of W,
€hsls - ,p of WL, Then VX €¢R*, Vi=1,....,k,a=k+1,...,n,
we obtain T'(X, e;,e,) = 0.

Since T is skew-symmetric, we conclude
T(ei,ej,eq) =0 and T(e;eq,e3)=0.
[]

Next step: In its original version, Berger's holonomy theorem is not
suitable for generalization to connections with skew torsion.

Formulate a holonomy theorem in terms of gr!



The skew torsion holonomy theorem

Dfn. Let 0 # T € A3(V), gr as before, Gr C SO(n) its Lie group.
Hence, X JT € gr C 50(V) Z A2(V)V X € V. Then (Gp,V,T) is
called a skew-torsion holonomy system (STHS). It is said to be

- irreducible if G acts irreducibly on V,

- transitive if G acts transitively on the unit sphere of V,

- and symmetric if 1" is Gp-invariant.

Recall: The only transitive sphere actions are:

SO(n) on S*~t c R®, SU(n) on S?*~1 c C®, Sp(n) on S*"~1 c H",
G2 on SY, Spin(7) on S7, Spin(9) on S1°. [Montgomery-Samelson, 1943]

Thm (STHT). Let (G7,V,T) be an irreducible STHS. If it is transitive,
G = SO(n). If it is not transitive, it is symmetric, and

e V is a simple Lie algebra of rank > 2 w.r.t. the bracket [X,Y] =
T(X,Y), and G acts on V by its adjoint representation,

e T is unique up to a scalar multiple.
[transitive: AFr 2004, general: Olmos-Reggiani, 2012; Nagy 2013]| &



The newer proofs are based on general holonomy theory. The statement
about transitive actions is easily verified, for example:

Thm. Let T € A3(R?") be a 3-form s.t. there exists a 2-form ) such
that
Q" #£0 and [gp, Q] = 0.

Then T is zero, T = 0.
Sketch of Proof. Fix an ONB in R?" s.t. ) is given by
Q:Alelg—i—...—l—Akegn_l’Qn, Ay, A # 0.

The condition [gr, 2] = 0 is equivalent to Z?Zlﬂaj - Tgjy =
2321 Tgaj - 2y for any 1 < «, 8,7 < 2n. Using the special form
of 2 we obtain the equations (1 < a,y < k):

Aa'Tﬂ,Zoz,Q'y—l — _A'y'T,B,Qoz—l,?ya Aoz'T/j’,Qoz—l,Z’y—l — A’y'T,B,Qoz,?y-
This system of algebraic equations implies that T = 0. []

Want to apply this to existence of characteristic connections!



The characteristic connection of a geometric structure

Fix G C SO(n), A*(R™) = so(n) = g ®m, F(M™): frame bundle of
(M",g).

Dfn. A geometric G-structure on M™ is a G-PFB 'R which is subbundle
of F(M™): R C F(M™).

Choose a (G-adapted local ONF eq,...,e, in R and define connection
1-forms of V9:

wij(X) = g(Vj@(ei, Gj), g(ez-,ej) = 57;]' = Wij +wjz- = 0.

Define a skew symmetric matrix € with values in AY(R™) = R" by
Q(X) := (w;(X)) € s0(n) =g ®m und set

[':=pr, ().

e ['is a 1-Form on M™ with values in m, I', € R"®m (x € M")

[ “intrinsic torsion”, Swann/Salamon]



Fact: I' = 0 < V9 is a G-connection < Hol(V9) C G

Via I', geometric G-structures R C F(M™) correspond to irreducible
components of the G-representation R"” ® m.

Thm. A geometric G-structure R C F(M™) admits a metric G-
connection with antisymmetric torsion iff I' lies in the image of ©,

O: A(M™) = T*(M™")@m, OT) = > e, @pryle;2T).
[Fr, 2003]

If such a connection exists, it is called the characteristic connection V¢
— replace the (unadapted) LC connection by V°.

Thm. If G ¢ SO(n) acts irreducibly and not by its adjoint rep. on
R™ = T,M"™, then ker © = {0}, and hence the characteristic connection
of a G-structure on a Riemannian manifold (M™, g) is, if existent, unique.

[A-Fr-Holl, 2013]



Uniqueness of characteristic connections
This is a consequence of the STHT:
Proof. T € ker© iff all X 14T € g C so(n), that is,

ker© = {T € A3(R") |gr C g},

so (T, G,R™) defines an irreducible STHS, which by assumption is non
transitive (because G ¢ SO(n)). By the STHT, it has to be a Lie

algebra with the adjoint representation. Since this was excluded as well,
it follows that ker ©® = {0}. ]

For many G-structures, uniqueness can be proved directly case by case —
including a few cases where the GG-action is not irreducible.
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U(n) structures in dimension 2n

for S? C R3:
o (5% gean): S® C R” has an almost J(v) =z xv
complex structure J (J? = —id) /ﬂ%) T g2
inherited from " cross product” on R”. ‘ v
e .J is not integrable, V9J #£ 0
e Problem (Hopf): Does S® admit S?

an (integrable) complex structure ?

J is an example of a nearly Kahler structure: V% J(X) =0

More generally: (M?", g, J) almost Hermitian mnfd:
J almost complex structure, g a compatible Riemannian metric.

Fact: structure group G C U(n) C SO(2n), but Holg(V9) = SO(2n).

Examples: twistor spaces ((CIPS, F} 2) with their nK str., compact complex
mnfd with b1 (M) odd (A Kahler metric) . . .



Thm. An almost hermitian manifold (M*", g, J) admits a characteristic
connection V if and only if the Nijenhuis tensor

N(X,Y,Z) = g(N(X, Y), Z)
is skew-symmetric. Its torsion is then
T(X,Y,Z) =—-dUJX,JY,JZ)+ N(X,Y, Z)
and it satisfies: VQ =0, Hol(V) C U(n). [Fr-Ivanov, 2002]

‘Trivial case’: If (M?", g,.J) is Kahler (N = 0 and dQ = 0), then
T = 0, the LC connection V¥ js the characteristic connection.

In particular for n = 3: [Gray-Hervella]

°e50(6)=u3)dml, TeR@m 2 Wi Wl Wi W)

"lues

e N is skew-symmetric < I' has no Ws-part
o I' € W7: nearly Kahler manifolds (S, 5% x S3, F(1,2), CP?)
o I' € W3 @ Wy hermitian manifolds (N = 0)
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Contact structures

o (M?" ™1 g.n) contact mnfd,
n: 1-form (= vector field)

e ()L admits an almost complex
structure J compatible with g

e Contact condition: n A (dn)™ #0 = V97 £ 0, i.e. contact structures
are never integrable | (no analogue on Berger's list)

e structure group: G C U(n) C SO(2n + 1)

Examples: q2n+1 _ S[SJI(JTEI)D’ ‘/21’2 _ 28%;1 ML — _Go M3 — Fy
Thm. An almost metric contact manifold (M?"*! g,n) admits a
connection V with skew-symmetric torsion and preserving the structure
if and only if £ is a Killing vector field and the tensor N(X,Y,7) :=
g(N(X,Y), Z) is totally skew-symmetric. In this case, the connection is
unique, and its torsion form is given by the formula

T=nANdn+d°F+N—-nAEJN. [Fr-lvanov, 2002] 13



A large class of almost metric contact manifolds thus admits a
char. connection V, and for these: Holp(V) C U(n) C SO(2n + 1).

A special class: Sasaki manifolds: Riemannian manifolds (M?" 11, g)

equipped with a contact form 1, its dual vector field & and an
endomorphism ¢ : TM™ — TM" s. t.:

enA(dn)"#0, n(§) =1, g(&§¢ =1

o g(pX,9Y) = g(X,Y) and 9> = ~Id on (n)™,

o Vil = —pX, (Vip)(Y) =g(X,Y) - {—n(Y) X.

For Sasaki manifolds, the formula is particularly simple,
g(V&Y,Z) = g(V&Y,Z) +sn A dn(X,Y, Z),

and V1" = 0 holds. [Kowalski-Wegrzynowski, 1987]
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(7o structures in dimension 7

Fix Go C SO(7), s0(7) = go ®m’ = g, D R".

Intrinsic torsion T lies in R7 @ m” = R & g, & So(RT) @ R™ = ., X,
= four classes of geometric (G, structures [Fernandez-Gray, '82]

e Decomposition of 3-forms: A3(R") = R! @ So(R7) @ R”.

G is the isotropy group of a generic element of w € A?(R"):

Gy = {A€S0(7) | A - w=w}.
Thm. A 7-dimensional Riemannian mfd (M7, g,w) with a fixed G
structure w € A3(M7) admits a characteristic connection V

< the go component of I' vanishes
< There exists a VF 8 with dw = -8 Jw

The torsion of V is then T'= — % dw — £(dw, *w)w + *(8 Aw), and V
admits (at least) one parallel spinor. [Fr-lvanov, 2002]
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name

characterization

parallel Go-manifold

a) Viw =0
b) 3 a V9-parallel spinor

a) dw = X *xw for some A € R

nearly parallel GGo-manifold X4 o _
’ i b) 3 real Killing spinor
almost parallel or closed (or X, dw — 0
calibrated symplectic) Go-m.
balanced (Go-manifold X3 dw=0and dvw ANw =0
dw = 20 A w and
locally conformally parallel Go-m. Xy 4
d*xw = 0 N *w for some 0
cocalibrated (or semi-parallel X, B X Sw = 0
or cosymplectic ) G2-manifold
locally conformally (almost) Xy @ X dis — %9 A
parallel Go-manifold
: a)d*w =60 A *w for some 6
GQT—manlfOId X1 6P X3P Xy )

b) 3 char. connection V¢

10




Easiest examples:

_Spin(T) g AW SU(3) _S0(5)
o 57 = pG2 ! M’”W — UMy, 7227 S0@) -

e Explicit constructions of G5 structures:

[Friedrich-Kath, Fernandez-Gray, Fernandez-Ugarte, Aloff-Wallach, Boyer-Galicki. . . |
e Every orientable hypersurface in R® carries a cocalibrated Ga-structure

o S1-PFB over 6-dim. Kahler manifolds, nearly Kihler manifolds. . .

17



Example [Fernandez-Ugarte, '98]

NO: 3-dimensional complex solvable group, M” := N° x R!.There exists
a left invariant metric and a left invariant Go-structure on M7 such that
the structural equations are:

des = e13—ea4, deq = ea3t+e1y, des = —ejzteas, deg = —ea5—e€ig,

all other de; = 0.

M7 has a Go-invariant characteristic connection V¢ and
o I'=2 €356 —2-€234, 0(T)=0.

e Scal® = —16.

e There are two V¢parallel spinors, and both satisfy 17 - & = 0.
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An interesting subclass of Go-mnfds: 7-dim. 3-Sasaki mnfds

M": 3-Sasaki mnfd, corresponds to SU(2) C G5 C SO(7).
e 3 orth.Sasaki structures n; € T*M’, [n1,1m2] = 213, [m2,1m3] =
211, [m3,m] =2n2 and @30 py = —1 etc. on <772,773>L
e Known: A 3-Sasaki mnfd is always Einstein and has 3 Riemannian
Killing spinors, define T := (&1, &363), T = (T)+
e each Sasaki structures 7n; induces a characteristic connection V¢, but

3
VI£V2£V321? = Ansatzz T'= > ayjni Adn; +ym1 Ana Ans
ij=1

Thm. Every 7-dimensional 3-Sasaki mnfd admits a P2-family of metric

connections with skew torsion and parallel spinors. Its holonomy is Gb.
[A-Fr, 2003]

Thm. There exists a cocalibrated Go-structure with char. connection V¢
with parallel spinor 1) on M " with the properties:

e V¢ preserves 1" and T! and VT =0
o & -1 are the 3 Riemannian Killing spinors on M " [A-Fr, 2010] 1,



Example: Naturally reductive spaces

e Homogeneous non symmetric spaces provide a rich source for manifolds
with characteristic connection

Let M = G/H be reductive, i.e. 3m C gs.t. g=hdEmand [h,m] C m;
isotropy repr. Ad : H — SO(m). (, ) a pos. def. scalar product on m.

The PFB G — G//H induces a distinguished connection on G/H, the
so-called canonical connection V. lts torsion is

THX,Y,Z) = —{([X,Y]m, Z) (= 0 for M symmetric)

Dfn. The metric (, ) is called naturally reductive if T* defines a 3-form,
(X, Y]m, Z) + (Y, | X, Z]n) = Oforall X,Y,Z cm.

They generalize symmetric spaces: V!T! =0, VIR! = 0.
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Naturally reductive spaces — basic facts

Thm. A Riemannian manifold equipped with a [regular] homogeneous
structure, 1.e. a metric connection V with torsion 7' and curvature R
such that VR = 0 and V1" = 0, is locally isometric to a homogeneous
space. [Ambrose-Singer, 1958, Tricerri 1993]

Hence: Naturally reductive spaces have a metric connection V with skew
torsion such that V' = VR =0

N.B. Well-known: Some mnfds carry several nat.red.structures, for exa.
S2ntl = S0(2n +2)/SO(2n + 1) = SU(n + 1) /SU(n),
S% = G5/SU(3), ST = Spin(7)/Gs, S'° = Spin(9)/Spin(7).
But, another consequence of the STHT:

Thm. If (M, g) is not loc. isometric to a sphere or a Lie group, then its
admits at most one naturally reductive homogeneous structure.

[OImos-Reggiani, 2012]



Classical construction of naturally reductive spaces

General construction:
Consider M = (G/H with restriction of the Killing form to m:

B(X,Y) := —tr(X'Y), (X,Y) =5(X,Y) for X,Y € m.
Suppose that m is an orthogonal sum m = m; @ my such that

[ham2] — Oa [m27m2] C my.

Then the new metric, depending on a parameter s > 0

58:/8’1111@8/6‘1’(12
is naturally reductive for s # 1 w.r.t. the realisation as
M = (G x Ms)/(H x M) =: G/H .
[Chavel, 1969; Ziller / D'Atri, 1979]

This description gets quickly rather tedious — thus, we shall usually
describe nat.reductive spaces through their connections with parallel
torsion and curvature.



Example: Lie groups
Let M = GG be a connected Lie group, g = 1.G.
the metric g on GG is biinvariant
< L,, R, are isometries Va € G
= adV € so(g), i.e. g(ad(V)X,Y) + g(X,ad(V)Y) =0 (%)
Easy: V%Y = ;[X,Y].
Ansatz: T proportional to [,], i.e. VxY = A[X,Y]
e torsion: TV (X,Y) = (2A — 1)[X, Y], hence T € A3(G)< (*)

® curvature:

Z,|X,Y]] for LC conn.(A = 3)
for A\=0,1

=

RY(X,Y)Z = M1-\)[Z,[X, Y]] = {

[=-connection, Cartan-Schouten, 1926] .

H_CD



Interpretation in the framework of homogeneous spaces

~

Take G = G x G with involution 6(a,b) = (b, a).
o K :=G? ={(a,a) € G} = AG with Liealg. t = {(X, X)|X € g} C §

To make G/AG symmetric, one usually chooses as complement of £ in g
Mgym 1= {(X, —X)|X € g},
for it satisfies [Mgym, Msym] C €. But every space
my = {X;:= (tX,(t —1)X)|X € g}, teR,

also defines a reductive complement, [¢, m;| C m;.
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Fact: Every reductive homogeneous space has a canonical connection V¢
induced from the PFB G' — G /AG (the V“parallel tensors are exactly
the G-invariant ones), [, | = [, le + [, |m

VT =0, TYYX,Y)=—[X,Y]n,
VR =0, RYX,Y)=—[X,Y],Z].

This turns GG into a naturally reductive space.

One checks for X; = (tX,(t —1)X), Vo= (tY,(t - 1)Y) e my
(X, Y] = (t°[X,Y],(t = 1)*[X,Y]): hence”em! < t=0,1

l.e. R° =0 fort = 0,1 — these are again the £-connections of Cartan-
Schouten.

In particular, V1" = 0 for these connections on Lie groups.
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Connections on homogeneous spaces — Wang’s Theorem

Wang's Thm. [see Kobayashi-Nomizu]

Let M™ = G/H be reductive, g = h & m. Then there is a bijection
between GL(n)-invariant connections V on M™ and maps A : m — gl(n)
satisfying

A(Adh)X = Ad(h)A(X)Ad(h)™! forall h € H and X € m.
[ldea: A is the evaluation of the connection form at e H|

Comments:
e If A: m — so(n), the corresponding connection is metric
e A = 0 is a solution, corresponds to the canonical connection
e Torsion: T(X,Y)=A(X)Y —AY)X — [X,Y]n
e Curvature: R(X,Y)Z =AX)AY)Z-AY)AN(X)Z—-Ad(|X,Y]y)Z
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Example: The Berger sphere M/° = SU(3)/SU(2)

su(3) C Ms(C), su(2) = {[8 g] .Be 5u(2)} mg = {[2 8’1 v € @2}

Hence, we get a reductive decomposition
su(3) =su(2) ®m, m=me® (n) with n = %diag(—%, i,1)

Basis of mg: ey, ...e4 corresponding to v = (1,0), (¢,0), (0,1), (0,%).
Deform the Killing form B(X,Y) = —tr(XY)/2 of su(3) on m to the
family of metrics

= Bluy @38l 7>0

o ) =1/\/7 =: €5 and ¢ := e12 + e34 defines an a-Sasakian on M?, its
characteristic connection is described by A : m — so(m)

Ale;) =0fori=1,...,4, Ales) = (\/3/7 — V37)(E12 + Es4).

e Torsion T'=n A dn = +/3/v(e12 + +e34) N €5 27



Link to Dirac operators

Without torsion:

e Classical Schrodinger-Lichnerowicz formula on Riemannian spin mnfds

o Parthasarathy formula on symmetric spaces: (D9)? = Q + %Scalg,
where €2 : Casimir operator

With torsion:  Assume (M™,g) is mnfd with G-structure and
characteristic connection V with torsion T

ID: Dirac operator of connection with torsion 7'/3

e Generalized SL formula: [A-Fr, 2003]

1 1 1

2 2 2
D* = Ap+—Scal? +—||T||* — =1
g 4 e 8|| H 4

[1/3 rescaling: Slebarski (1987), Bismut (1989), Kostant, Goette (1999), IA (2002)]

e Similarly, JD2 = ) 4 const on naturally reductive homogeneous spaces

[Kostant 1999, A 2002]



Almost hermitian manifolds and their Dirac operators

SL: B/K/A-F/S:
9)2 LGeal? D? = Ap + 2Scal? + L||T||? — 172
(D ) — A + ZSCal - T 4 8 4
non
homog. almost Herm. mnfds
Kahler mnfds (nearly/almost/quasi/semi K,
Hermitian, loc.conf.K etc.)
D9 = Dolbeault op. D9 # ]) = Dolbeault op.
almost Herm. nat. red.
Hermitian symm. spaces homogeneous spaces \
almost
Hermitian
homog. mnfds
Kostant:
Parthasarathy: ,
= ) t
(D9)? = Q + £Scal’ P +cons

symmetric naturally reductive

29
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