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General philosophy:

Given a mnfdMn with G-structure (G ⊂ SO(n)), replace ∇g by a metric
connection ∇ with skew torsion that preserves the geometric structure!

torsion: T (X,Y,Z) := g(∇XY −∇YX − [X,Y ], Z)

Special case: require T ∈ Λ3(Mn) (⇔ same geodesics as ∇g)

⇒ g(∇XY,Z) = g(∇g
XY,Z) +

1
2 T (X,Y,Z)

1) representation theory yields

- a clear answer which G-structures admit such a connection; if existent,
it’s unique and called the ‘characteristic connection’

- a classification scheme for G-structures with characteristic connection:
Tx ∈ Λ3(TxM)

G
= V1 ⊕ . . .⊕ Vp

2) Analytic tool: Dirac operator /D of the metric connection with torsion
T/3: ‘characteristic Dirac operator’ (generalizes the Dolbeault operator)
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In this lecture:

1) Algebra of 3-forms, and in particular, a ‘Skew Holonomy Theorem’

2) Characteristic connections: Existence, examples, uniqueness

3) An important class of examples: Naturally reductive homogeneous
spaces
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Algebraic Torsion Forms in R
n

Consider T ∈ Λ3(Rn), an algebraic 3-form in Rn =: V , fix a positive def.
scalar product 〈−,−〉 on V .

• T defines a metric connection: ∇XY := ∇g
XY + 1

2T (X,Y,−).

• ∇ lifts to a connection on spinor fields ψ : Rn −→ ∆n,

∇Xψ := ∇g
Xψ +

1

4
(X T ) · ψ

Dfn. For T 3-form, define [introduced in AFr, 2004]

• kernel: kerT = {X ∈ Rn |X T = 0} (for later)

• Lie algebra generated by its image: gT := Lie〈X T |X ∈ Rn〉

isotropy Lie algebra : hT := {A ∈ gl(n,R) | A∗T = 0}
gT is not related in any obvious way to hT !
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Examples:

• n = 3, 4, T = e123: then ei T = e23,−e13, e12, so gT = so(3),
and hT = so(3).

• n = 5: T = ̺e125 + λ345 6= 0, then

∗ ̺λ = 0: gT = so(3), hT = so(3)⊕ so(2)

∗ ̺λ 6= 0: gT = so(5), hT = so(2)⊕ so(2) (if ̺ 6= λ), else hT = u(2) .

• n = 7, = e127 + e135 − e146 − e236 − e245 + e347 + e567 a 3-form with

stabilizer G2, i. e. hT = g2. Moreover, so(7)
G2= g2 ⊕ m, where m is the

space of all inner products X T. The Lie algebra generated by these
elements is isomorphic to so(7) = gT .

• g a compact, semisimple Lie algebra acting on itself g ∼= Rn by
the adjoint rep., β its Killing form, T (X,Y,Z) := β([X, Y ], Z). Then
gT = g.
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Observe: gT does not always act irreducibly on V = R
n.

Thm. The representation (gT , V ) is reducible iff there exists a proper
subspaceW ⊂ Rn and two 3-forms T1 ∈ Λ3(W ) and T2 ∈ Λ3(W⊥) such
that T = T1 + T2. In this case, gT = gT1 ⊕ gT2.

Proof. Consider a gT -invariant subspace W , fix bases e1, · · · , ek of W ,
ek+1, · · · , en of W⊥. Then ∀X ∈ Rn, ∀i = 1, . . . , k, α = k + 1, . . . , n,
we obtain T (X, ei, eα) = 0.

Since T is skew-symmetric, we conclude

T (ei, ej, eα) = 0 and T (ei, eα, eβ) = 0.

�

Next step: In its original version, Berger’s holonomy theorem is not
suitable for generalization to connections with skew torsion.

Formulate a holonomy theorem in terms of gT !
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The skew torsion holonomy theorem

Dfn. Let 0 6= T ∈ Λ3(V ), gT as before, GT ⊂ SO(n) its Lie group.
Hence, X T ∈ gT ⊂ so(V ) ∼= Λ2(V ) ∀ X ∈ V . Then (GT , V, T ) is
called a skew-torsion holonomy system (STHS). It is said to be

- irreducible if GT acts irreducibly on V ,

- transitive if GT acts transitively on the unit sphere of V ,

- and symmetric if T is GT -invariant.

Recall: The only transitive sphere actions are:

SO(n) on Sn−1 ⊂ R
n, SU(n) on S2n−1 ⊂ C

n, Sp(n) on S4n−1 ⊂ H
n,

G2 on S6, Spin(7) on S7, Spin(9) on S15. [Montgomery-Samelson, 1943]

Thm (STHT). Let (GT , V, T ) be an irreducible STHS. If it is transitive,
GT = SO(n). If it is not transitive, it is symmetric, and

• V is a simple Lie algebra of rank ≥ 2 w. r. t. the bracket [X,Y ] =
T (X,Y ), and GT acts on V by its adjoint representation,

• T is unique up to a scalar multiple.
[transitive: AFr 2004, general: Olmos-Reggiani, 2012; Nagy 2013]
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The newer proofs are based on general holonomy theory. The statement
about transitive actions is easily verified, for example:

Thm. Let T ∈ Λ3(R2n) be a 3-form s. t. there exists a 2-form Ω such
that

Ωn 6= 0 and [gT ,Ω] = 0.

Then T is zero, T = 0.

Sketch of Proof. Fix an ONB in R2n s. t. Ω is given by

Ω = A1 e12 + . . .+Ak e2n−1,2n, A1 · . . . ·Ak 6= 0.

The condition [ĝT, Ω] = 0 is equivalent to
∑2n

j=1Ωαj · Tβjγ =
∑2n

j=1Tβαj · Ωjγ for any 1 ≤ α, β, γ ≤ 2n. Using the special form
of Ω we obtain the equations (1 ≤ α, γ ≤ k):

Aα ·Tβ,2α,2γ−1 = −Aγ ·Tβ,2α−1,2γ, Aα ·Tβ,2α−1,2γ−1 = Aγ ·Tβ,2α,2γ.

This system of algebraic equations implies that T = 0. �

Want to apply this to existence of characteristic connections!
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The characteristic connection of a geometric structure

Fix G ⊂ SO(n), Λ2(Rn) ∼= so(n) = g ⊕ m, F(Mn): frame bundle of
(Mn, g).

Dfn. A geometric G-structure on Mn is a G-PFB R which is subbundle
of F(Mn): R ⊂ F(Mn).

Choose a G-adapted local ONF e1, . . . , en in R and define connection
1-forms of ∇g:

ωij(X) := g(∇g
Xei, ej), g(ei, ej) = δij ⇒ ωij + ωji = 0.

Define a skew symmetric matrix Ω with values in Λ1(Rn) ∼= R
n by

Ω(X) :=
(

ωij(X)
)

∈ so(n) = g⊕m und set

Γ := prm(Ω).

• Γ is a 1-Form on Mn with values in m, Γx ∈ Rn ⊗ m (x ∈ Mn)
[“intrinsic torsion”, Swann/Salamon]
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Fact: Γ = 0 ⇔ ∇g is a G-connection ⇔ Hol(∇g) ⊂ G

Via Γ, geometric G-structures R ⊂ F(Mn) correspond to irreducible
components of the G-representation R

n ⊗m.

Thm. A geometric G-structure R ⊂ F(Mn) admits a metric G-
connection with antisymmetric torsion iff Γ lies in the image of Θ,

Θ : Λ3(Mn) → T ∗(Mn)⊗m, Θ(T ) :=
∑n

i=1 ei ⊗ prm(ei T ).

[Fr, 2003]

If such a connection exists, it is called the characteristic connection ∇c

→ replace the (unadapted) LC connection by ∇c.

Thm. If G 6⊂ SO(n) acts irreducibly and not by its adjoint rep. on
Rn ∼= TpM

n, then kerΘ = {0}, and hence the characteristic connection
of a G-structure on a Riemannian manifold (Mn, g) is, if existent, unique.

[A-Fr-Höll, 2013]
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Uniqueness of characteristic connections

This is a consequence of the STHT:

Proof. T ∈ kerΘ iff all X T ∈ g ⊂ so(n), that is,

kerΘ = {T ∈ Λ3(Rn) | gT ⊂ g},

so (T,G,Rn) defines an irreducible STHS, which by assumption is non
transitive (because G 6⊂ SO(n)). By the STHT, it has to be a Lie
algebra with the adjoint representation. Since this was excluded as well,
it follows that kerΘ = {0}. �

For many G-structures, uniqueness can be proved directly case by case –
including a few cases where the G-action is not irreducible.
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U(n) structures in dimension 2n

• (S6, gcan): S
6 ⊂ R7 has an almost

complex structure J (J2 = −id)
inherited from ”cross product” on R7.

• J is not integrable, ∇gJ 6= 0

• Problem (Hopf): Does S6 admit
an (integrable) complex structure ?

x TxS
2

v
J(v) := x× v

S2

for S2 ⊂ R3:

J is an example of a nearly Kähler structure: ∇g
XJ(X) = 0

More generally: (M2n, g, J) almost Hermitian mnfd:
J almost complex structure, g a compatible Riemannian metric.

Fact: structure group G ⊂ U(n) ⊂ SO(2n), but Hol0(∇g) = SO(2n).

Examples: twistor spaces (CP3, F1,2) with their nK str., compact complex
mnfd with b1(M) odd ( 6 ∃ Kähler metric) . . .
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Thm. An almost hermitian manifold (M2n, g, J) admits a characteristic
connection ∇ if and only if the Nijenhuis tensor

N(X,Y,Z) := g
(

N(X,Y ), Z
)

is skew-symmetric. Its torsion is then

T (X,Y,Z) = −dΩ(JX, JY, JZ) +N(X,Y,Z)

and it satisfies: ∇Ω = 0, Hol(∇) ⊂ U(n). [Fr-Ivanov, 2002]

‘Trivial case’: If (M2n, g, J) is Kähler (N = 0 and dΩ = 0), then
T = 0, the LC connection ∇g is the characteristic connection.

In particular for n = 3: [Gray-Hervella]

• so(6) = u(3)⊕m6, Γ ∈ R
6 ⊗m6

∣

∣

U(3)
∼=W 2

1 ⊕W 16
2 ⊕W 12

3 ⊕W 6
4

• N is skew-symmetric ⇔ Γ has no W2-part

• Γ ∈W1: nearly Kähler manifolds (S6, S3 × S3, F (1, 2),CP3)

• Γ ∈W3 ⊕W4: hermitian manifolds (N = 0)
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Contact structures

• (M2n+1, g, η) contact mnfd,
η: 1-form (∼= vector field)

• 〈η〉⊥ admits an almost complex
structure J compatible with g

η

J = −∇gη

TxM

〈η〉⊥

• Contact condition: η ∧ (dη)n 6= 0 ⇒ ∇gη 6= 0, i. e. contact structures
are never integrable ! (no analogue on Berger’s list)

• structure group: G ⊂ U(n) ⊂ SO(2n+ 1)

Examples: S2n+1 = SU(n+1)
SU(n) , V4,2 =

SO(4)
SO(2), M

11 = G2
Sp(1), M

31 = F4
Sp(3)

Thm. An almost metric contact manifold (M2n+1, g, η) admits a
connection ∇ with skew-symmetric torsion and preserving the structure
if and only if ξ is a Killing vector field and the tensor N(X,Y,Z) :=
g(N(X,Y ), Z) is totally skew-symmetric. In this case, the connection is
unique, and its torsion form is given by the formula

T = η ∧ dη + dφF +N − η ∧ ξ N . [Fr-Ivanov, 2002]
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A large class of almost metric contact manifolds thus admits a
char. connection ∇, and for these: Hol0(∇) ⊂ U(n) ⊂ SO(2n+ 1).

A special class: Sasaki manifolds: Riemannian manifolds (M2n+1, g)
equipped with a contact form η, its dual vector field ξ and an
endomorphism ϕ : TM7 → TM7 s. t.:

• η ∧ (dη)n 6= 0, η(ξ) = 1, g(ξ, ξ) = 1

• g(ϕX,ϕY ) = g(X,Y ) and ϕ2 = −Id on 〈η〉⊥,

• ∇g
Xξ = −ϕX, (∇g

Xϕ)(Y ) = g(X,Y ) · ξ − η(Y ) ·X.

For Sasaki manifolds, the formula is particularly simple,

g(∇c
XY,Z) = g(∇g

XY,Z) +
1
2η ∧ dη(X,Y, Z),

and ∇T = 0 holds. [Kowalski-Wegrzynowski, 1987]
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G2 structures in dimension 7

Fix G2 ⊂ SO(7), so(7) = g2 ⊕m7 ∼= g2 ⊕ R
7.

Intrinsic torsion Γ lies in R
7 ⊗m7 ∼= R

1 ⊕ g2 ⊕ S0(R
7)⊕R

7 =:
⊕4

i=1Xi

⇒ four classes of geometric G2 structures [Fernandez-Gray, ’82]

• Decomposition of 3-forms: Λ3(R7) = R1 ⊕ S0(R
7)⊕ R7.

G2 is the isotropy group of a generic element of ω ∈ Λ3(R7):

G2 = {A ∈ SO(7) | A · ω = ω}.

Thm. A 7-dimensional Riemannian mfd (M7, g, ω) with a fixed G2

structure ω ∈ Λ3(M7) admits a characteristic connection ∇

⇔ the g2 component of Γ vanishes

⇔ There exists a VF β with δω = −β ω

The torsion of ∇ is then T = − ∗ dω − 1
6(dω, ∗ω)ω + ∗(β ∧ ω) , and ∇

admits (at least) one parallel spinor. [Fr-Ivanov, 2002]
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name class characterization

parallel G2-manifold {0} a) ∇gω = 0

b) ∃ a ∇g-parallel spinor

nearly parallel G2-manifold X1
a) dω = λ ∗ ω for some λ ∈ R

b) ∃ real Killing spinor

almost parallel or closed (or

calibrated symplectic) G2-m.
X2 dω = 0

balanced G2-manifold X3 δω = 0 and dω ∧ ω = 0

locally conformally parallel G2-m. X4
dω = 3

4θ ∧ ω and

d ∗ ω = θ ∧ ∗ω for some θ

cocalibrated (or semi-parallel

or cosymplectic ) G2-manifold
X1 ⊕X3 δω = 0

locally conformally (almost)

parallel G2-manifold
X2 ⊕X4 dω = 3

4θ ∧ ω

G2T -manifold X1 ⊕ X3 ⊕ X4
a) d ∗ ω = θ ∧ ∗ω for some θ

b) ∃ char. connection ∇c
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Easiest examples:

• S7 = Spin(7)
G2

, MAW
k,l = SU(3)

U(1)k,l
, V5,2 =

SO(5)
SO(3), . . .

• Explicit constructions of G2 structures:

[Friedrich-Kath, Fernandez-Gray, Fernandez-Ugarte, Aloff-Wallach, Boyer-Galicki. . . ]

• Every orientable hypersurface in R8 carries a cocalibrated G2-structure

• S1-PFB over 6-dim. Kähler manifolds, nearly Kähler manifolds. . .
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Example [Fernandez-Ugarte, ’98]

N6: 3-dimensional complex solvable group, M7 := N6×R
1.There exists

a left invariant metric and a left invariant G2-structure on M7 such that
the structural equations are:

de3 = e13−e24, de4 = e23+e14, de5 = −e15+e26, de6 = −e25−e16,

all other dei = 0.

M7 has a G2-invariant characteristic connection ∇c and

• T = 2 · e256 − 2 · e234, δ(T ) = 0.

• Scalc = −16.

• There are two ∇c-parallel spinors, and both satisfy T c ·Ψ = 0.
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An interesting subclass of G2-mnfds: 7-dim. 3-Sasaki mnfds

M7: 3-Sasaki mnfd, corresponds to SU(2) ⊂ G2 ⊂ SO(7).

• 3 orth. Sasaki structures ηi ∈ T ∗M7, [η1, η2] = 2 η3, [η2, η3] =

2 η1, [η3, η1] = 2 η2 and ϕ3 ◦ ϕ2 = −ϕ1 etc. on 〈η2, η3〉⊥

• Known: A 3-Sasaki mnfd is always Einstein and has 3 Riemannian
Killing spinors, define T v := 〈ξ1, ξ2ξ3〉, T h = (T v)⊥

• each Sasaki structures ηi induces a characteristic connection ∇i, but

∇1 6= ∇2 6= ∇3?!? ⇒ Ansatz: T =
3
∑

i,j=1

αij ηi ∧ dηj + γ η1 ∧ η2 ∧ η3

Thm. Every 7-dimensional 3-Sasaki mnfd admits a P2-family of metric
connections with skew torsion and parallel spinors. Its holonomy is G2.

[A-Fr, 2003]

Thm. There exists a cocalibrated G2-structure with char. connection ∇c

with parallel spinor ψ on M7 with the properties:

• ∇c preserves T v and T h, and ∇cT = 0

• ξi · ψ are the 3 Riemannian Killing spinors on M7 [A-Fr, 2010]
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Example: Naturally reductive spaces

• Homogeneous non symmetric spaces provide a rich source for manifolds
with characteristic connection

LetM = G/H be reductive, i. e. ∃ m ⊂ g s. t. g = h⊕m and [h,m] ⊂ m;
isotropy repr. Ad : H → SO(m). 〈 , 〉 a pos. def. scalar product on m.

The PFB G → G/H induces a distinguished connection on G/H, the
so-called canonical connection ∇1. Its torsion is

T 1(X,Y, Z) = −〈[X,Y ]m, Z〉 (= 0 for M symmetric)

Dfn. The metric 〈 , 〉 is called naturally reductive if T 1 defines a 3-form,

〈[X,Y ]m, Z〉+ 〈Y, [X,Z]m〉 = 0 for all X,Y,Z ∈ m .

They generalize symmetric spaces: ∇1T 1 = 0,∇1R1 = 0.
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Naturally reductive spaces – basic facts

Thm. A Riemannian manifold equipped with a [regular] homogeneous
structure, i. e. a metric connection ∇ with torsion T and curvature R
such that ∇R = 0 and ∇T = 0, is locally isometric to a homogeneous
space. [Ambrose-Singer, 1958, Tricerri 1993]

Hence: Naturally reductive spaces have a metric connection ∇ with skew
torsion such that ∇T = ∇R = 0

N.B. Well-known: Some mnfds carry several nat.red.structures, for exa.

S2n+1 = SO(2n+ 2)/SO(2n+ 1) = SU(n+ 1)/SU(n),

S6 = G2/SU(3), S
7 = Spin(7)/G2, S

15 = Spin(9)/Spin(7).

But, another consequence of the STHT:

Thm. If (M, g) is not loc. isometric to a sphere or a Lie group, then its
admits at most one naturally reductive homogeneous structure.

[Olmos-Reggiani, 2012]
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Classical construction of naturally reductive spaces

General construction:
Consider M = G/H with restriction of the Killing form to m:

β(X, Y ) := −tr(XtY ), 〈X,Y 〉 = β(X, Y ) for X,Y ∈ m.

Suppose that m is an orthogonal sum m = m1 ⊕m2 such that

[h,m2] = 0, [m2,m2] ⊂ m2 .

Then the new metric, depending on a parameter s > 0

β̃s = β
∣

∣

m1
⊕ s · β

∣

∣

m2

is naturally reductive for s 6= 1 w. r. t. the realisation as

M = (G×M2)/(H ×M2) =: G/H .

[Chavel, 1969; Ziller /D’Atri, 1979]

This description gets quickly rather tedious – thus, we shall usually
describe nat. reductive spaces through their connections with parallel
torsion and curvature.
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Example: Lie groups

Let M = G be a connected Lie group, g = TeG.

the metric g on G is biinvariant

⇔ La, Ra are isometries ∀a ∈ G

⇒ adV ∈ so(g), i. e. g(ad(V )X,Y ) + g(X, ad(V )Y ) = 0 (∗)

Easy: ∇g
XY = 1

2[X,Y ].

Ansatz: T proportional to [, ], i. e. ∇XY = λ[X,Y ]

• torsion: T∇(X,Y ) = (2λ− 1)[X,Y ], hence T ∈ Λ3(G)⇔ (∗)

• curvature:

R∇(X,Y )Z = λ(1−λ)[Z, [X,Y ]] =

{

1
4[Z, [X,Y ]] for LC conn.(λ = 1

2)
0 for λ = 0, 1

[±-connection, Cartan-Schouten, 1926]
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Interpretation in the framework of homogeneous spaces

Take G̃ = G×G with involution θ(a, b) = (b, a).

•K := G̃θ = {(a, a) ∈ G̃} = ∆G with Lie alg. k = {(X,X)|X ∈ g} ⊂ g̃

To make G̃/∆G symmetric, one usually chooses as complement of k in g

msym := {(X,−X)|X ∈ g},

for it satisfies [msym,msym] ⊂ k. But every space

mt := {Xt :=
(

tX, (t− 1)X
)

|X ∈ g}, t ∈ R,

also defines a reductive complement, [k,mt] ⊂ mt.
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Fact: Every reductive homogeneous space has a canonical connection ∇c

induced from the PFB G̃ → G̃/∆G (the ∇c-parallel tensors are exactly
the G̃-invariant ones), [ , ] = [ , ]k + [ , ]m

∇cT c = 0, T c(X,Y ) = −[X,Y ]m,

∇cRc = 0, Rc(X,Y ) = −[[X,Y ]k, Z].

This turns G into a naturally reductive space.

One checks for Xt =
(

tX, (t− 1)X
)

, Yt =
(

tY, (t− 1)Y
)

∈ mt

[Xt, Yt] = (t2[X,Y ], (t− 1)2[X,Y ]) : hence ”∈ m′′
t ⇔ t = 0, 1

i. e. Rc = 0 for t = 0, 1 – these are again the ±-connections of Cartan-
Schouten.

In particular, ∇T = 0 for these connections on Lie groups.
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Connections on homogeneous spaces – Wang’s Theorem

Wang’s Thm. [see Kobayashi-Nomizu]

Let Mn = G/H be reductive, g = h ⊕ m. Then there is a bijection
between GL(n)-invariant connections ∇ onMn and maps Λ : m → gl(n)
satisfying

Λ(Adh)X = Ad(h)Λ(X)Ad(h)−1 for all h ∈ H and X ∈ m.

[Idea: Λ is the evaluation of the connection form at eH]

Comments:

• If Λ : m → so(n), the corresponding connection is metric

• Λ = 0 is a solution, corresponds to the canonical connection

• Torsion: T (X,Y ) = Λ(X)Y − Λ(Y )X − [X,Y ]m

• Curvature: R(X,Y )Z = Λ(X)Λ(Y )Z−Λ(Y )Λ(X)Z−Ad([X,Y ]h)Z
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Example: The Berger sphere M5 = SU(3)/SU(2)

su(3) ⊂ M3(C), su(2) ∼=
{[

0 0
0 B

]

: B ∈ su(2)

}

,m0 :=

{[

0 −v̄t
v 0

]

: v ∈ C
2

}

Hence, we get a reductive decomposition

su(3) = su(2)⊕m, m = m0 ⊕ 〈η〉 with η = 1√
3
diag(−2i, i, i)

Basis of m0: e1, . . . e4 corresponding to v = (1, 0), (i, 0), (0, 1), (0, i).
Deform the Killing form β(X,Y ) = −tr(XY )/2 of su(3) on m to the
family of metrics

gγ := β
∣

∣

m0
⊕ 1

γβ
∣

∣

〈η〉, γ > 0.

• η̃ = η/
√
γ =: e5 and ϕ := e12 + e34 defines an α-Sasakian on M5, its

characteristic connection is described by Λ : m → so(m)

Λ(ei) = 0 for i = 1, . . . , 4, Λ(e5) = (
√

3/γ −√
3γ)(E12 + E34).

• Torsion T = η̃ ∧ dη̃ =
√

3/γ(e12 ++e34) ∧ e5
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Link to Dirac operators

Without torsion:

• Classical Schrödinger-Lichnerowicz formula on Riemannian spin mnfds

• Parthasarathy formula on symmetric spaces: (Dg)2 = Ω + 1
8Scal

g,
where Ω : Casimir operator

With torsion: Assume (Mn, g) is mnfd with G-structure and
characteristic connection ∇ with torsion T

/D: Dirac operator of connection with torsion T/3

• Generalized SL formula: [A-Fr, 2003]

/D2 = ∆T +
1

4
Scalg +

1

8
||T ||2 − 1

4
T 2

[1/3 rescaling: Slebarski (1987), Bismut (1989), Kostant, Goette (1999), IA (2002)]

• Similarly, /D2 = Ω+ const on naturally reductive homogeneous spaces

[Kostant 1999, A 2002]
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Almost hermitian manifolds and their Dirac operators

(non integrable)

non 

homog.

homog.

naturally reductive

Parthasarathy:
Kostant:

Hermitian
mnfds

Hermitian symm. spaces
almost Herm. nat. red.
homogeneous spaces

Kähler mnfds
almost Herm. mnfds
(nearly/almost/quasi/semi K, 
Hermitian, loc.conf.K etc.)

symmetric

Dolbeault op. Dolbeault op.

SL: B/K/A−F/S:

almost

(integrable)T = 0 T 6= 0

(Dg)2 = Ω+ 1
8Scal

g /D2 = Ω + const

Dg = Dg 6= /D =

(Dg)2 = ∆+ 1
4Scal

g /D2 = ∆T + 1
4Scal

g + 1
8||T ||2 − 1

4T
2



30

Literature

I. Agricola and Th. Friedrich, On the holonomy of connections with
skew-symmetric torsion, Math. Ann. 328 (2004), 711-748.

I. Agricola and Th. Friedrich, A note on flat metric connections with
antisymmetric torsion, Differ. Geom. Appl. 28 (2010), 480-487.
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