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Thm. The reduced holonomy Holy(M; V9) of the LC connection VY is
either that of a symmetric space or

Sp(n)Sp(1) [aK], U(n) [K], SU(n) [CY], Sp(n) [hK]|, Ga, Spin(7).
Ric=0
[Berger / Simons, > 1955]

— in this part: geometries modelled on symmetric spaces.



A look back to 1938: Cartan’s work on isoparametric
hypersurfaces

Dfn. M™~! immersed into R™, S™, or H™ is called an isoparametric
hypersurface if its principal curvatures are constant. [= const. mean curv.]

Set p := # of different principal curvatures

Thm. In S*~1 Cc R™: [Cartan 1938-40]
o If p=1: M™ 2 is a hypersphere in S"!

o lf p=2: M" 2 =S5P(r)x SP(s) forp+q=n—2, r*+s*=1

o If p=3: M"™ ?is a tube of constant radius over a generalized Veronese
emb. of KP? into S" ! for K=R, C, H, O

— Thus, for p = 3, n must be 5,8, 14, or 26 |



Construction: use harmonic homog. polynomial F' of degree p on R"
satisfying

|lgrad F||? = p*||=*P~2
The level sets of F’sn—l define an isoparametric hypersurface family.
For p = 3, Cartan described explicitly the polynomial F'.

Link to geometry:

F' can be understood as a symmetric rank p tensor T, and each level set
M will be invariant under the stabilizer of Y



Connection to rank 2 symmetric spaces

Fundamental oberservation: If M2 c S" ! = SO(n)/SO(n — 1)
is an orbit of G C SO(n), then it is isoparametric (because it is
homogeneous).

classif. of all G C SO(n) s.t.

COdim’Sn—l (princ. G-orbit)=1 N classif. of homogeneous

isopar. hypersurfaces in S™~!

or, equiv., codim’Rn:2

Needed: a classification of all irred. reps. of G C SO(n) on R™ with
codimension 2 principal orbits.

Thm. These are exactly the isotropy representations of rank 2 symmetric
spaces. [Hsiang® / Lawson, 1970/71]

Proof produces a list, and it turns out to coincide with the list of isotropy
representations.



Takagi & Takahashi (1972) made the relation more precise:
Thm. Let M™ = G/H cpct symmetric space, tk =2, g =h @ p.

o An H-orbit M of a unit vector in S®" ! C p is an isoparametric
hypersurface.

e normal great circles <+ anN S™ ™1, focal points < singular elements in a

e the principal curvatures and their mult. are computed from the root
data, for example: The order of the Weyl group is 2p.

= only p=1,2,3,4,6 are possible

= there are 4 symmetric spaces yielding isoparametric
hypersurfaces with p = 3:

SU(3)/50(3), SU(3), SU(6)/Sp(3), Es/Fu



Description of their isotropy representations
Let R™ be (n = 5,8, 14, 26)
e Hero(K?) Hermitian trace-free endomorphisms on K3, K =R, C,H, O
with the conjugation action of H,, = SO(3),SU(3),Sp(3), or F}, resp.
Define for X,Y, Z € R™ a symmetric 3-tensor by polarisation from tr:

Y(X,Y,Z) = 2V3tr X3+ tr Y3 +tr 23] —tr( X + V)3
—tr (X +2)° —tr (Y + 2 +tr (X +Y + Z)°.

For K = H, O, a second tensor is obtained as Y(X,Y, Z) := T(X,Y, Z)
— it is not conjugate to T under SO(n).



Thm. For n =5,8,14,26: H,={A€SO(n) : A*T =T}
and for any basis Vi, ...V, of R” = Hery(K?)

e T is totally symmetric,

o T is trace-free, i.e. Y . T(X,V;,V;) =0,

e T satisfies the identity (g: metric)

de Y T(XY,V)Y(Z,U Vi) = Yec g(X,Y)g(Z,U)

X,Y,Z i X,Y,Z

In particular: T determines g!

N.B. For n = 14, 26, the non-commutativity of K implies existence of
two determinants, dety,dets. But 3det;(X) = tr X3, hence polarisation
from det would yield the same tensor(s).

For n = 8,14, 3 an alternative tensor reducing SO(n) to Hy:

e n =28 a 3-form, n = 14: a 5-form (129 terms. . . )



H,,-structures on Riemannian manifolds

Dfn. For n = 5,8, 14, 26:

A n-mnfd with a H,-structure is a Riemannian mnfd (M™,g) with a
reduction of the frame bundle R(M™") to H,,.

= has automatically a 3-tensor T with the properties above!

Thm. An integrable H,-structure (< V9T = 0) is isometric to one of
the symmetric spaces G,,/H,, i.e.

SU(3)/50(3), SU(3), SU(6)/Sp(3), Eg/Fu,
or one of their non-compact dual symmetric spaces. [Nurowski, 2007]

Questions:
e topological conditions for existence of H,-structure ?

e non-symmetric examples of H,-mnfds?



Topological conditions: the case H; = SO(3)

3 two nonequivalent embeddings SO(3) — SO(5):

* as upper diagonal block matrices: ‘SO(3)g’

* by the irreducible 5-dim. representation of SO(3): ‘SO(3);,
Question: Conditions for SO(3)s- or SO(3);,-structures ?

Dfn. Kervaire semi-characteristics:

2

E(MP) = ) dimg(H*(M®;R)) mod 2,
Z;O

X2(M®) = ) dimg,(H;(M®;Z,)) mod?2.
1=0

Thm. k(M?) — x2(M®) = wo(M?) Uws(M?®). In particular, if M? is
spin, then k(M?) = xo(M?). [Lusztig-Milnor-Peterson 1969] 10



SO(3)s-structure (< 3 two global lin. indep. vector fields)

Thm. A compact oriented 5-mnfd admits an SO(3)-structure iff
wy4(M?) =0, k(M°) = 0. [Thomas 1967; Atiyah 1969]

SO(3);-structures [IA-Becker-Bender-Fr, 2010]
Example. M° = SU(3)/SO(3) has an SO(3);,-structure.
Some topological properties of this space:

e M? is simply connected and a rational homology sphere.

e M?® does not admit any Spin- or SpinC—structure.
o k(M) =1 and xo(M?®) =0

In particular, M° = SU(3)/SO(3) does not admit any SO(3) ,-structure!

11



Prop. M?® admits an SO(3);,-structure iff there exists a 3-dim. real
bundle E? such that T'(M?) = SZ(E?).

Thm. Suppose that T'(M?) = SZ(E?). Then
o p1(MP?) = 5-pi(E?); in particular, p1(M®)/5 € H*(M?;7Z) is integral.
o wi(M?) = wy(M?) = ws(M?>) = 0.
o wo(M?) = we(E3) and w3(M?) = w3(E3).

Example. RP° has none of both SO(3)-str., since w4(RP?) # 0.
Conjecture: M° admits an SO(3);,-structure iff

p1(M°)

—— € H*(M?,7) .

w4(M5) = 0 ) XQ(ME)) =0 )

(‘=" follows from previous Thm)

12



Can only prove:

Thm. A compact, s.c. spin mnfd admitting a SO(3);- or SO(3)s¢-str.
is parallelizable.

Cor. S° has none of both SO(3)-structures.

Example. The connected sums (2] + 1)#(S? x S3) are s.c., spin and
admit a SO(3)-structure.

A rather sophisticated construction yields:

Thm. There exist mnfds pCP?#qCP?2 such that every S'-
bundle over them admits a SO;,-structure. (for example: (p,q) =
(21,1), (43,3), (197,17)...)

13



Topological conditions: the case H4, = Sp(3)

.. very hard. From H*(BSp(3),7Z) = Z[q4, qs, q12] (with ¢; € H"), one
deduces: Every cpct 14-dimensional mnfd with a Sp(3)-structure satisfies

e Y\(M) =0 and w;(M) = 0 except for i = 4,8,12
In particular, it is orientable and spin; for exa. S** has no Sp(3)-structure.
Open problem: sufficient and necessary conditions ?!7

Some non-compact examples: use isom. Spin(5) = Sp(2) C Sp(3)

and the decomposition R4 o) g ® R°> @ As (the 5-dim. spin rep.)
Every S'-bundle M over one of the following
e spin bundle of a 5-dim. spin mnfd X® (= 8-dim VB)

e associated bundle R(Y®) Xgpin(s) R® over an 8-dim. mnfd Y'® with an
Sp(2)-structure (hyper-Kahler, quaternionic-Kahler etc.)

carries a Sp(3)-structure. [IA-Fr, 2011]
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Possible types of H,-structures
Decompose A®(R™) under H,-action:
en=>5 A3R°) ZA?(R°) Zs0(5) =50(3);,;,DV"
en=8 AR ERpsu3) V> VT
en=14: MR ZspB)a VP Vsig Vs
o n =26 A3(R20) /273 gy /1053 g 171274,
Recall:

Thm. A geometric G-structure R C F(M"™) admits a metric G-
connection with antisymmetric torsion iff I' lies in the image of O,

O: A(M™) = T*(M™")@m, O(T) = > e, @pryle;aT).
[Fr, 2003]

So mnfds whose intrinsic torsion has parts in R” ® m that are not in the
image of © cannot admit a characteristic connection. Uniqueness?



Characteristic connections
Recall:

Thm. If G ¢ SO(n) acts irreducibly and not by its adjoint rep. on
R™ = T,M"™, then ker © = {0}, and hence the characteristic connection
of a G-structure on a Riemannian manifold (M™, g) is, if existent, unique.

[A-Fr-Holl, 2013]

e n = 5: injectivity of © can be established by elementary methods
[Fr 2003, Bobienski-Nurowski 2006]

e n = &: this is an adjoint action, so the thm cannot be applied, and
indeed the characteristic connection is not unique [Puhle, 2012]

e n = 14,26: The thm is applicable, ker © = {0} so the characteristic
connection is unique (when existent).

Remark.If the H,-manifold (M, g) admits a characteristic connection V
with torsion T € A3(M™), it satisfies VY = 0 by the general holonomy
principle. A short calculation then shows V{,T(V,V, V) = 0.
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Homogeneous examples: the case H; = SO(3)

Exa 1: ‘twisted’ Stiefel mnfd 15", = SO(3) x SO(3)/SO(2)s
Recall: classical Stiefel manifold V5% = SO(4)/SO(2):

Carries an SO(3)g structure, an Einstein-Sasaki metric, 2 Riemannian
Killing spinors [Jensen 75, Fr 1981]

Consider now H := SO(2) C SO(3);r,

H 3 A — (4,42 € SO(3) x SOB3) = G, Vi, := SO(3) x
0(3)/80(2)ir.

e isotropy rep.: A: SO(2) — SO(5), A\(4) = diag(1, A, A?)
e decompose g=HPm, m=ndm; &my of dims 1, 2, 2

® new metric: go. g4 = Q- g‘n ® - g‘ml Dy - g‘m2, a,B,v >0

17



Thm. V3% = SO(3) x SO(3)/50(2)ir with gag. satisfies:

e If af + 4~va — 258y = 0, the SO(3)i structure admits a
char. connection and the torsion T®?Y of its characteristic connection

VP s
2v/ & Q
CFOéﬁ7 = \/761/\62/\63—5—61/\64/\65.

op

e Its holonomy is SO(2);, and its torsion is parallel, V7T = (.

e The metric of the SO(3);, structure is naturally reductive if and only if
a =50 = 5.

e J; Einstein metric, not nat. reductive (for complicated values of «, 3, )

e J two invariant almost contact metric structures, characterized by
§ = n= e, @Y+ = —FEosxtFEys, dFy = 0.

Both admit a unique characteristic connection with the torsion above. 13



e The contact structure is Sasakian (but never Einstein) if and only if

a = 253% = 100~?; it is in addition an SO(3);, structure for (a, 3,7) =
(565 12)

— this is a very well-behaved example.

N.B. V4, has a non-compact partner, V4%, := SO(2,1) x SO(3)/SO(2);,

e very similar, but the metric of the SO(3); structure admitting a
char. connection is never naturally reductive and never Einstein.
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Exa 2: W' = R x (SL(2,R) x R2)/SO(2)s
Construction: G = R x (SL(2,R) x R?); X, E* standard basis of s[(2,R)

e choose basis for g = R @ s[(2, R) @ R? that depends on i € R,
e =E, —F_+pu, e =1—pu(Ey — E_), remaining el'ts standard.

e, generates a one-dimensional SO(2) = H, C G, with same isotropy
repr. as in previous example

e 11 = 0 corresponds to the standard embedding so(2) — s((2, R)
e decompose again m = n* @ my @ my with same Ansatz for metric
Thm.

eV 3 >0and a,y > 0 s.t. a> 127, the SO(3);, structure admits a
char. connection for the two embeddings of SO(2) = H,, — SO(5)

= (2¢/37) " Va £ a — 127 2



e the torsion T%P7 of its characteristic connection V87 is

2v/3

Ta’ny = ——(61/\62/\63+€1/\64/\65).

7

e Its holonomy is SO(3);; C SO(5). Its torsion is not parallel, but it is
divergence-free, dTPY = 0.

e The metric of the SO(3);, str. is never naturally reductive and never
Einstein.

e A a compatible contact structure.
Consequence:

e SO(3);, structures are conceptionally really different from contact
structures; they define a new type of geometry on 5-manifolds.

e It can happen that the torsion is not parallel.

21



Homogeneous examples: the case Hi4, = Sp(3)
Exa 1: Higher Aloff-Wallach mnfd M = SU(4)/S

Embed St as diag(e™™, e~ ", e, e~") C SU(4).

4 6
esu(d) =Rom', m=FPV,ePW, dimV;=2, dimW; =1.
i=1 j=1
e new metric g depending on aq, ..., g

Thm.

e J a 3-dim. space of metrics that are nearly integrable Sp(3)-structures

e Ric has then 3 EV's of mult. 4 and twice EV 0. In particular, the
metric is never Einstein.

e the Sp(3)- structure is always of general type, i.e. its torsion has
contributions in all summands of A%(M). For some metrics, the torsion
is parallel.
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Exa 2: the homogeneous space M = SU(5)/Sp(2)

as a mnfd, same as SU(6)/Sp(3), but not symmetric

e 5u(5) =s5p(2) dm mM =R B R’ B As (recall Sp(2) = Spin(5))
e 3 deformation parameters in the metric

Thm.

e all metrics are nearly integrable Sp(3)-structures

e the characteristic connection has full holonomy Sp(3).

e the Sp(3)-structure can be of general type or of type sp(3), V189, the
torsion Is sometimes parallel.

e Ric has then 3 EV's of mult. 1, 5, 8. In particular, the metric is never
Einstein.
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