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Connections with parallel skew torsion

(M,g) Riemannian mnfd, ∇ a connection with skew torsion T ∈ Λ3(M)

• Know already large families of such manifolds where ∇T = 0 holds:
nearly Kähler mnfds, nearly parallel G2-mnfds, Sasaki mnfds, naturally
reductive homogeneous spaces. . .

Dfn. For any T ∈ Λ3(M), define (e1, . . . , en a local ONF)

σT :=
1

2

n
∑

i=1

(ei T )∧ (ei T ) =
X,Y,Z

S g(T (X,Y ), T (Z, V )) (= 0 if n ≤ 4)

[Exa: For T = α e123+β e456, σT = 0; for T = (e12+e34)e5, σT = −e1234]

σT measures the ‘degeneracy’ of T and appears in many import. rel.:

* 1st Bianchi identity

* T 2 = −2σT + ‖T‖2 in the Clifford algebra

* If ∇T = 0: dT = 2σT , ∇
gT = 1

2σT , δT = 0. . .

either σT = 0 or hol∇ ⊂ iso(T ) is non-trivial
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Flat metric connections with antisymmetric torsion

Suppose ∇ is metric and has antisymmetric torsion T ∈ Λ3(M),

∇XY = ∇g
XY + 1

2T (X,Y ).

Q: What are the manifolds with a flat metric connection with
antisymmetric torsion?

We shall [this section: A-Fr, 2010]

• discuss a family of easy, yet interesting examples

• discuss a less simple, isolated example

• show that these are all such manifolds (up to coverings and products)

Before the proof, I shall sketch the different approaches to the problem
and its history.

Assume simply connected where needed.



4

Flat connections

Dfn. ∇ is called flat, if R(X,Y ) = 0 for all X,Y

⇔ ∇ : TM → End(TM), X 7→ ∇X is Lie algebra homomorphism

⇔ By Ambrose-Singer Thm (γ ∈ C(p), Pγ : TpM → TpM par.tr.):

0 = hol(∇, p) = 〈P−1
γ ◦ R(PγV, PγW ) ◦ Pγ〉 ⊂ so(TpM),

i. e. Hol(p;∇) is a discrete group

⇔ parallel transport is path-independent

⇒ (M, g) is parallelisable and therefore spin

p

TpMPγ

γ M
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If ∇ = ∇g the LC connection, Frobenius’ Theorem implies:

Thm. If ∇g is flat, there exists in the vicinity of every p ∈ M a chart
s. t. the coefficients of the Riemannian metric are

g = diag(1, 1, . . . , 1).

– the proof relies on Cartan’s structure equations and breaks down for
connections with torsion.

Hence, (M, g) looks locally like Rn with the euclidian metric.

Globally, of course more is possible, for example for n = 2:

a a aa a aaa

b

b

b

bcylinder Möbius strip torus Klein bottle
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Example 1: Lie groups

Let M = G be a connected Lie group, g = TeG, with a biinvariant
metric.

Easy: ∇g
XY = 1

2[X,Y ].

Ansatz: T proportional to [, ], i. e. ∇XY = λ[X,Y ]

• torsion: T∇(X, Y ) = (2λ− 1)[X,Y ], hence T ∈ Λ3(G)

• curvature:

R∇(X, Y )Z = λ(1−λ)[Z, [X,Y ]] =

{

1
4[Z, [X,Y ]] for LC conn.(λ = 1

2)
0 for λ = 0, 1

[±-connection, Cartan-Schouten, 1926]

• ±-connection satisfies σT = 0 and ∇T = 0 (hence dT = 0).
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Example 2: S7

• only parallelisable sphere that is not a Lie group (but almost. . . )

Consider spin representation κC : Spin(7) → End(∆C
7 ), ∆C

7
∼= C8.

In dim.7, this turns out to be complexification of 8-dim. real rep.,

κ : Spin(7) → End(∆7), ∆7
∼= R

8.

κ is in fact a repr. of the Clifford algebra over R7 (Spin(7) ⊂ Cl(R7)!),

κ : R
7 ⊂ Cl(R7) → End(∆7).

Choose e1, . . . , e7 an ON basis of R7, and set κi = κ(ei).

• Embed S7 ⊂ ∆7 as spinors of length 1,

• define VFs on S7 by Vi(x) = κi · x for all x ∈ S7 ⊂ ∆7
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Properties of the VFs Vi(x) = κ(ei) · x

Thm. (1) These vector fields realize a ON trivialization of S7,

[computation rules for Clifford multipl.]

(2) the connection ∇ defined by ∇Vi = 0 is metric, flat, and with torsion

T (Vi, Vj, Vk)(x) = −〈[Vi, Vj], Vk〉 = 2〈κiκjκkx, x〉 ∈ Λ3(S7),

(3) ∇T 6= 0 (check that T does not have constant coefficients), σT 6= 0

(4) ∇ is a G2 connection of Fernandez-Gray type X1 ⊕X3 ⊕X4.
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Classification

Goal: Show that any irreducible, complete, and simply connected M
with a flat, metric connection with antisymmetric torsion T ∈ Λ3(M) is
one of these examples.

• 1926: Cartan-Schouten “On manifolds with absolute parallelism” –
wrong proof.

• 1968: d’Atri-Nickerson “On the existence of special orthonormal
frames” – when does (M, g) admit an ONF of Killing vectors?

This is mainly an equivalent problem:

V is Killing VF ⇔ g(∇g
XV, Y ) + g(X,∇Y V ) = 0 (∗)

If V is parallel for ∇ with torsion T , then ∇g
XV = −1

2T (X,V ), hence

(∗) ⇔ g(T (X,V ), Y ) + g(X,T (Y, V )) = 0 ⇔ T ∈ Λ3(M)

• 1972: J. Wolf “On the geometry and classification of absolute
parallelisms” – 2 long papers in J. Diff.Geom.

Q: Both proofs rely on classification of symmetric spaces. Direct proof?
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Sketch of proof

(1) General identities: [common to all authors]

• Ricg(X,Y ) = 1
4

∑

i〈T (X, ei), T (Y, ei)〉, (⇒ Ricg(X,X) ≥ 0)

• Kg(X,Y ) = ‖T (X,Y )‖2

4[‖X‖2‖Y ‖2−〈X,Y 〉2]
≥ 0 (sectional curvature)

• δT = 0 (= antisymmetric part of Ric∇)

(2) General tools: σT = 1
2

∑

i(ei T ) ∧ (ei T ) ∈ Λ4(M) satisfies

• T 2 = −2σT + ‖T‖2 (as endomorphisms on ∆7)

• ∇T = 0 implies dT = 2σT [recall: true for G, wrong for S7]

• All spinors with constant coeff. are parallel ⇒ 3dT = 2σT (SL formula)

• Bianchi I:

X,Y,Z

S R(X,Y,Z, V ) = dT (X,Y,Z, V )−σT (X, Y,Z, V )+(∇V T )(X,Y,Z)
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(3) Rescaling of connection: [implicit in Cartan]

Consider the rescaled connection ∇1/3,

∇1/3
XY = ∇g

XY +
1

6
T (X,Y )

– ∇1/3 plays a prominent role for Dirac operators with torsion

Thm.

• ∇1/3T = 0 (⇔ ∇V T = −1
3V σT ⇔ ∇g

V T = 1
6V σT )

In particular, ‖T‖ and the scalar curvature are constant, and for any
tensor field T polynomial in T :

∇T = −2∇gT ; in particular: ∇T = 0 ⇔ ∇gT = 0

• ∇1/3Rg = 0

By the Ambrose-Singer Thm, M is a naturally reductive space (in

particular, homogeneous).
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(4) Splitting principle:

Thm. Let M = M1 ×M2 be a mnfd with a flat metric connection ∇
with torsion T ∈ Λ3(M). Then T = T1 + T2 with Ti ∈ Λ3(Mi).

(5) Type of M :

Thm. Let e1, . . . , en be a ONF of ∇-parallel VFs. Then:

• Rg(ei, ej)ek = −1
4[[ei, ej], ek] [⇒ M is Einstein]

• em〈[ei, ej], ek〉 = −(∇emT )(ei, ej, ek) = −1
3σT (ei, ej, ek, em) (∗)

Cor. ei(Rjklm) = 0, hence ∇gRg = 0 and, by (2), ∇Rg = 0 and

(∇X −∇g
X)Rg = [X T,Rg] = 0 (∗∗)

Cor. (M, g) is a compact symmetric Einstein space.

1st case: σT = 0. (∗) ⇒ all 〈[ei, ej], ek〉 = const ⇒ M is Lie group
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2nd case: σT 6= 0 (n > 4). Consider the Lie algebra

gT := Lie〈X T |X ∈ TpM〉 ⊂ Λ2TpM ∼= so(TpM).

By the splitting principle, may assume: gT acts irreducibly on TpM . Let
GT ⊂ SO(n) be the corresponding Lie group.

⇒ (GT , TpM,T ) is an irred. STHS!

Thm (STHT). There are only two possible cases:

(1) GT does not act not transitively on S:

T (X,Y ) =: [X,Y ] defines a Lie bracket and M is a Lie group,

(2) or GT acts transitively on S:

then gT = so(TpM).
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Cor. If M is not a Lie group, gT = so(TpM) and

(∗∗) ⇒ Rg = c · Id ⇒ Kg(X,Y ) = c · Id

⇒ M is a sphere

⇒ formula for Kg(X,Y ) states that T defines a vector cross product

⇒ M = S7

* * * * * * * * * * *

– After description of flat mnfds: what does Einstein mean for skew
torsion? –
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Einstein manifolds – the classical case

A Riemannian mnfd (Mn, g) is called Einstein if Ricg = c · g, c ∈ C(M).

• Fact: c = Scalg/n and has to be constant (for n ≥ 3)

• Einstein metrics are vacuum solutions of eq. of general relativity

• If Mn is compact ⇒ Einstein metrics are critical points of the total

scalar curvature functional

∫

M

Scal(g)dvolg.

A few general results:

• dim = 4 : If M4 compact, oriented admits an Einstein metric

⇒ χ(M) ≥
3

2
|τ(M)|. [Hitchin/Thorpe, 1969/74]

• (M, g) Einstein, complete, Scalg > 0 ⇒ compact and π1(M) finite

• dim ≥ 5 : No (further) topological obstructions are known.
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Link to special geometric structures and differential eqs.

Many known Einstein metrics carry additional geometric structure:

Ex.1 CP 3 = SU(4)/S(U(1)× U(3)) and F3 = SU(3)/T 2:

= 3-symmetric spaces = twistor spaces of S4 resp. CP 2

⇒ ∃ 2 Einstein metrics: 1 Kähler & 1 nearly-Kähler

Ex.2 V2(R
4) = SO(4)/SO(2) = T1S

3 ⇒ 1 Sasaki-Einstein metric

Common properties of CP 3,F3 and V2(R
4):

• spin manifolds which carry Killing spinors (KS) ψ : ∇g
Xψ = kX · ψ.

• KS ψ realize equality case in Friedrich’s eigenvalue estimate for the
Riemannian Dirac operator Dg on compact spin mnfds: [Friedrich, 80]

λ
2
(D

g
) ≥

n

4(n − 1)
min
x∈Mn

Scal
g
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Comparison of curvatures

Starting point: Compare ∇ and ∇g curvatures:

Difference tensor: S(X,Y ) :=
n
∑

i,j=1

T (ei,X, ej)T (ei, Y, ej) (symmetric)

Curvature: Ric∇(X, Y ) = Ricg(X,Y )− 1
4S(X,Y )− 1

2δT (X,Y )

s∇ = sg − 3
2‖T‖

2

• δT measures the skew symmetric part of Ric∇,
(recall: ∇T = 0 ⇒ δT = 0)

• denote by S(Ric∇) the symmetric part of the Ricci tensor
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Einstein manifolds – the skew torsion case

Variational principle: The critical points of [This section: A-Ferreira, 2012]

∫

M

[s∇ − 2Λ] dvolg

are pairs (g, T ) satisfying S(Ric∇) = (s∇/2−Λ)g. As in the Riemannian
case, taking the trace then implies s∇/2− Λ = s∇/n.

Dfn. (M, g, T ) is

– ‘Einstein with skew torsion’ if the connection ∇ with torsion T satisfies
S(Ric∇) = (s∇/n)g,

– ‘Einstein with parallel skew torsion’ if it satisfies in addition ∇T = 0.

Exa. M = S3 with standard metric: Einstein, Scalg = 6, parallelizable.
f : S3 −→ R any non-constant function, T := 2fe1 ∧ e2 ∧ e3. Then

• ∇ Einstein with skew torsion, scalar curvature: s∇ = 6(1 − f(x)2):
not constant, any sign possible (even on compact mnfds).
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Einstein manifolds with skew torsion: Topology

Q: What is a good condition on torsion T that ensures the same
properties as in the Riemannian case?

Thm. Assume (M, g, T ) is Einstein with parallel skew torsion. Then

1) Scal∇ and Scalg are constant

2) If M complete connected and Scal∇ > 0, then M is compact and
π1(M) is finite

Proof.

1): Clever computation with divergences of Ricg,Ric∇ and ds∇, dsg.

2): Check conditions of Bonnet-Myers Thm, i. e. Ricg(X,X) ≥ c‖X‖2

for some c > 0 and all X ∈ TM . But

Ricg(X,X) = Ric∇(X,X) + 1
4S(X,X) = s∇

n ‖X‖2 + 1
4S(X,X) ≥

s∇

n ‖X‖2
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Dfn. Call T of ‘Einstein type’ if S = c · g:

If ∇g is Riemannian Einstein, ∇ will then be Einstein with skew torsion.

Lemma. Write T =
∑

ijk Tijkeijk. T is of Einstein type iff

• no term of the form Tijaeija + Tijbeijb with a = b occurs;

• if i and j are two indices in 1, . . . , n then the number of occurrences
of i and j in T coincides;

• if {i, j, k} and {a, b, c} are two sets of indices then T 2
ijk = T 2

abc.

→ easy procedure for producing further examples of ∇-Einstein metrics
for manifolds that are parallelizable and carry an Einstein metric

Normal forms of 3-forms under GL(n,R): Schouten 1931, Westwick
1981:

Riemannian Einstein manifolds (M, g) will never be Einstein with skew
torsion in dimensions 4 and 5.
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Normal forms of 3-forms (n ≤ 7)

e123 [ET n = 3]

e3(e15 + e24)

e126 + e135 + e234

∗ e123 + e456 [ET n = 6]

∗ e135 + e146 + e256 + e234 [ET n = 6]

VI. e1(e23 + e45) + e267
VII. e123 + e456 + e7(e2 + e5)(e3 + e6)

VIII. e1(e23 + e45 + e67)

IX.∗∗ VIII + e246,

X. VII + e147
XI. VIII + e2(e46 − e57)

XII. e1(e45 + e67) + e2(e46 − e57) + e3(e47 + e56),
XIII.∗∗ XII −e123 [ET n = 7]
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Outlook:

• (M,g, J) 4-dim. compact Hermitian non-Kähler mnfd, Einstein with
parallel skew torsion, its universal cover is isometric to R× S3.

• For n = 4, ∃ alternative approach through decomposition of curvature
tensor; the Hitchin-Thorpe ineq. still holds (for compact. oriented) and
for parallel torsion, the notions coincide [Ferreira, 2011]

• All nearly Kähler mnfds (n = 6) and nearly parallel G2 mnfds (n = 7)
are Einstein with parallel skew torsion (Scal∇ > 0);

• Any Einstein-Sasaki mnfd admits a deformation of the metric that is
Einstein with parallel skew torsion and Ric∇ = 0

[⇒ many homogeneous examples of ∇-Ricci flat manifolds which are not flat, as

opposed to the Riemannian case!]

• Every 7-dim. 3-Sasaki mnfd carries 3 different connections that turn
it into an Einstein manifold with parallel skew torsion; it admits a
deformation of the metric that carries an Einstein structure with parallel
skew torsion. [strongly related to canonical connection]
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