Non-integrable geometries, torsion, and holonomy
IV: Classification of naturally reductive homogeneous spaces

Prof. Dr. habil. Ilka Agricola
Philipps-Universität Marburg

Torino, Carnival Differential Geometry school
Naturally reductive homogeneous spaces

Traditional approach:

\((M, g)\) a Riemannian manifold, \(M = G/H\) s. t. \(G\) is a group of isometries acting transitively and effectively

Dfn. \(M = G/H\) is *naturally reductive* if \(\mathfrak{h}\) admits a reductive complement \(\mathfrak{m}\) in \(g\) s. t.

\[
\langle [X, Y]_\mathfrak{m}, Z \rangle + \langle Y, [X, Z]_\mathfrak{m} \rangle = 0 \quad \text{for all } X, Y, Z \in \mathfrak{m}, \quad (\ast)
\]

where \(\langle - , - \rangle\) denotes the inner product on \(\mathfrak{m}\) induced from \(g\).

The PFB \(G \to G/H\) induces a metric connection \(\nabla\) with torsion

\[
g(T(X, Y), Z) := T(X, Y, Z) = -\langle [X, Y]_\mathfrak{m}, Z \rangle,
\]

the so-called *canonical connection*. It always satisfies \(\nabla T = \nabla R = 0\).

Observation: condition \((\ast)\) \(\iff\) \(T\) is a 3-form, i. e. \(T \in \Lambda^3(M)\).
Conversely:

Thm. A Riemannian manifold equipped with a [regular] homogeneous structure, i.e. a metric connection ∇ with torsion T and curvature R such that $\nabla R = 0$ and $\nabla T = 0$, is locally isometric to a homogeneous space. [Ambrose-Singer, 1958, Tricerri 1993]

However, a classification in all dimensions is impossible!

Main pb: No invariant theory for $\Lambda^3(\mathbb{R}^n)$ under $SO(n)$ for $n \geq 6$

- Use *torsion* (instead of curvature) as basic geometric quantity, find a *G-structure* inducing the nat. red. structure

In this talk: General strategy, some general results, classification for $n \leq 6$
[joint work with Ana C. Ferreira, Th. Friedrich]
Set-up: (M, g) Riemannian mnfd, ∇ metric conn., ∇^g Levi-Civita conn.

$$T(X, Y, Z) = g(\nabla_X Y - \nabla_Y X - [X, Y], Z) \in \Lambda^3(M^n)$$

$$\nabla_X Y = \nabla^g_X Y + \frac{1}{2} T(X, Y, -)$$

(M, g, T) carries nat. red. homog. structure if $\nabla \mathcal{R} = 0$ and $\nabla T = 0$

Obviously:

| nat.red.homog. Riemannian mnfds | (homogeneous) Riemannian mnfds with parallel skew torsion |
Review of some classical results

- all isotropy irreducible homogeneous manifolds are naturally reductive

- the \pm-connections on any Lie group with a biinvariant metric are naturally reductive (and, by the way, flat) \[\text{[Cartan-Schouten, 1926]}\]

- construction / classification (under some assumptions) of left-invariant naturally reductive metrics on compact Lie groups \[\text{[D’Atri-Ziller, 1979]}\]

- All 6-dim. homog. nearly Kähler mnfds (w.r.t. their canonical almost Hermitian structure) are naturally reductive. These are precisely: $S^3 \times S^3$, \mathbb{CP}^3, the flag manifold $F(1, 2) = U(3)/U(1)^3$, and $S^6 = G_2/SU(3)$.

- Known classifications:

 - dimension 3 \[\text{[Tricerri-Vanhecke, 1983]}\], dimension 4 \[\text{[Kowalski-Vanhecke, 1983]}\], dimension 5 \[\text{[Kowalski-Vanhecke, 1985]}\]

These proceed by finding normal forms for the curvature operator, more details to follow later.
An important tool: the 4-form σ_T

Dfn. For any $T \in \Lambda^3(M)$, define $(e_1, \ldots, e_n$ a local ONF)

$$\sigma_T := \frac{1}{2} \sum_{i=1}^{n} (e_i \downarrow T) \wedge (e_i \downarrow T) = \sum_{X,Y,Z} g(T(X,Y), T(Z,V))$$

- σ_T measures the ‘degeneracy’ of T and, if non degenerate, induces the geometric structure on M
- σ_T appears in many important relations:

 * 1st Bianchi identity: $\mathcal{R}(X, Y, Z, V) = \sigma_T(X, Y, Z, V)$
 * $T^2 = -2\sigma_T + \|T\|^2$ in the Clifford algebra
 * If $\nabla T = 0$: $dT = 2\sigma_T$ and $\nabla^g T = \frac{1}{2} \sigma_T$

 either $\sigma_T = 0$ or $\text{hol} \nabla \subset \text{iso}(T)$ is non-trivial
\(\sigma_T \) and the Nomizu construction

Idea: for \(M = G/H \), reconstruct \(g \) from \(\mathfrak{h} \), \(T \), \(\mathcal{R} \) and \(V \cong T_x M \)

Set-up: \(\mathfrak{h} \) a real Lie algebra, \(V \) a real f.d. \(\mathfrak{h} \)-module with \(\mathfrak{h} \)-invariant pos. def. scalar product \(\langle \cdot, \cdot \rangle \), i. e. \(\mathfrak{h} \subset \mathfrak{so}(V) \cong \Lambda^2 V \)

\(\mathcal{R} : \Lambda^2 V \to \mathfrak{h} \) an \(\mathfrak{h} \)-equivariant map, \(T \in (\Lambda^3 V)^{\mathfrak{h}} \) an \(\mathfrak{h} \)-invariant 3-form,

Define a Lie algebra structure on \(g := \mathfrak{h} \oplus V \) by \((A, B \in \mathfrak{h}, X, Y \in V) \):

\[
[A + X, B + Y] := ([A, B]_\mathfrak{h} - \mathcal{R}(X, Y)) + (AY - BX - T(X, Y))
\]

Jacobi identity for \(g \) \iff

- \(X, Y, Z \)
 - \(\mathcal{S} \quad \mathcal{R}(X, Y, Z, V) = \sigma_T(X, Y, Z, V) \) (1st Bianchi condition)
- \(X, Y, Z \)
 - \(\mathcal{S} \quad \mathcal{R}(T(X, Y), Z) = 0 \) (2nd Bianchi condition)
Observation: If \((M, g, T)\) satisfies \(\nabla T = 0\), then \(\mathcal{R} : \Lambda^2(M) \to \Lambda^2(M)\) is symmetric (as in the Riemannian case).

Consider \(\mathcal{C}(V) := \mathcal{C}(V, -\langle, \rangle)\): Clifford algebra, (recall: \(T^2 = -2\sigma_T + \|T\|^2\))

Thm. If \(\mathcal{R} : \Lambda^2 V \to \mathfrak{h} \subset \Lambda^2 V\) is symmetric, the first Bianchi condition is equivalent to \(T^2 + \mathcal{R} \in \mathbb{R} \subset \mathcal{C}(V)\) \((\iff 2\sigma_T = \mathcal{R} \subset \mathcal{C}(V))\), and the second Bianchi condition holds automatically.

Exists in the literature in various formulations: based on an algebraic identity (Kostant); crucial step in a formula of Parthasarathy type for the square of the Dirac operator (A, '03); previously used by Schoemann 2007 and Fr. 2007, but without a clear statement nor a proof.

Practical relevance: allows to evaluate the 1st Bianchi identity in one condition!
Splitting theorems

Dfn. For T 3-form, define

- kernel: $\text{ker } T = \{ X \in TM \mid X \perp T = 0 \}$
- Lie algebra generated by its image: $\mathfrak{g}_T := \text{Lie} \langle X \perp T \mid X \in V \rangle$

\mathfrak{g}_T is not related in any obvious way to the isotropy algebra of T!

Thm 1. Let (M, g, T) be a c. s. c. Riemannian mfld with parallel skew torsion T. Then $\text{ker } T$ and $(\text{ker } T)^\perp$ are ∇-parallel and ∇^g-parallel integrable distributions, M is a Riemannian product s.t.

$$(M, g, T) = (M_1, g_1, T_1 = 0) \times (M_2, g_2, T_2), \quad \text{ker } T_2 = \{0\}$$

Thm 2. Let (M, g, T) be a c. s. c. Riemannian mfld with parallel skew torsion T s.t. $\sigma_T = 0$, $TM = T_1 \oplus \ldots \oplus T_q$ the decomposition of TM in \mathfrak{g}_T-irreducible, ∇-par. distributions. Then all T_i are ∇^g-par. and integrable, M is a Riemannian product, and the torsion T splits accordingly

$$(M, g, T) = (M_1, g_1, T_1) \times \ldots \times (M_q, g_q, T_q)$$
A structure theorem for vanishing σ_T

Thm. Let (M^n, g) be an irreducible, c.s.c. Riemannian manifold with parallel skew torsion $T \neq 0$ s.t. $\sigma_T = 0$, $n \geq 5$. Then M^n is a simple compact Lie group with biinvariant metric or its dual noncompact symmetric space.

Key ideas: $\sigma_T = 0 \Rightarrow$ Nomizu construction yields Lie algebra structure on TM
use g_T; use STHT to show that G_T is simple and acts on TM by its adjoint rep.
prove that $g_T = \mathfrak{iso}(T) = \mathfrak{hol}^g$, hence acts irreducibly on TM, hence M is an irred.
symmetric space by Berger’s Thm

Exa. Fix $T \in \Lambda^3(\mathbb{R}^n)$ with constant coefficients s.t. $\sigma_T = 0$. Then the flat space (\mathbb{R}^n, g, T) is a reducible Riemannian manifold with parallel skew torsion and $\sigma_T = 0 \rightarrow$ assumption ‘M irreducible’ is crucial! (the Riemannian manifold is decomposable, but the torsion is not)
Classification of nat. red. spaces in $n = 3$

[Tricerri-Vanhecke, 1983]

Then $\sigma_T = 0$, and the Nomizu construction can be applied directly to obtain in a few lines:

Thm. Let $(M^3, g, T \neq 0)$ be a 3-dim. c.s.c. Riemannian mnfld with a naturally reductive structure. Then (M^3, g) is one of the following:

- \mathbb{R}^3, S^3 or H^3;
- isometric to one of the following Lie groups with a suitable left-invariant metric:

 $$SU(2), \quad \widetilde{SL}(2, \mathbb{R}), \quad \text{or the 3-dim. Heisenberg group } H^3$$

N.B. A general classification of mnfds with par. skew torsion is meaningless – any 3-dim. volume form of a metric connection is parallel.
Proof: \(T = \lambda e_{123}; \) \(M \) is either Einstein (\(\rightarrow \) space form) or \(\mathfrak{hol}^\nabla \) is one-dim., i.e. \(\mathfrak{hol}^\nabla = \mathbb{R} \cdot \Omega \) and \(\mathcal{R} = \alpha \Omega \odot \Omega \).

By the Nomizu construction, \(e_1, e_2, e_3 \), and \(\Omega \) are a basis of \(\mathfrak{g} \) with commutator relations

\[
[e_1, e_2] = -\alpha \Omega - \lambda e_3 =: \tilde{\Omega}, \quad [e_1, e_3] = \lambda e_2, \quad [e_2, e_3] = -\lambda e_1, \quad [\Omega, e_1] = e_2, \quad [\Omega, e_2] = -e_1, \quad [\Omega, e_3] = 0.
\]

The 3-dimensional subspace \(\mathfrak{h} \) spanned by \(e_1, e_2, \) and \(\tilde{\Omega} \) is a Lie subalgebra of \(\mathfrak{g} \) that is transversal to the isotropy algebra \(\mathfrak{k} \) (since \(\lambda \neq 0 \)). Consequently, \(M^3 \) is a Lie group with a left invariant metric. One checks that \(\mathfrak{h} \) has the commutator relations

\[
[e_1, e_2] = \tilde{\Omega}, \quad [\tilde{\Omega}, e_1] = (\lambda^2 - \alpha)e_2, \quad [e_2, \tilde{\Omega}] = (\lambda^2 - \alpha)e_1.
\]

For \(\alpha = \lambda^2 \), this is the 3-dimensional Heisenberg Lie algebra, otherwise it is \(\mathfrak{su}(2) \) or \(\mathfrak{sl}(2, \mathbb{R}) \) depending on the sign of \(\lambda^2 - \alpha \).
Classification of nat. red. spaces in $n = 4$

Thm. $(M^4, g, T \neq 0)$ a c. s. c. Riem. 4-mnfld with parallel skew torsion.

1) $V := \ast T$ is a ∇^g-parallel vector field.

2) $\text{Hol}(\nabla^g) \subset \text{SO}(3)$, hence M^4 is isometric to a product $N^3 \times \mathbb{R}$, where (N^3, g) is a 3-manifold with a parallel 3-form T.

- T has normal form $T = e_{123}$, so $\dim \ker T = 1$ and 2) follows at once from our 1st splitting thm: but the existence of V explains directly & geometrically the result in a few lines.

- Thm shows that the next result does not rely on the curvature or the homogeneity. Since a Riemannian product is is nat. red. iff both factors are nar. red., we conclude:

Cor. A 4-dim. nat. reductive Riemannian manifold with $T \neq 0$ is locally isometric to a Riemannian product $N^3 \times \mathbb{R}$, where N^3 is a 3-dimensional naturally reductive Riemannian manifold.

[Kowalski-Vanhecke, 1983]
Classification of nat. red. spaces in $n = 5$

Assume $(M^5, g, T \neq 0)$ is Riemannian mnfd with parallel skew torsion

- \exists a local frame s.t (for constants $\lambda, \varrho \in \mathbb{R}$)

\[T = -(\varrho e_{125} + \lambda e_{345}), \quad *T = -(\varrho e_{34} + \lambda e_{12}), \quad \sigma_T = \varrho \lambda e_{1234} \]

- **Case A:** $\sigma_T = 0$ ($\iff \varrho \lambda = 0$): apply 2nd splitting thm, M^5 is then loc. a product $N^3 \times N^2$ (if nat. red., N^2 has constant Gaussian curvature)

- **Case B:** $\sigma_T \neq 0$, two subcases:
 - * Case B.1: $\lambda \neq \varrho$, $\text{Iso}(T) = \text{SO}(2) \times \text{SO}(2)$
 - * Case B.2: $\lambda = \varrho$, $\text{Iso}(T) = \text{U}(2)$

Recall: Given a G-structure on (M, g), a *characteristic connection* is a metric connection with skew torsion preserving the G-structure (if existent, it’s unique)
\(n = 5: \) The induced contact structure

Case B: \(\sigma_T \neq 0 \)

Dfn. A metric almost contact structure \((\varphi, \eta)\) on \((M^{2n+1}, g)\) is called \((N: \text{Nijenhuis tensor}, F(X,Y) := g(X, \varphi Y))\)

- quasi-Sasakian if \(N = 0 \) and \(dF = 0 \)
- \(\alpha \)-Sasakian if \(N = 0 \) and \(d\eta = \alpha F \) (Sasaki: \(\alpha = 2 \))

Thm. Let \((M^5, g, T)\) be a Riemannian 5-mnfld with parallel skew torsion \(T \) such that \(\sigma_T \neq 0 \). Then \(M \) is a quasi-Sasakian manifold and \(\nabla \) is its characteristic connection.

The structure is \(\alpha \)-Sasakian iff \(\lambda = \varrho \) (case B.2), and it is Sasakian if \(\lambda = \varrho = 2 \).

Construction: \(V := *\sigma_T \neq 0 \) is a \(\nabla \)-parallel Killing vector field of constant length

\[\equiv \text{contact direction } \eta = e_5 \text{ (up to normalisation)} \]

Check: \(T = \eta \wedge d\eta \), define \(F = -(e_{12} + e_{34}) \), then prove that this works.
For $\lambda = \varrho$ (case B.2), no classification for parallel skew torsion is possible (many non-homogeneous Sasakian mnfds are known). But for

Case B.1: $\lambda \neq \varrho$

Thm. Let (M^5, g, T) be Riemannian 5-manifold with parallel skew torsion s.t. T has the normal form

$$T = -(\varrho e_{125} + \lambda e_{345}), \quad \varrho \lambda \neq 0 \text{ and } \varrho \neq \lambda.$$

Then $\nabla R = 0$, i.e. M is locally naturally reductive, and the family of admissible torsion forms and curvature operators depends on 4 parameters.

[Use Clifford criterion to relate R and σ_T]

Now one can apply the Nomizu construction to obtain the classification:
\(n = 5 \): Classification II

Thm. A c.s.c. Riemannian 5-mnfld \((M^5, g, T)\) with parallel skew torsion \(T = -(\rho e_{125} + \lambda e_{345})\) with \(\rho\lambda \neq 0\) is isometric to one of the following naturally reductive homogeneous spaces:

If \(\lambda \neq \rho\) (B.1):

a) The 5-dimensional Heisenberg group \(H^5\) with a two-parameter family of left-invariant metrics,

b) A manifold of type \((G_1 \times G_2)/SO(2)\) where \(G_1\) and \(G_2\) are either \(SU(2), SL(2, \mathbb{R})\), or \(H^3\), but not both equal to \(H^3\) with one parameter \(r \in \mathbb{Q}\) classifying the embedding of \(SO(2)\) and a two-parameter family of homogeneous metrics.

If \(\lambda = \rho\) (B.2): One of the spaces above or \(SU(3)/SU(2)\) or \(SU(2, 1)/SU(2)\) (the family of metrics depends on two parameters).

[Kowalski-Vanhecke, 1985]
Example: The \((2n + 1)\)-dimensional Heisenberg group

\[
H^{2n+1} = \left\{ \begin{bmatrix} 1 & x^t & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} ; \ x, y \in \mathbb{R}^n, z \in \mathbb{R} \right\} \cong \mathbb{R}^{2n+1}, \text{ local coordinates} \ x_1, \ldots, x_n, y_1, \ldots, y_n, z
\]

- Metric: parameters \(\lambda = (\lambda_1, \ldots, \lambda_n) \), all \(\lambda_i > 0 \)

\[
g_\lambda = \sum_{i=1}^{n} \frac{1}{\lambda_i} (dx_i^2 + dy_i^2) + \left[dz - \sum_{j=1}^{n} x_j dy_j \right]^2
\]

- Contact str.: \(\eta = dz - \sum_{i=1}^{n} x_i dy_1, \varphi = \sum_{i=1}^{n} \left[dx_i \otimes \left(\frac{\partial}{\partial y_i} + x_i \frac{\partial}{\partial z} \right) - dy_i \otimes \frac{\partial}{\partial x_i} \right] \)

- Characteristic connection \(\nabla \): torsion: \(T = \eta \wedge d\eta = -\sum_{i=1}^{n} \lambda_i \eta \wedge \alpha_i \wedge \beta_i \)

Curvature: \(R = \sum_{i \leq j}^{n} \lambda_i \lambda_j (\alpha_i \wedge \beta_i)^2 \) \[\text{read: symm. tensor product of 2-forms}\]

Nice property: For \(n \geq 2 \), \(H^{2n+1} \) admits Killing spinors with torsion, i.e. solutions of \(\nabla_X \psi = \alpha \psi \) (but no Riemannian Killing spinors, i.e. no sol. for \(\nabla = \nabla^g \) / \(\not\exists \) Einstein metric) \[\text{[A-Becker-Bender, 2012]}\]
The case $n = 6$

Assume $\ker T = 0$ from beginning. Distinction $\sigma_T =, \neq 0$ is too crude.

$\ast \sigma_T$: a 2-form \equiv skew-symm. endomorphism, classify by its rank! ($= 0, 2, 4, 6$ / Case A, B, C, D)

Geometry: Can $\ast \sigma_T$ be interpreted as an almost complex structure?

Exa. Recall: $\Lambda^3(\mathbb{R}^6)^{\mathfrak{so}(n)} \cong W_1^{(2)} \oplus W_3^{(12)} \oplus W_4^{(6)}$: types of almost complex structures with characteristic connection

On $S^3 \times S^3$, there exist 3-forms with the following subcases:

<table>
<thead>
<tr>
<th>Type</th>
<th>$W_1 \oplus W_3$</th>
<th>W_1</th>
<th>$W_3 \oplus W_4$</th>
<th>$-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{rk} \ast \sigma_T$</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>$\text{iso}(T)$</td>
<td>$\mathfrak{so}(3)$</td>
<td>$\mathfrak{su}(3)$</td>
<td>T^2</td>
<td>$\mathfrak{so}(3) \times \mathfrak{so}(3)$</td>
</tr>
</tbody>
</table>

$W_1 \oplus W_3$: torsion $T = \alpha e_{135} + \alpha' e_{246} + \beta (e_{245} + e_{236} + e_{146})$.

$W_3 \oplus W_4$: torsion $T = (e_{12} - e_{34}) \wedge (\sigma e_5 + \nu e_6) + \tau (e_{12} - e_{34}) \wedge e_5$.
Case A: \(\sigma_T = 0 \)

This covers, for example, torsions of form \(\mu e_{123} + \nu e_{456} \). This is basically all by our 2nd splitting thm:

Thm. A c.s.c. Riemannian 6-mnfld with parallel skew torsion \(T \) s.t. \(\sigma_T = 0 \) and \(\ker T = 0 \) splits into two 3-dimensional manifolds with parallel skew torsion,

\[
(M^6, g, T) = (N^3_1, g_1, T_1) \times (N^3_2, g_2, T_2)
\]

Cor. Any 6-dim. nat. red. homog. space with \(\sigma_T = 0 \) and \(\ker T = 0 \) is locally isometric to a product of two 3-dimensional nat. red. homog. spaces.
The case $n = 6$ II

Case B: $\text{rk} (\ast \sigma_T) = 2$

A priori, it is not possible to define an almost complex structure.

Thm. Let (M^6, g, T) be a 6-mnfd with parallel skew torsion s.t. $\ker T = 0$, $\text{rk} (\ast \sigma_T) = 2$. Then $\nabla R = 0$, i.e. M is nat. red., and there exist constants $a, b, c, \alpha, \beta \in \mathbb{R}$ s.t.

$$T = \alpha (e_{12} + e_{34}) \wedge e_5 + \beta (e_{12} - e_{34}) \wedge e_6$$

$$R = a (e_{12} + e_{34})^2 + c (e_{12} + e_{34}) \odot (e_{12} - e_{34}) + b (e_{12} - e_{34})^2$$

with the relation $a + b = - (\alpha^2 + \beta^2)$.

Now perform Nomizu construction to conclude:

Thm. A c.s.c. Riemannian 6-mnfd with parallel skew torsion T and $\text{rk} (\ast \sigma_T) = 2$ is the product $G_1 \times G_2$ of two Lie groups equipped with a family of left invariant metrics. G_1 and G_2 are either $S^3 = \text{SU}(2)$, $\tilde{\text{SL}}(2, \mathbb{R})$, or H^3.

21
The case \(n = 6 \) III

Case B: \(\text{rk} (\ast \sigma_T) = 4 \)

Thm. For the torsion form of a metric connection with parallel skew torsion \((\ker T = 0)\), the case \(\text{rk} (\ast \sigma_T) = 4 \) cannot occur.

[but: such forms exist if \(\nabla T \neq 0 \)! – these results explain why a classification is possible without knowing the orbit class. of \(\Lambda^3(\mathbb{R}^6) \) under \(\text{SO}(6) \)]
The case $n = 6$ IV

Case C: $\text{rk} (\ast \sigma_T) = 6$

Thm. Such a 6-mnfd with parallel skew torsion admits an almost complex structure J of Gray-Hervella class $W_1 \oplus W_3$.

All three eigenvalues of $\ast \sigma_T$ are equal, hence $\ast \sigma_T$ is proportional to Ω, the fundamental form of J. It’s either nearly Kähler (W_1), or it is naturally reductive and $\frak{hol}_\nabla = \frak{so}(3)$.

Why no W_4 part? if $\sigma_T = \ast \Omega$, then $d\sigma_T = d \ast \Omega$; but $d\sigma_T = (ddT)/2 = 0$, hence $\delta \Omega = 0$.

N.B. If class W_1 (M^6 nearly Kähler mnfd): the only homogeneous ones are S^6, $S^3 \times S^3$, \mathbb{CP}^3, $F(1, 2)$. [Butruille, 2005]

It is not known whether there exist non-homogeneous nearly Kähler mnfds.

Again, we have an explicit formula for torsion and curvature, then perform the Nomizu construction (. . . and survive).
Example: $\text{SL}(2, \mathbb{C})$ viewed as a 6-dimensional real mnfd

- Write $\mathfrak{sl}(2, \mathbb{C}) = \mathfrak{su}(2) \oplus i \mathfrak{su}(2)$; Killing form $\beta(X, Y)$ is neg. def. on $\mathfrak{su}(2)$, pos. def. on $i \mathfrak{su}(2)$

- $M^6 = G/H = \text{SL}(2, \mathbb{C}) \times \text{SU}(2)/\text{SU}(2)$ with $H = \text{SU}(2)$ embedded diag (recall that $\mathfrak{hol}^\nabla = \mathfrak{so}(3)$; want that isotropy rep. = holonomy rep.)

- \mathfrak{m}_α red. compl. of \mathfrak{h} inside $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C}) \oplus \mathfrak{su}(2)$ depending on $\alpha \in \mathbb{R} - \{1\}$, $\mathfrak{h} = \{(B, B) : B \in \mathfrak{su}(2)\}$, $\mathfrak{m}_\alpha := \{(A+\alpha B, B) : A \in i \mathfrak{su}(2), B \in \mathfrak{su}(2)\}$.

- Riemannian metric:
 $$g_\lambda((A_1 + \alpha B_1, B_1), (A_2 + \alpha B_2, B_2)) := \beta(A_1, A_2) - \frac{1}{\lambda^2} \beta(B_1, B_2), \quad \lambda > 0$$

- In suitable ONB: almost hermitian str.: $\Omega := x_{12} + x_{34} + x_{56}$ with torsion $T = N + d\Omega \circ J = \left[2\lambda(1 - \alpha) + \frac{4}{\lambda(1 - \alpha)}\right] x_{135} + \frac{2}{\lambda(1 - \alpha)}[x_{146} + x_{236} + x_{245}]$.

- Curvature: has to be a map $\mathcal{R} : \Lambda^2(M^6) \rightarrow \mathfrak{hol}^\nabla \subset \mathfrak{so}(6)$, here: mainly projection on $\mathfrak{hol}^\nabla = \mathfrak{so}(3)$.

- $\nabla T = \nabla \mathcal{R} = 0$, i.e. naturally reductive for all α, λ; type $W_1 \oplus W_3$ or W_3.
The case \(n = 6 \) V

Final result of Nomizu construction:

Thm. A c. s. c. Riemannian 6-mnfd with parallel skew torsion \(T \), \(\text{rk} (*\sigma_T) = 6 \) and \(\ker T = 0 \) that is *not* isometric to a nearly Kähler manifold is one of the following Lie groups with a suitable family of left-invariant metrics:

- The nilpotent Lie group with Lie algebra \(\mathbb{R}^3 \times \mathbb{R}^3 \) with commutator
 \[
 [(v_1, w_1), (v_2, w_2)] = (0, v_1 \times v_2),
 \]

- the direct or the semidirect product of \(S^3 \) with \(\mathbb{R}^3 \),

- the product \(S^3 \times S^3 \),

- the Lie group \(\text{SL}(2, \mathbb{C}) \) viewed as a 6-dimensional real mnfd.

- prove that manifold is indeed a Lie group,

- identify its abstract Lie algebra by degeneracy / EV of its Killing form,

- find 3-dim. subalgebra defining a 3-dim. quotient and prove that the 6-dim. Lie alg. is its isometry algebra;

for example, \(\text{SL}(2, \mathbb{C}) \) appears because it’s the isometry group of hyperbolic space \(\mathbb{H}^3 \)
Literature

I. Agricola, A. C. Ferreira, Th. Friedrich, Classification of naturally reductive homogeneous spaces in dimensions $n \leq 6$, preprint

