
MPI-PhT/97-44COVERING GROUPS OF THE GAUGE GROUP FOR THE STANDARDELEMENTARY PARTICLE MODELIlka Agricola (agricola@mathematik.hu-berlin.de),Math. Institut der Humboldt-Universit�at zu Berlin,D-10099 Berlin, GermanyAbstract. We determine all Lie groups compatible with the gauge structure of the StandardElementary Particle Model (SM) and their representations. The groups are speci�ed bycongruence equations of quantum numbers. By comparison with the experimental results,we single out one Lie group GSM and show that this choice implies certain old and newcorrelations between the quantum numbers of the SM quantum �elds as well as some hithertounknown group theoretical properties of the Higgs mechanism. PACS. 11.30, 02.20, 12.10.1. Introduction1.1. The Lie algebra of the Standard Model. The usual and well known choice for theLie algebra of internal symmetries within the Standard Elementary Particle Model (SM) isgSM = u(1)Y � su(2)T � su(3)C ;(1)where we denoted by Y , T and C the internal symmetries hypercharge, isospin and colourrespectively. For many purposes, the knowledge of the local structure of the theory, that is theLie algebra gSM is su�cient. For example, the dynamics of any quantum �eld theory (Feynmanrules) depend only on them. However, some investigations of the gauge structure of a QFTrequire knowledge of the global structure, a fact we are well accustomed with from the manifoldside. Since a standard result of Lie theory states that a Lie group is not globally determined byits Lie algebra, the main idea of this paper is to �nd where in the gauge structure of the SM theLie group of internal symmetries appears, which of the possible choices for it is the \true" Liegroup GSM of the standard model, and what further conclusions this choice implies. Since wealways want particle multiplets to be �nite dimensional, we restrict our attention to compactLie groups.1.2. Results. After compiling the necessary mathematical de�nitions and prerequisites in Sec-tion 2, we give a complete classi�cation of all compact Lie groups compatible with the internalgauge structure of the SM (Thm. 1) and a practical description of their representations viacongruence equations between quantum numbers (\integrability conditions", Lemma 1), thusgeneralizing and correcting some former results by L. O'Raifeartaigh [1],[2] and J. Hucks [3].By comparison with the well known particle content of the SM (Table 1), exactly one ofthese Lie groups (called GSM ) is singled out for a \minimal" description in Section 4.1; wefurthermore show that its representation ring is generated by these particles together with theirantiparticles. Assuming from there on that GSM is indeed the Lie group of the Standard Model,we can then show that con�ned quark states have necessarily integer electric charge (Lemma 2).Futhermore, this choice implies that although the hypercharge y of a particle may be fractional,its product with the dimensions of the isospin and colour representations is always an integer.Equivalently, the sum over all electric charges inside any particle multiplet is necessarily integral(Thm. 2, Cor. 1).We then show that GSM is actually isomorphic to S(U(2) � U(3)) (Section 5.1) as well asto the Kronecker product of SU(2) and SU(3) with canonical scalar U(1) action (Section 5.2),This paper summarizes some of the results of my Diploma Thesis, supervised by Heinrich Saller and presentedat the Dept. of physics, Ludwig-Maximilians-Universit�at M�unchen, Germany, 1996.On leave of absence from Max-Planck-Institut f�ur Physik, F�ohringer Ring 6, D{80805 M�unchen, Germany.1



2 COVERING GROUPS AND THE STANDARD ELEMENTARY PARTICLE MODELthus allowing a second proof of Theorem 2 in Remark 10. We close with the surprising fact thatfor electroweak U(2), the usual de�nition for electric charge yields a complement of SU(2)T ,whereas hypercharge does not. This decomposition is equivalent to the Gell-Mann-NishijimaFormula (Section 5.3).2. Notations and mathematical prerequisites2.1. Cyclic groups, tori and hypercharge. For �nite cyclic groups, we will always use thenotation Cn = ��mn �� m = 1; : : : ; n	 ; �n := exp 2�in :(2)The irreducible unitary characters of U(1) are given by a discrete quantity � (sometimes calledwinding number) ��(ei�) = ei��; � 2 Z(3)where we will succinctly write the corresponding U(1)-module as C�. For historical reasons,physicists label U(1)Y -representations not by the integer �, but rather by \hypercharge" y =�=6. The universal covering groupR of U(1) has the smooth unitary irreducible representationsx 7! eix�; � 2 R, which can only give characters of the factor group R=�Z, � 2 R�, whenthe condition �� 2 2�Z holds. Thus the mere transition from the noncompact real line Rto the compact group U(1) accounts already for the discreteness of the corresponding labelingparameter for its representations (compare this with [3]).2.2. Irreducible representations of su(n). We shall describe any irreducible unitary (nec-essarily �nite dimensional) representation % of su(n) by its highest weight, written as a linearcombination with non-negative integral coe�cients of some choice of fundamental weights, andrefer to these coe�cients as the Dynkin indices of the representation %. If we denote by V then-dimensional standard representation of su(n), we know that the representation % with Dynkinindices (a1; : : : ; an�1) will appear as a subrepresentation of the tensor productT% = Sa1V 
 Sa2(V2V )
 � � � 
 San�1(Vn�1V ) � V 
r; r =Pn�1j=1 jaj :(4)Remark 1. Size of a representation. We will refer to the number r as the size of the repre-sentation and denote its congruence class modulo dim V by �r. In terms of Young diagrams,r corresponds to the number of squares in a diagram. Physically speaking, we will prove thatthe representations of the center of GSM will be completely determined by this number. No-tice that the element �n � 1n of SU(n) will act on the tensor representation T% or any othersubrepresentation of V 
r as multiplication by ��rn; in particular, this implies that the trivialrepresentation can only appear in T% ofequation (4) if �r = 0 (the converse, of course, beingfalse).2.3. Irreducible isospin and colour representations. The representations of the rank-1Lie algebra su(2)T can be labeled by one Dynkin index; again for historical reasons, physicistsuse instead half its Dynkin index t 2 12N0. For su(3)C , the Cartan subalgebra is two dimensionaland one may choose the standard gluon �elds g and �b as fundamental weights with correspondingDynkin indices i and j, which are exactly the colour charges listed in Table 1. The sizes ofany su(2)T - or su(3)C-representation will be denoted by rT or rC , respectively. We denote theelectric charge in multiples of e be q and will will assume the Gell-Mann-Nishijima formulaq = y + t3 to be valid throughout this article.Remark 2. Quark con�nement. The postulate of quark con�nement that any physical quarkstate must be a color singlet means that both colour charges i, j have to vanish. Since physicalstates appear in tensor representations like T% or any other subrepresentation of V 
r, Re-mark 1 implies that such an su(3) tensor representation can contain a colour singlet only ifrC � 0 mod 3.



COVERING GROUPS AND THE STANDARD ELEMENTARY PARTICLE MODEL 33. Determining all Lie groups with Lie algebra gSM3.1. Determining all (compact) Lie groups of a reductive Lie algebra. The universal(connected) covering group ~G of any reductive R-Lie algebra g is the direct product of itscommutator subgroup and the connected component of the identity of its center:~G �= ~Gc �Z( ~G)0; Z( ~G)0 �= Rn:For the full center, this means Z( ~G) �= Z( ~Gc)�Z( ~G)0;where Z( ~Gc) is a �nite group which can be determined from the root data of gc. The generalconnected Lie group with Lie algebra g is then of the form H = ~G=D, where D is a discretesubgroup of Z( ~G), and compact if and only if D contains a subgroup isomorphic to Zn. Arepresentation of ~G gives a representation of the factor group H exactly in those cases whereD operates trivially. Since the elements of D are central, they act as multiplication with somescalar on the ~G-module under consideration; therefore, D acts trivially if and only if this scalaris equal to 1 for all elements of D. Because of Schur's Lemma, any representation � of ~G canbe described in terms of representations of its center and of its commutator subgroup. Thecondition that D acts trivially then leads to congruence equations between the character of thecenter and the size of the representation of the semisimple part.3.2. General description of all compact Lie groups of gSM . Instead of gSM , we mayconsider the slight generalizationg(p; q) = u(1)� su(p)� su(q);where p and q are two di�erent prime numbers. Its universal covering group is~G(p; q) �= R� SU(p)� SU(q) with center Z( ~G(p; q)) �= R� Cp � Cq :Then any in�nite discrete central subgroup D � Z( ~G(p; q)) leads to a compact factor group~G(p; q)=D =: E(p; q)(5)with the same Lie algebra as g(p; q). We de�ne D1 to be the intersection of D with the R-factorof D, i. e. D \ (R�feg� feg) = D1 �feg� feg. It is no loss of generality to assume D1 = Z;this means that the homomorphism ~G(p; q)! E(p; q) factors through the map' : ~G(p; q) �! G(p; q) := U(1)� SU(p)� SU(q)which sends (�; a; b) to (e2�i�; a; b). Thus the image '(D) of D in G(p; q) satis�esG(p; q)='(D) �= E(p; q):If z = (e2�i�; �mp ; �nq ) 2 '(D), then zpq = (e2�i�pq ; 1; 1) = (1; 1; 1) because of our choice of D1.Thus � must be an integer multiple of 1=pq, which amounts to saying that the group order of'(D) must be a divisor of pq. This gives usTheorem 1. There are exactly nine families of possibilities for '(D), namely:(I) : h(1; 1; 1)i =: I(P1) : h(1; �p; 1)i =: P1; (P(m)2 ) : 
(��1p ; �mp ; 1)� =: P(m)2(Q1) : h(1; 1; �q)i =: Q1; (Q(n)2 ) : 
(��1q ; 1; �nq )� =: Q(n)2(PQ1) : h(1; �p; �q)i =: PQ1; (PQ(m)2 ) : 
(��1p ; �mp ; �q)� =: PQ(m)2(PQ(n)3 ) : 
(��1q ; �p; �nq )� =: PQ(n)3 ; (PQ(m;n)4 ) : 
(��1p ��1q ; �mp ; �nq )� =: PQ(m;n)4where the indices m and n can take any of the valuesm 2M := f1; : : : ; [(p� 1)=2]g; n 2 N := f1; : : : ; [(q � 1)=2]g :



4 COVERING GROUPS AND THE STANDARD ELEMENTARY PARTICLE MODELThe respective group orders arejIj = 1; jP1j = jP(m)2 j = p; jQ1j = jQ(n)2 j = q; jPQ1j = jPQ(m)2 j = jPQ(n)3 j = jPQ(m;n)4 j = pq;as a group, any nontrivial '(D) is thus isomorphic to either Cp, Cq or Cpq �= Cp � Cq.Proof. The justi�cation that these are exactly all occuring possibilities for '(D) is elementaryfor every given group order. We shall therefore not treat them all in detail but just mentionthat one has to (repeatedly) use the following facts:1. our choice of D1 rules out any elements of the form (�lpq ; 1; 1) 2 '(D) other than (1; 1; 1);2. complex conjugation is an outer automorphism of U(1) and thus does not modify thefactor group; we may therefore replace any � 2 U(1) by its inverse ��1 without changingthe factor group;3. any power of �p or �q di�erent from 1 is a primitive pth respective qth root of unity;4. the Chinese Remainder Theorem implies that for any n 2 N , we can �nd a coset a+ pqZsuch that a � 1 mod p and a � n mod q; thus, �ap = �p, whereas �aq = �nq . Of course, thismay be equally applied to a situation with p and q exchanged.We thus have the surprising result that all groups '(D) are cyclic, which was in general nottrue for the initial group D.Now consider any representation of g(p; q), that is, a triple consisting of a u(1)-representationof parameter � 2 Z, a su(p)-representation of size rp and a su(q)-representation of size rq .Recall that these are in one-to-one correspondence with representations of G(p; q). Any elementz = (a; b; c) 2 '(D) will then map under this representation to (a�; brp ; crq ), and because of theisomorphism (5) and the general remarks in Section 3.1, this image will operate trivially if andonly if the product s = a�brpcrq of its factors is equal to 1. Since all groups '(D) turned outto be cyclic, it is enough to test this condition on the generating elements listed in Theorem 1.We will then get for every possible '(D) a necessary and su�cient congruence equation relatingthe parameters �, rp, rq , m and n. One easily veri�es that these are:Lemma 1. A representation of g(p; q) can be lifted to a representation of G(p; q)='(D) with'(D) of one of the types listed in Theorem 1 if and only if the corresponding congruence equationof the same type as given below holds:(I) : �(P1) : rp � 0 mod p; (P(m)2 ) : mrp � � mod p;(Q1) : rq � 0 mod q; (Q(n)2 ) : nrq � � mod q;(PQ1) : qrp + prq � 0 mod pq; (PQ(m)2 ) : qmrp + prq � q� mod pq;(PQ(n)3 ) : qrp + pnrq � p� mod pq; (PQ(m;n)4 ) : qmrp + pnrq � (p+ q)� mod pq:Because these congruence equations yield criteria when a given Lie algebra representation canbe lifted to a representation of some Lie group, we will call them integrability conditions (IC).Some of the factor groups we can immediately identify with well known Lie groups, namely(I) : G(p; q) �= U(1)� SU(p)� SU(q)(P1) : G(p; q)=P1 �= U(1)� PSU(p)� SU(q)(P(1)2 ) : G(p; q)=P(1)2 �= U(p)� SU(q)(Q1) : G(p; q)=Q1 �= U(1)� SU(p)� PSU(q)(Q(1)2 ) : G(p; q)=Q(1)2 �= SU(p)�U(q)(PQ1) : G(p; q)=PQ1 �= U(1)� PSU(p)� PSU(q)(PQ(1)2 ) : G(p; q)=PQ(1)2 �= U(p)� PSU(q)(PQ(1)3 ) : G(p; q)=PQ(1)3 �= PSU(p)�U(q)



COVERING GROUPS AND THE STANDARD ELEMENTARY PARTICLE MODEL 5where PSU(n) denotes as usual SU(n) modulo its center Z �= Cn. We will prove later that(PQ(1;1)4 ) : G(p; q)=PQ(1;1)4 �= S(U(p) �U(q));which can be realized as the elements (a; b) 2 U(p) � U(q) satisfying the additional conditiondet a det b = 1, or via a suitably chosen Kronecker product.Remark 3. Interpretation of the parameters m and n. Every value of m yields a possibleidenti�cation of Cp in U(1) with Cp in SU(p); m = 1 corresponds to the identi�cation we arefamiliar with by its realization in U(p) (and correspondingly for n and U(q)). The \twisted"versions of U(p) we get for m 6= 1 are not isomorphic; they do not appear for the SM, for thenwe have M = N = f1g.Remark 4. Simpli�cation of integrability conditions. Since p and q are coprime, each of the fourintegrability conditions which are congruence equations mod pq holds exactly if the same rela-tion is true mod p and mod q simultaneously; these relations in turn may be further simpli�edby eliminating the multiples of p mod p or of q mod q and dividing by any remaining factorscoprime to p or q, respectively. We get:(PQ1) : � rp � 0 mod prq � 0 mod q � (PQ(m)2 ) : � mrp � � mod prq � 0 mod q �(PQ(n)3 ) : � rp � 0 mod pnrq � � mod q � (PQ(m;n)4 ) : � mrp � � mod pnrq � � mod q �Remark 5. Interpretation of integrability conditions. For an su(n)-representation of size rn, theset of points of the weight lattice which satisfy the congruence relation rn � � mod n for someinteger � is the root lattice in case � � 0 mod n and a translate of it otherwise.Remark 6. Comparison with results by other authors. Comparing these results in the case p = 2and q = 3 with the classi�cation (without proof) in O'Raifeartaigh's book [2, p. 55 �.], we seethat his G(p; q)=Cp+q does not appear in the classi�cation above; his further study of the subjectas well as a footnote in [3] show that he must have meant G(p; q)= 
(��1p ��1q ; �p; �q)� instead.4. Integrability conditions and the Standard Model4.1. The \minimal" Lie group of the Standard Model. The results above can be directlyapplied to the Standard Model (i.e., p = 2, q = 3). The size of an SU(2)T -representation isexactly rT = 2t, that of an SU(3)C-representation rC = i + 2j (cf. Section 2.2). Every ofthe nine families of compact Lie groups with Lie algebra gSM has only one member, whichis why we will drop the superscripts m and n from now on. A glimpse at Table 1 showsthat experimentally, conditions (P1) and (Q1) are not satis�ed, and thus so are all conditonsimplying them, that is, (PQ1), (PQ2) and (PQ3). Ignoring the empty condition (I), this leavesus with the three possibilities (P2), (Q2) and (PQ4), the latter being exactly the union of theformer two. These conditions do actually hold,� � rT mod 2 and � � rC mod 3;(PQ4 a, b)making it possible to de�ne GSM (p; q) := G(p; q)= 
(��1p ��1q ; �p; �q)� and see thatGSM := GSM (2; 3) = G(2; 3)= 
(���13 ;�1; �3)�is in this sense the \minimal" Lie group of the Standard Model, that is, the smallest Lie groupable to explain the experimental evidence. A very attractive property of this group is that itestablishes hypercharge as the link between isospin and colour, thus relating quantities whichare independent in the traditional choice G(2; 3).We would like to illustrate the logic of our argument by a more familiar example. To thespin Lie algebra su(2), there correspond exactly two compact Lie groups, namely SU(2) andPSU(2) �= SO(3); the size of a su(2)-representation being twice its spin j 2 12N, the former



6 COVERING GROUPS AND THE STANDARD ELEMENTARY PARTICLE MODELhas empty integrability condition and the latter has 2j � 0 mod 2, which is equivalent to thecondition that j be an integer. Historically, the experimental evidence of half integer spins ledto the conclusion that the \right" Lie group has to be SU(2) and not SO(3). For the StandardModel, we experience the reverse situation: assume one would had thought that SU(2) is thespin Lie group and that experiment had only yielded integer spin values. Then the logicalconclusion would have been that SO(3) is a better choice for the acting Lie group than SU(2)is. In the same vein, we suggest that GSM is a better choice for the inner gauge group of theStandard Model than the usual choice G(2; 3) is.From now on, we will postulate that GSM is the gauge group of the Standard Model andinvestigate the conclusions implied by this choice.The representation ring of GSM has �ve generators, one possible choice for them beingR(GSM ) �= Z[V 
C3; W 
C�2; V2W 
C�4; C6; C�6]where V (W ) is the 2- (3)-dimensional de�ning representation of SU(2) (SU(3)). They corre-spond to the winding numbers and representation sizes(�; rT ; rC) = (3; 1; 0); (�2; 0; 1); (�4; 0; 2); (6; 0; 0); (�6; 0; 0)and may be identi�ed with the following lepton and quark �elds as introduced in Table 1:R(GSM ) �= Z[l(x); d(x); u�(x); e�(x); e(x)]:Remark 7. Antiparticles. The transition from any particle multiplet to its antiparticle mul-tiplet is made by taking the dual representation. In our case, this amounts to replacing thehypercharge by its negative and reversing the order of the Dynkin indices. From a group the-oretical point of view, it is clear that the dual representation can always be formed. But wemay also deduce the integrability condition for the dual representation by the following shortargument, thus proving that conditions (PQ4) also hold for the antiparticles which were notlisted in Table 1: assume � � rn mod n for a SU(n)-representation of size rn. By taking itsnegative, we get �� � �rn mod n. Now remember that rn was de�ned as P jaj ; since ofcourse �j is congruent to n� j mod n, we may rewrite this as �� �P(n� j)aj mod n. Butthen the righthand side is exactly the size of the representation with reversed order of Dynkinindices.4.2. Consequences for the electric charge. As an example of the severe restrictions therelations (PQ4) impose on admissible GSM -representations, consider a bound quark state. Asexplained in Remark 2, these can only appear in representations with rC � 0 mod 3.Lemma 2. For any (usually non irreducible) GSM -representation, the condition rC � 0 mod 3is equivalent to integer electric charge for all particles contained in its irreducible subrepresen-tations.Proof. The statement is an easy consequence of the relations (PQ4). We will only show onedirection; the converse may be proved in a similar way. Remember that y was de�ned as �=6.Then rC � 0 mod 3 together with rC � � mod 3 implies 2y 2 Z. Using the Clebsch-Gordanformula, we see that any irreducible multiplet of an su(2)-representation of size rT will havea highest weight 2t of same parity. Thus the other congruence relation rT � � mod 2 impliest+3y 2 Z for all such t, which together with 2y 2 Z gives t+ y 2 Z. Since t3 = t; t� 1; : : : ;�tis an integer or a half-integer precisely when t is, we thus have y+ t3 2 Z for all values of t3.Remark 8. Electric charges. For studying anomalies, an important quantity is the sum of theelectric charges inside a particle multiplet of given chirality. Unfortunately, this number is illsuited for representation theoretical studies, since it does not correspond to any characteristicquantity. However, given any su(2)-representation with highest weight 2t, the Gell-Mann-Nishijima formula q = y + t3 yields upon summation over t3 = t; t � 1; : : : ;�t + 1;�t the



COVERING GROUPS AND THE STANDARD ELEMENTARY PARTICLE MODEL 7Quantum �eld y � = 6y rT = 2t rC = i+ 2j dT dC �dT dCl. h. quarks q(x) 1=6 1 1 1 2 3 6r. h. u-quarks u(x) 2=3 4 0 1 1 3 12r. h. d-quarks d(x) �1=3 �2 0 1 1 3 �6l. h. leptons l(x) �1=2 �3 1 0 2 1 �6r. h. leptons e(x) �1 �6 0 0 1 1 �6Hypercharge B�(x) 0 0 0 0 1 1 0Isospin W�(x) 0 0 2 0 3 1 0Colour G�(x) 0 0 0 3 1 8 0Higgs h(x) �1=2 �3 1 0 2 1 �6� mod2 � mod3Table 1. Quantum numbers of the elementary �elds, stated in an way ap-propriate for representation theory. One then checks easily that the indicatedcongruence relations hold.relation P q = (2t + 1)y = dT y. In order to get the total electric charge for a GSM (p; q)-multiplet, we have to multiply by the dimension of the colour-representation, thus obtainingXGSM (p;q) rep. q = ydT dC :The righthand side makes sense for any values of p and q and is accessible to group theoreticalarguments as the following theorem shows.Theorem 2. Given a representation of GSM (p; q), the dimensions of the corresponding repre-sentations of SU(p) and SU(q) and the winding number satisfy the relationpq j dpdq�:By the preceding remark and because y = �=6 = �=pq, it is clear that Theorem 2 immediatelyimplies for the SM:Corollary 1. If GSM is the gauge group of the internal SM symmetries, then the sum over allelectric charges inside any of its representations (particle multiplets) has to be an integer:XGSM (p;q) rep. q 2 Z:Remark 9. Covering groups and anomalies. An easy consequence of the requirement of anomalyfreedom in the SM is the condition that the sum of �dpdq over all �elds of a given chiralityhas to be exactly zero. By choosing GSM instead of G(2; 3) as the SM Lie group, Theorem 2implies that these quantities are congruent 0 mod 6; thus, this choice does not interfere withthe anomaly freedom of the SM.



8 COVERING GROUPS AND THE STANDARD ELEMENTARY PARTICLE MODELProof. (of Theorem 2) The formula for the dimension of an SU(p)-representation with Dynkinindices (a1; : : : ; an�1) is dp = Y0�r<s<p0@ sXj=r+1 ~aj1A � pYl=1 1(l � 1)!with ~aj = aj + 1 and its analog for SU(q). We show the stronger relations p j�dp and q j�dq ,which imply the assertion since p and q are two di�erent prime numbers. Because of thesymmetry of the problem, it is enough to show the assertion for p. Relation (PQ4 a) impliesthat the di�erence of � and rp is a multiple of p and it is therefore enough to show p j rpdp. Thefactorials in the denominator of dp contain only factors < p and can thus be ignored, leavingus with the claim p divides rp � Y0�r<s�p�10@ sXj=r+1 ~aj1A :(6)Case p = 2 : Equation (6) is reduced to 2 j r(r + 1), r the size of the representation, and thisis of course always true.Case p 6= 2 : Now we havep�1X1 j~aj = p�1X1 j(aj + 1) = p�1X1 jaj + p�1X1 j = rp + p(p� 1)2 :Since p is an odd prime number, 2 j p� 1. Therefore p divides the last term and it disappearsmod p: p�1X1 j~aj � rp mod p:Rewrite the negative of this last expression as� p�1X1 j~aj � p�1X1 (p� j)~aj � 8>>>><>>>>: 0++(0 + ~a1)++(0 + ~a1 + ~a2)++ : : :++(0 + ~a1 + : : :+ ~ap�1) :If all p terms on the righthand side are di�erent modulo p, their sum is congruent to p(p�1)2 mod pand therefore equal to 0 mod p by the argument above, and we have thus rp � 0 mod p. If not,there exist indices 0 � r < s < p satisfying0 + ~a1 + : : :+ ~ar = 0+ ~a1 + : : :+ ~as mod p; thus sXj=r+1 ~aj � 0 mod p;and dp is divisible by p.Although only based on simple number theoretical steps, this proof has the disadvantage of notshowing any deeper structure. We will now give two explicit realizations of the group GSM .The �rst one, very popular, is based on a direct sum construction and extensively used inconnection with \Grand Uni�ed Theories". The second one, less known, will make use of aKronecker product and give a nice representation theoretical proof of Theorem 2.



COVERING GROUPS AND THE STANDARD ELEMENTARY PARTICLE MODEL 95. Realizations of GSM (p; q) and Second Proof of Theorem 25.1. Additive realization of G(p; q) and its quotient groups. Embed SU(p) as upperleft, SU(q) as lower right block in SU(p+ q) and write such elements succintly as pairs (a; b).For realizing GSM as a subgroup of U(p+ q), the requirement that �p should be mapped to(�1p � 1p; 1q) and �q to (1p; �1q � 1q) can only be achieved by a map of the formeit 7�! (eikt1p; eilt � 1q) k; l 2 Zwhere k and l satisfy k 2 qZ \ (1 + pZ) and l 2 pZ \ (1 + qZ). According to the ChineseRemainder Theorem, there always exist cosets k + pqZ and l + pqZ ful�lling these conditions.Since p+ q is coprime to p and q, we can further assume pk+ qk � 0 mod (p+ q) and still getsolutions which will now be cosets mod pq(p+ q), thus making it possible to impose trace zerocondition upon the u(1)-generator (for p = 2 and q = 3, a possible choice is k = 3 and l = �2).This achieves to show the isomorphism between GSM (p; q) and S(U(p)�U(q)).5.2. Multiplicative realization of GSM . We now discuss a realization of GSM using theKronecker product of matrix groups (tensor product of the underlying vector spaces).For g 2 SU(p); h 2 SU(q), let g 
 h act on the tensor product V 
W of their standardmodules. Then the image of (�p; �q) is(�p � 1p)
 (�q � 1q) = �p+qpq � 1pq:By de�ning the action of U(1) on V 
W as scalar multiplication, we get a natural identi�cationof Cp � Cq � SU(p) � SU(q) with Cpq � SU(pq), because �p+qpq is always a primitive pqth rootof unity. To check that it really satis�es the integrability conditions (PQ(1;1)4 ), we �rst noticethat for representations with sizes rp, rq and winding number �, the following diagram has tocommute: (�p; �q) ����! �p+qpqrp; rq??y ??y�(�rpp ; �rqq ) !����! ��(p+q)pqwhich is equivalent to the requirement that the mapping relation denoted by ! holds. But(�rpp ; �rqq ) 7�! �rpp 1p 
 �rqq 1q = �qrp+prqpq 1pq != ��(p+q)pq 1pq;means exactly qrp + prq !� �(p+ q) mod pq ;(7)which we recognize to be the integrability condition (PQ(1;1)4 ). Thus, the Kronecker productof SU(p) and SU(p) with a natural action of U(1) by scalar multiplication is isomorphic toGSM (p; q).Remark 10. Second proof of Theorem 2. We may reprove Theorem 2 with a purely representa-tion theoretical argument, without even having to know the formula for the dimensions of therepresentation.Indeed, if we have pq j dpdq , then there is nothing to prove. If not, assume for example thatp does not divide dp. The image of �p under an SU(p)-representation is the matrix �rpp � 1dp ;its determinant has to be 1, and since p did not divide dp, this can only be the case if �rpp = 1.But then the images of all pth roots of unity have to act trivially under any �-representation,which amounts to saying that � is a multiple of p. The same argument holds for q.



10 COVERING GROUPS AND THE STANDARD ELEMENTARY PARTICLE MODEL5.3. Non-standard decompositions of compact connected groups. We are interestedin �nding Cartan subgroups H of any compact connected reductive Lie group G which are adirect product of their intersections with the commutator subgroup and the center. Certainly,every complement of the commutator subgroup yields such a Cartan subgroup:Lemma 3 (Direct decompositions of Cartan subgroups). Let G be a compact connected reduc-tive Lie group and K a complement of its commutator subgroup Gc, i. e., we have a semidirectdecomposition G �= Gc o K. Then any Cartan subgroup H of G is the direct product of itsintersection Hc with Gc and K, i. e., H �= Hc �K; Hc = Gc \H.5.4. Application to G = U(n) and electroweak interactions. For the Standard Model, itwill turn out that these purely group theoretical considerations have the property of singlingout exactly those symmetries which remain after spontaneous symmetry breakdown and Higgsmechanism. We take the liberty of assuming colour con�nement, that is, GSM is reduced to thesubgroup G = U(2) of the electroweak forces. Since we thus only need to �nd complements ofthe commutator subgroup Gc = SU(n) of G = U(n), we refer the reader to the general resultsby K. H. Hofmann and H. Scheerer [4, Kor. 8], [5, Lemma] without stating them here for theveri�cation that the following construction yields indeed all desired complements.For a maximal torusHc of SU(n) we make the usual choice of the diagonal matrices in SU(n).Furthermore, the center Z0 of G is U(1) and connected, thus giving Z0 \Hc = Z(SU(n)) �= Cn.The construction of all complements uses a continuous group morphism f : Z0 ! Hcei! � 1n f7�! 0B@ eik1! 0. . .0 eikn! 1CA ; kl 2 Z 8l = 1; : : : ; nsatisfying the conditions that the determinant be equal to 1nXl=1 kl = 0(8)and that f be equal to the identity map on Z(SU(n))k1; : : : ; kn � 1 mod n:(9)We then have the representativesff(z)�1z : z 2 Z0g = 8><>:0B@ ei(1�k1)! 0. . .0 ei(1�kn)! 1CA : ! 2 [0; 2�[9>=>;of a class of complements of Gc. By substituting 1 � ki = zin; zi 2 Z, condition (9) holdsautomatically and since we then haveP ki = n(1�P zi), eq. (8) implies P zi = 1:K(z1; : : : ; zn) := ff(z)�1z : z 2 Z0g = 8><>:0B@ eiz1n! 0. . .0 eiznn! 1CA =: k(!) : ! 2 [0; 2�[P zi = 1 9>=>;The solutions for (z1; : : : ; zn) are, up to permutations,(z1; : : : ; zn) = (1; 0; : : : ; 0); (1� z; z; 0; : : : ; 0); (1� z � z0; z; z0; 0; : : : ; 0) : : :and each of them de�nes a complement of SU(n) isomorphic to U(1) with the product(g; k)(g0; k0) 7�! (g � kg0k�1; kk0) 8g; g0 2 SU(n); k; k0 2 K(z1; : : : ; zn) :(10)Because of k�1(!) = k(�!), we have for g0 = (g0ij)ij ; 1 � i; j � n:kg0k�1 = �ei!n(zi�zj)g0ij�ij ;



COVERING GROUPS AND THE STANDARD ELEMENTARY PARTICLE MODEL 11and kg0k�1 is certainly equal to g0 if g0 is diagonal. In this case the composition law (10)becomes (g; k)(g0; k0) 7�! (gg0; kk0) ;which leads to the following direct product in U(n):Hc �K(z1; : : : ; zn) < SU(n) o K(z1; : : : ; zn) = U(n) :Since Hc �K is an n-parameter abelian subgroup of G, it is necessarily a maximal torus.For n = 2, the Cartan subgroups of SU(2) are one-dimensional and the complements dependonly on one parameter z 2 Z:Hc = � � ei! 00 e�i! � � ; H = �!h; h = i� 1 00 �1 � �Kz = �� ei2z� 00 ei2(1�z)� �� ; Kz = ��kz ; kz = i� 2z 00 2(1� z) ��Physically speaking, h is the generator of the third component of isospin and thus has eigenvaluet3. Hypercharge is identi�ed with the center of U(2). But then the relation12 + h = k1 , y + t3 = �1 ;(11)where �1 is the eigenvalue of k1, allows us to identify �1 according to the Gell-Mann-Nishijima-formula with the electromagnetic charge q:Hc �K1 < SU(2)o K1 , U(1)T �U(1)Q < SU(2)oU(1)Q:This decomposition may be a hint why the transition from hypercharge to electric charge isnecessary in the Standard Model. It has the property that any element of U(2) may be uniquelywritten as an element of SU(2)oU(1)Q, whereas this was true only up to central elements forSU(2) � U(1)Y . Of course, we cannot explain the breakdown of isospin symmetry in this way,since we left the semisimple part untouched. Conversely, we can observe empirically: theHiggs mechanism singles out exactly the complement of the semidirect part in these specialdecompositions and forgets the semisimple part afterwards.Acknowledgments. Some of the physical ideas in this paper are partly due to Heinrich Saller [6],[7], to whom I am indebted for many discussions on the subject. I also thank Rutgers Universityand especially Roe Goodman for his kind hospitality during the writing of this paper, FriedrichKnop for �nding an error, as well as Karl-Hermann Neeb (Universit�at Erlangen-N�urnberg) forhis continued support. References[1] Lochlainn O'Raifeartaigh. Hidden gauge symmetry. Rep. Prog. Phys., 42:159{223, 1979.[2] Lochlainn O'Raifeartaigh. Group structure of gauge theories. Cambridge monographs in mathematicalphysics. Cambridge Univ. Press, 1986.[3] Joseph Hucks. Global structure of the standard model, anomalies and charge quantization. Phys. Rev. D,43:2709{2717, 1991.[4] Karl Heinrich Hofmann. Sur la d�ecomposition semidirecte des groupes compacts connexes. Series Mathe-matics, 16:471{476, 1975.[5] Hans Scheerer. Restklassenr�aume kompakter zusammenh�angender Gruppen mit Schnitt. Math. Ann.,206:149{155, 1973.[6] Heinrich Saller. On the Isospin-Hypercharge connection. Il Nuovo Cimento, 105(12):1746{1748, 1992.[7] Heinrich Saller. The winding numbers of the Standard Model. Il Nuovo Cimento, 106(9):1190{1206, 1993.


