
THE GAUSSIAN MEASURE ON ALGEBRAIC VARIETIESILKA AGRICOLA AND THOMAS FRIEDRICHAbstract. We prove that the ringR[M ] of all polynomials de�ned on a real algebraic varietyM � Rn is dense in the Hilbert space L2(M; e�jxj2d�), where d� denotes the volume formof M and d� = e�jxj2d� the Gaussian measure on M .1. IntroductionThe aim of the present note is to prove that the ring R[M ] of all polynomials de�ned on areal algebraic variety M � Rn is dense in the Hilbert space L2(M; e�jxj2d�), where d� denotesthe volume form of M and d� = e�jxj2d� is the Gaussian measure on M . In case M = Rn, theresult is well known since the Hermite polynomials constitute a complete orthonormal basis ofL2(Rn; e�jxj2d�).2. The volume growth of an algebraic variety and some consequencesWe consider a smooth algebraic variety M � Rn of dimension d. Then M has polynomialvolume growth: there exists a constant C depending only on the degrees of the polynomialsde�ning M such that for any euclidian ball Br with center 0 2 Rn and radius r > 0 theinequality vold(M \ Br) � C � rdholds (see [Br�o]). Via Crofton formulas the mentioned inequality is a consequence of Milnor'sresults concerning the Betti numbers of an algebraic variety (see [Mi1], [Mi2], in which thestated inequality is already implicitly contained). This estimate yields �rst of all that therestrictions on M of the polynomials on Rn are square-integrable with respect to the Gaussianmeasure on M .Proposition 1. Let M be a smooth submanifold of the euclidian space Rn. Suppose that Mhas polynomial volume growth,i.e., there exist constants C and l 2 N such that for any ball Brvold(M \ Br) � C � rlholds. Denote by d� the volume form of M . Then:1. The ring R[M ] of all polynomials on M is contained in the Hilbert space L2(M; e�jxj2d�);2. all functions e�jxj2 for � < 1=2 belong to L2(M; e�jxj2d�).Proof. Throughout this article, denote the distance of the point x 2 Rn to the origin byr2 = jxj2. We shall prove that the integralsIm(M) := ZM rme�r2d� <1; m = 1; 2; : : :are �nite. However, Im(M) = 1Xj=0 ZM\(Bj+1�Bj) rme�r2d�Date: April 23, 1998.Key words and phrases. Gaussian measure, algebraic variety.This work was supported by the SFB 288 "Di�erential geometry and quantum physics".1



2 ILKA AGRICOLA AND THOMAS FRIEDRICHand consequently we can estimate Im(M) as follows:Im(M) � 1Xj=0(j + 1)me�j2 [vol(M \ Bj+1)� vol(M \ Bj)] � 1Xr=0(r + 1)me�r2vol(M \ Br+1) :Using the assumption on the volume growth of M we immediately obtainIm(M) � C � 1Xr=0(r + 1)m+le�r2 :Denoting the summands of the latter series by ar, we readily see that it converges, sincear+1ar = (r + 1)m+le�r2�2r�1(r)m+le�r2 = �r + 1r �m+l 1e2r+1 �! 0:A similar calculation yields the result for the functions e�r2 with � < 1=2.3. A dense subspace in C01(Sn)The aim of this section is to verify that a certain linear subspace of C0(Sn) is dense therein.Since the family of functions we have in mind cannot be made into an algebra, we have to replacethe standard Stone-Weierstra� argument by something di�erent. The idea for overcomingthis problem is to use a combination of the well-known theorems of Hahn-Banach, Riesz andBochner.To begin with, we uniformly approximate the function e�r2eihk;xi for a �xed vector k 2 Rn.Lemma. Denote by pm(x) the polynomialpm(x) = m�1X�=0 i� hk; xi� =�! :Then the sequence e�r2pm(x) converges uniformly to e�r2eihk;xi on Rn.Proof. The inequality j pm(x)� eihk;xi j � kkkmkxkmm! ekkk�kxkimplies (set y = kkk � kxk)supx2Rn j e�r2pm(x) � e�r2eihk;xi j � sup0�y ymm! ey�y2=kkk2 =: Cm :Therefore, we have to check that for any �xed vector k 2 Rn the sequence Cm tends to zeroas m ! 1. For simplicity, denote by k the length of the vector k 2 Rn. A direct calculationyields the following formula:Cm = 1m! �k24 + k4pk2 + 8m�m exp k24 + k4pk2 + 8m� 1k2 �k24 + k4pk2 + 8m�2! :We are only interested in the asymptotics of Cm. We will thus ignore all constant factors notdepending on m. In this sense, we obtainCm � 1m! �k24 + k4pk2 + 8m�m exp�k8pk2 + 8m� k2 + 8m16 � :The Stirling formula m! � pmmme�m allows us to rewrite the asymptotics of Cm:Cm � 1pmmm �k24 + k4pk2 + 8m�m exp�k8pk2 + 8m+ m2 � :Since limm!1(pk2 + 8m�p8m) = 0 ;



THE GAUSSIAN MEASURE ON ALGEBRAIC VARIETIES 3we can furthermore replace pk2 + 8m by 2p2m:Cm � 1pmmm �k24 + k4pk2 + 8m�m exp�k4p2m+ m2 � =: eC�mwith C�m = m ln�k24 + k4pk2 + 8m�+ k2p2pm+ m2 �m ln(m)� 12 ln(m) :In case m is su�ciently large with respect to k, we can estimate ln(k2=4 + k=4 � pk2 + 8m) by12 ln(m) + � for some constant �:C�m / m2 ln(m) + �m+ k2p2pm+ m2 �m ln(m)� 12 ln(m)� �m2 ln(m) + (�+ 1=2)m+ k2p2pm� �m2 ln(m) + (�+ 1=2 + k2p2)m= m��+ 1=2 + k2p2 � 12 ln(m)� :Finally, Cm = exp(C�m) converges to zero.Proposition 2. Denote by P(Rn) the ring of all polynomials on Rn. Then the linear space�1 := P(Rn)�e�r2 is dense in the space C01(Sn) of all continuous functions on Sn = Rn[f1gvanishing at in�nity.Proof. Suppose the closure �1 of the linear space �1 does not coincide with C01(Sn). Then theHahn-Banach Theorem implies the existence of a linear continuous functional L : C0(Sn)! Rsuch that1. Lj�1 = 0;2. L(g0) 6= 0 for at least one g0 2 C01(Sn).According to Riesz' Theorem (see [Rud, Ch.6, p.129 �.]), L may be represented by two regularBorel measures �+, �� on Sn:L(f) = ZSn f(x) d�+(x)� ZSn f(x) d��(x) :In particular, �+ and �� are �nite. The �rst property Lj�1 = 0 of L impliesZSn e�r2p(x) d�+(x) = ZSn e�r2p(x) d��(x)for any polynomial p(x). Let us introduce the measures �� = e�r2�� on the subset Rn � Sn.Then ZRn p(x) d�+(x) = ZRn p(x) d��(x)holds and remains true for any complex-valued polynomial. We may thus choose p(x) = pm(x)as in the previous lemma pm(x) = m�1X�=0 i� hk; xi� =�! :But, thenZSn pm(x)e�r2 d�+(x) = ZRn pm(x) d�+(x) = ZRn pm(x) d��(x) = ZSn pm(x)e�r2 d��(x)



4 ILKA AGRICOLA AND THOMAS FRIEDRICHtogether with the uniform convergence of pm(x)e�r2 to eihk;xie�r2 impliesZSn eihk;xie�r2 d�+(x) = ZSn eihk;xie�r2 d��(x) ;i.e., ZRn eihk;xi d�+(x) = ZRn eihk;xi d��(x) :Therefore, the Fourier transforms of the measures �+ and �� coincide. Consequently, byBochner's Theorem (see [Mau, Ch.XIX, p.774 �.]) we conclude that �+ = �� on Rn. Thelinear functional L : C0(Sn)! R must thus be the evaluation of a function at in�nity:L(f) = c � f(1) ;a contradiction to the existence of a function g0 2 C01(Sn) satisfying L(g0) 6= 0.4. The main resultTheorem 1. Let the closed subset M � Rn be a smooth submanifold satisfying the polynomialvolume growth condition. Then the ring R[M ] of all polynomials on M is a dense subspace ofthe Hilbert space L2(M; e�r2d�).Proof. Consider the one-point-compacti�cation M̂ � Sn of M � Rn. Then Proposition 2 ofSection 3 implies that �1(M̂) := R[M ] � e�r2=4is dense in C01(M̂). We introduce the measure d� = e�r2=2d�, where d� is the volume form ofM . Since ZM d� = ZM e�r2=2d� = ZM (er2=4)2e�r2d� =: V < 1 ;d� de�nes a regular Borel measure d�̂ on M̂ (by setting d�̂(1) = 0). Therefore, the algebraC01(M̂) of all continuous functions on M̂ vanishing at in�nity is dense in L2(M̂; d�̂):C01(M̂) = L2(M̂; d�̂) :For any function f in L2(M; e�r2d�) we haveZM jfe�r2=4j2e�r2=2d� = ZM jf j2e�r2d� < 1and, therefore, fe�r2=4 lies in L2(M̂; d�̂). Thus, for a �xed " > 0, there exists a functiong 2 C01(M̂) such that ZM jfe�r2=4 � g(x)j2e�r2=2d� < "=2 :According to Proposition 2 we can �nd a polynomial p(x) 2 R[M ] approximating g:supx2M̂ jg(x)� p(x)e�r2=4j2 < "=2V :Using the inequality kx+ yk2 � 2kxk2 + 2kyk2 we concludeZM jf(x)e�r2=4 � p(x)e�r2=4j2e�r2=2d� < " ;but this is equivalent to ZM jf(x)� p(x)j2e�r2d� < " :



THE GAUSSIAN MEASURE ON ALGEBRAIC VARIETIES 55. Examples and final remarksWe shall give a few simple examples. Notice that we recover, of course, that the polyno-mials are dense in L2(Rn; e�r2d�) (Hermite polynomials) or in L2(M; d�) for any compactsubmanifold (Legendre polynomials in case M = [�1; 1]).Example 1. Consider a revolution surface in R3 de�ned by two polynomials f; h8<: x = f(u1) cosu2y = f(u1) sinu2z = h(u1) ; f(u1) > 0 ; (u1; u2) 2 R� [0; 2�] :Then we have d� = fpf 02 + h02 du1du2 and r2 = f2 + h2, and thus obtainR[f cosu2; f sinu2; h] is dense in L2(R� [0; 2�]; e�(f2+h2)fqf 02 + h02 du1du2) :In the special case of a cylinder, i.e. f = 1, h = u1, this reduces to the well known fact that thering R[u1; cosu2; sinu2; ] = R[u1]
R[cosu2; sinu2]is indeed dense in the Hilbert spaceL2(R� [0; 2�]; e�u21 du1du2) = L2(R; e�u21 du1)
 L2([0; 2�]; du2) :Example 2. Let F : C! C be a polynomial and consider the surface de�ned byf : C �! R3; f(z) = (x; y; jF (z)j); z = x+ iy :Then one checks that d� =p1 + jF 0j2 jdzj2 and r2 = jzj2 + jF (z)j2. Thus the following holds:R[x; y; jF (z)j] = L2(R2; e�(jzj2+jF (z)j2)p1 + jF 0j2 jdzj2) :Let us study the polynomial F = z2k in more detail. Here the coordinate ring coincides withthe usual polynomial ringR[x; y] in two variables, and thus we have proved that these are densein L2(R2; e�(jzj2+jzj4k)q1 + 4k2jzj2(2k�1) jdzj2) :Example 3. We �nish with a one-dimensional example: the graph M = f(x; f(x)g of a polyno-mial f : R! Rn. Then d� =p1 + kf 0k2 dx, and we obtainR[x] = L2(R; e�(x2+kf(x)k2)p1 + kf 0k2 dx) :Remark. The main result raises an interesting analogous problem in complex analysis which,to our knowledge, is still open. It is well known that the polynomials on Cn are dense in theFock- or Bergman spaceF(Cn) := ff 2 L2(Cn; e�r2d�) j f holomorphic g :Furthermore, a theorem by Stoll (see [Sto1], [Sto2]) states that from all complex analyticsubmanifolds N of Cn, those with polynomial growth are exactly the algebraic ones, and thusthe only ones for which the elements of the coordinate ring are square-integrable with respectto the Gaussian measure. It is then common to study the spaceF(N) := ff 2 L2(N; e�r2d�) j f holomorphic g ;but we were not able to �nd any results on whether C[N ] is dense herein.More elaborate applications of the main result to the situation where M carries a reductivealgebraic group action will be discussed by the authors in some forthcoming works (see e.g.[Agr]). In this case, one can decompose the ring R[M ] into isotypic components and, viaTheorem 1, one obtains a decomposition of L2(M; e�r2d�) analogous to the classical Frobeniusreciprocity.
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