THE GAUSSIAN MEASURE ON ALGEBRAIC VARIETIES
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ABSTRACT. We prove that the ring R[M] of all polynomials defined on a real algebraic variety
M C R™ is dense in the Hilbert space L2(M, e*‘z‘Zdu), where du denotes the volume form
of M and dv = e*‘z‘Zdu the Gaussian measure on M.

1. INTRODUCTION

The aim of the present note is to prove that the ring R[M] of all polynomials defined on a
real algebraic variety M C R™ is dense in the Hilbert space L2(M, e~|#*dyu), where dp denotes
the volume form of M and dv = e"”"‘2du is the Gaussian measure on M. In case M = R", the
result is well known since the Hermite polynomials constitute a complete orthonormal basis of
L2(R™ e leldp).

2. THE VOLUME GROWTH OF AN ALGEBRAIC VARIETY AND SOME CONSEQUENCES

We consider a smooth algebraic variety M C R™ of dimension d. Then M has polynomial
volume growth: there exists a constant C' depending only on the degrees of the polynomials
defining M such that for any euclidian ball B, with center 0 € R™ and radius r > 0 the
inequality

voly(MNB,) < C-r?
holds (see [Brd]). Via Crofton formulas the mentioned inequality is a consequence of Milnor’s
results concerning the Betti numbers of an algebraic variety (see [Mil], [Mi2], in which the
stated inequality is already implicitly contained). This estimate yields first of all that the

restrictions on M of the polynomials on R"™ are square-integrable with respect to the Gaussian
measure on M.

Proposition 1. Let M be a smooth submanifold of the euclidian space R™. Suppose that M
has polynomial volume growth,i.e., there exist constants C and [ € N such that for any ball B,

voly(MNB,) < C -7
holds. Denote by du the volume form of M. Then:
1. The ring R[M] of all polynomials on M is contained in the Hilbert space L*(M, e_mzdu);
2. all functions eolel® for a < 1/2 belong to L2(M,e*|w|2du).

Proof. Throughout this article, denote the distance of the point € R™ to the origin by
r? = |z|?>. We shall prove that the integrals

I, (M) = /Mrme*”zd,u<oo, m=12...

are finite. However,
s 2
Ip(M) = Z/ re”" dp
j=0 Y MN(Bj+1—Bj)
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and consequently we can estimate I,,, (M) as follows:
Ln(M) < "G+ 1)™e™ [vol(M N Bjj1) —vol(M N B;)] < 3 (r+1)™e™ vol(M N Byy1) .
7j=0 r=0

Using the assumption on the volume growth of M we immediately obtain

(oo}
Ln(M) < C- (r+1)mFe™
r=0
Denoting the summands of the latter series by a,., we readily see that it converges, since
arp1 (’I“ + 1)m+le—r2—2r—1 B r+1 m+l 1 0
a, (rym+ie—r> - r e2r+1 — U

A similar calculation yields the result for the functions e with a < 1/2. O

3. A DENSE SUBSPACE IN C2 (5")

The aim of this section is to verify that a certain linear subspace of C°(S™) is dense therein.
Since the family of functions we have in mind cannot be made into an algebra, we have to replace
the standard Stone-Weierstrafl argument by something different. The idea for overcoming
this problem is to use a combination of the well-known theorems of Hahn-Banach, Riesz and
Bochner.

To begin with, we uniformly approximate the function e~ eik:) for a fixed vector k € R™.

Lemma. Denote by p,,(x) the polynomial

Pm(z) = i i (k,z)* /ol .
a=0

Then the sequence e*Tme(a:) converges uniformly to e eilk) op R™.

Proof. The inequality

| pm () _ei(k,z)| < IEN™ || )™ AR

m!
implies (set y = [|k]| - ||=]])
m
sup |e " pm (@) —e el | < sup Lo e v INE = g
e 0<y m.

Therefore, we have to check that for any fixed vector k& € R™ the sequence C), tends to zero
as m — oo. For simplicity, denote by k the length of the vector £ € R™. A direct calculation
yields the following formula:

1 Kk Kk 1 (k2 &k 2
- - (2L 2 Y oM 12 (> 12
Cn = ! < +4 k +8m> exp( + k? 4+ 8m k2< + k +8m> )

We are only interested in the asymptotics of C,,. We will thus ignore all constant factors not
depending on m. In this sense, we obtain

1 (kK &k " k k?
Con v — | —+-VEk?+8m ) exp —\/k2—|—8m—+78m .
m! \(4 4 8 16
The Stirling formula m! &~ /m m™e~" allows us to rewrite the asymptotics of C,,:
1 Kk " k m
Cpn ® —— | —+-VEk2+8 —VkZ+8 — .
m _mmm<4+4 +m> exp<8 +m+2>

Since

lim (Vk?+8m—+v8m) = 0,

m—r00



THE GAUSSIAN MEASURE ON ALGEBRAIC VARIETIES 3
we can furthermore replace v k2 + 8m by 2v/2m:

o 1 Bk s " k Jam 4 o
N —— | —+ - xp [ = g
" vmmm \ 4 4 " PV T3 ¢
with
kK* K k m 1
* — mn | S 4 E/R2 £ m+ 2 _minim) — ZIn(m).
cr, mn<4+4 l<:+8m>-+—2\/§ m+2 m1n(m) 2n(m)

In case m is sufficiently large with respect to k, we can estimate In(k?/4 + k/4 - Vk? + 8m) by
1 In(m) + « for some constant a:

Cn = %1n(m)+am+ 2—\19/5\/E+%—mln(m)—%ln(m)
< —Tln(m)+(a+1/2)m+i\/ﬁ
-2 2v2
< —%ln(m)+(a+1/2+ 2—\";/5)771
= m<a+1/2+L—lln(m)>.
2v2 2
Finally, Cy, = exp(C},) converges to zero. O

Proposition 2. Denote by P(R™) the ring of all polynomials on R™. Then the linear space
Yo = 77(R")-e’7’2 is dense in the space C2_ (S™) of all continuous functions on S™ = R"U{oco}
vanishing at infinity.

Proof. Suppose the closure ¥, of the linear space ¥, does not coincide with C, (S™). Then the

Hahn-Banach Theorem implies the existence of a linear continuous functional L : C°(S") — R
such that

1. L|Eoo = 0;
2. L(go) # 0 for at least one go € C2 (S™).

According to Riesz’ Theorem (see [Rud, Ch.6, p.129 ff.]), L may be represented by two regular
Borel measures g4, p— on S™:

L = [ @@~ [ f@an @),

In particular, gy and p_ are finite. The first property L|y,_, = 0 of L implies
7,,,2 71‘2
[ e @@ = [ e b du (o)

for any polynomial p(z). Let us introduce the measures vy = e’rz,ui on the subset R™ C S™.
Then

| 0@ = [ s

holds and remains true for any complex-valued polynomial. We may thus choose p(z) = pp, ()
as in the previous lemma

pm(z) = z_: i (k,z)* Ja!.

But, then

2

| @ duite) = [ @ dne) = [ pul@)de-@) = [ puloe du(o)

n
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together with the uniform convergence of pm(:z:)e”’2 to eike) g1 implies

/ ei(k,x)e_TZ dl//-i-(l') _ / ei(k,ac)e—,a2 d/l,_(ilf),

ie.,

/ ) duy (z) = / ey du_(z).

Therefore, the Fourier transforms of the measures v, and v_ coincide. Consequently, by
Bochner’s Theorem (see [Mau, Ch.XIX, p.774 ff.]) we conclude that v; = v_ on R". The
linear functional L : C°(S™) — R must thus be the evaluation of a function at infinity:

a contradiction to the existence of a function go € C% (S™) satisfying L(go) # 0. O
4. THE MAIN RESULT

Theorem 1. Let the closed subset M C R"™ be a smooth submanifold satisfying the polynomial
volume growth condition. Then the ring R[M] of all polynomials on M is a dense subspace of
the Hilbert space L*(M,e~"" dyu).

Proof. Consider the one-point-compactification M C S™ of M C R". Then Proposition 2 of
Section 3 implies that

Seo(M) = R[M]-e" /4

is dense in C% (M). We introduce the measure dv = e~""/2du, where dy is the volume form of

M. Since
/ dv = / eiTZ/Zdlu = /(e”z/“)ze*er,u =V < 00,
M M M

dv defines a regular Borel measure d on M (by setting di’(co) = 0). Therefore, the algebra
C% (M) of all continuous functions on M vanishing at infinity is dense in L?(M,d?p):

CO (M) = L*(M,dp).
For any function f in L?(M, e du) we have

[ ger e = [ jperin < o
M M

and, therefore, fe*r2/4 lies in LZ(M,dﬁ). Thus, for a fixed € > 0, there exists a function
g € CO (M) such that

[ 1ge = P < ef2.
M

According to Proposition 2 we can find a polynomial p(z) € R[M] approximating g:

sup |g(z) —p(:v)e_"Z/ﬂ2 < g/2V.
meM

Using the inequality ||z + y|* < 2|z|]* + 2||y||* we conclude
[ 1@ plage e < e
M
but this is equivalent to

/ 1f(z) — p()Pe™ " dp < &.
M
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5. EXAMPLES AND FINAL REMARKS

We shall give a few simple examples. Notice that we recover, of course, that the polyno-
mials are dense in LZ(R”,e’Tzd,u) (Hermite polynomials) or in L?(M,du) for any compact
submanifold (Legendre polynomials in case M = [—1,1]).

Ezample 1. Consider a revolution surface in R? defined by two polynomials f, h

z = f(u1) cosus
y=f(ur)sinuz , f(u1) >0, (u1,uz)€ R x][0,27].
z = h(u1)

Then we have dp = fv/f? + h'* duyduy and r2 = f2 + b2, and thus obtain
R|[f cosus, fsinus, h] is dense in L*(R x [0,27r],e_(fz+h2)f\/1“2 + h'? duidus) -

In the special case of a cylinder, i.e. f = 1, h = uy, this reduces to the well known fact that the
ring
R[uy, cosus, sinug,] = Rlui] ® R[cosus, sin us)]

is indeed dense in the Hilbert space

L*R x [0,27], e dugduy) = L2(R, e duy) ® L*([0, 27, duy) .
Ezample 2. Let F : C — C be a polynomial and consider the surface defined by

f: C—R?> f(2)=(2,9,F(2)|), z=z+iy.
Then one checks that du = /1 + |F"|?|dz|? and r? = |2|? + |F(2)|?. Thus the following holds:
Rlz,y, [FR) = LR, e D IR |dz?).

Let us study the polynomial F' = 2z2* in more detail. Here the coordinate ring coincides with
the usual polynomial ring R[z, y] in two variables, and thus we have proved that these are dense
in

L*(R2, e—(\z\2+|z|4’“)\/1 + 4k2|z|2C2k=1) |d2]?) .

Ezample 3. We finish with a one-dimensional example: the graph M = {(z, f(z)} of a polyno-
mial f: R — R". Then dpu = /1 + ||f'||? dz, and we obtain

Riz] = LZ(R76*(I2+IIJ‘($)H2) /T+ (] dz) .

Remark. The main result raises an interesting analogous problem in complex analysis which,
to our knowledge, is still open. It is well known that the polynomials on C™ are dense in the
Fock- or Bergman space

Fcr) = {fe L2(C”,e*”2d,u) | f holomorphic }.

Furthermore, a theorem by Stoll (see [Stol], [Sto2]) states that from all complex analytic
submanifolds N of C", those with polynomial growth are exactly the algebraic ones, and thus
the only ones for which the elements of the coordinate ring are square-integrable with respect
to the Gaussian measure. It is then common to study the space

F(N) = {fe€ LQ(N,e_Tzdu) | f holomorphic },

but we were not able to find any results on whether C[N] is dense herein.

More elaborate applications of the main result to the situation where M carries a reductive
algebraic group action will be discussed by the authors in some forthcoming works (see e.g.
[Agr]). In this case, one can decompose the ring R[M] into isotypic components and, via
Theorem 1, one obtains a decomposition of L?(M, e dp) analogous to the classical Frobenius
reciprocity.
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