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Abstract

In this paper we will prove new extrinsic upper bounds for the eigenvalues of the
Dirac operator on an isometrically immersed surface M? — R? as well as intrinsic
bounds for 2-dimensional compact manifolds of genus zero and genus one. Moreover,
we compare the different estimates of the eigenvalue of the Dirac operator for special
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1 Introduction

The Dirac operator D acting on spinor fields defined over a 2-dimensional, compact,
oriented Riemannian manifold (M?2,g) with a fixed spin structure has a non-trivial
kernel in general. Therefore, lower bounds for the eigenvalues of D are not known
in case the genus of M? is positive. The genus zero case is an exceptional one: using
the uniformization theorem for simply-connected Riemann surfaces, we conclude
that any metric ¢ on S? is conformally equivalent to the standard metric g, of S2.
Since the dimension of the space of all harmonic spinors depends on the conformal
structure only, it turns out that, for any metric ¢ on S?, there are no harmonic
spinors. This observation yields a lower bound for the first eigenvalue \? of D?
proved by J. Lott (1986) and Chr. Bar (1992): the inequality
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holds for any Riemannian metric on S (see [2], [12]).
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On the other hand, several upper bounds for A\? depending on different geometric
data are known. Intrinsic upper bounds involving the injectivity radius and the
Gaussian curvature have been obtained by H. Baum (see [6]) and Chr. Bar (see
[3]). In case the Riemannian surface (M?2,g) is isometrically immersed into the
3-dimensional Euclidean space R?, one has extrinsic upper bounds depending on
the C%-norm of the principal curvatures k1, ks of the surface (see [6]). Denote by
H = (k1 +K2)/2 the mean curvature. Then the following estimate for A\? depending
on the L%-norm of the mean curvature H is well-known (see [7], [4]):

H?dM?
2 o IM:
"= vol(M2,9)

In the present paper we will prove stronger extrinsic upper bounds for A? in case
of an isometrically immersed surface M? < R? of arbritrary genus as well as an
intrinsic upper bound for genus zero and genus one. Moreover, we will compare
the different estimates of the eigenvalue of the Dirac operator for special families of
metrics.

The extrinsic upper bound in case of a surface isometrically immersed into R? de-
pends on a smooth functions f : M? — R.

Theorem 1: The first eigenvalue \? of the square of the Dirac operator on a surface
M? < R® is bounded by

H2f2dM? + / Jgrad f[%dM?
M
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where f: M? — R is a smooth function.

Suppose now that (M?, g) is a two-dimensional Riemannian manifold diffeomorphic
to S2. Denote by g, the standard metric of S2. Then there exists a uniformization
map, i.e., a conformal diffeomorphism ® : S? — M?. Let us introduce the function
he : S? — R by the formula,

©*(9) = g go-

The set U(S?, M?) of all uniformization maps preserving the orientation can be
parametrised by the elements of the connected component of the group of all con-
formal diffeomorphisms of S?, i.e., U(S?, M?) ~ SL(2,C). We introduce a new
invariant 02 (M?, g) defined in a similar way as the conformal volume of a Riemann
surface (see [11]):

|grad(he)|?

5 (M2, g) = inf -
[

ds?: @ EU(SZ,MZ)}.

The vector field grad(he) is the gradient of the function he : S* — R with respect
to the standard metric of S2.



Theorem 2: Let (M?,g) be a two-dimensional Riemannian manifold diffeomorphic
to the sphere S%. Then

o _ Opy)
vol (M2,g9) — vol(M?2,g)

holds.

The same method applies to Riemannian metrics on the two-dimensional torus 7°2.
The spin structures of 72 are described by pairs (1,£2) of numbers ¢; = 0,1, the
trivial spin structure corresponding to the pair (¢1,e2) = (0,0). Let [' be a lattice in
R? with basis v1, v2 and denote by v}, v} the dual basis of the dual lattice I'*. We will
compare the flat metric g, on the torus 72 = R?/I' with a conformally equivalent
metric g = hg,.

Theorem 3: Let (M?,g) be a two-dimensional Riemannian manifold conformally
equivalent to the flat torus T? and equipped with the trivial spin structure. Then the
Dirac operator on (M?,g) has a two-dimensional kernel. Moreover, the first positive
eigenvalue \2(g) of D? on (M?,g) is bounded by
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Theorem 4: Let (M?,g) be a two-dimensional Riemannian manifold conformally
equivalent to the flat torus T?. In case the spin structure (e1,£2) # (0,0) is non-
trivial, the Dirac operator has a trivial kernel and \2(D) is bounded by

/ —dT2

h2dT?

A(g) <
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Moreover, the inequality

d(h)|?
N(D)vol (4%, g) < Ni(govol (17, g,) + [ | B8 (0 g
T
with
X2 (go)vol (T2, go) = 72 le1v] +82”2|
T iPlP — (7. 08)
holds.

We shall apply the previous results to two families of surfaces of special interest.
Let us first consider the ellipsoid

52
E(a) = {(m,y,z) € R :x2+y2+¥ =1;.



A calculation of the volume yields that the lower bound 47 /vol (E(a)) for A\2(a) is
a monotone decreasing function of the parameter a:

lim 2T _o im — 2
a0vol (E(a)) = 7 asocovol(E(a))

Using the upper bounds for A\?(a) already known, we cannot control the behaviour
of A\2(a) for small or large values of the parameter a. For example, the L2-bound
given by the mean curvature H has the following limits:

/ H*dE(a . / H*dE(a 1
Vol (E(a)) A, vol ~ vol(E(a)) P

Now, a combination of our stronger extrinsic and intrinsic upper bounds for the first
eigenvalue of the Dirac operator yields the following improvement for the ellipsoid:

Theorem 5: The first eigenvalue \? of D? on the ellipsoid E(a) satisfies

T )2 3 ~D 9.
1.) 2§£1_r>r(1))\1(a) <5+n2x272;
2.) hm)\() 1.

In the last part of this paper we apply our estimates to a tube of radius r around
a circle of curvature &, i.e., a "round” torus. Parametrizing the spin structure as
before, the inequalities for A?(k,r) allow us to prove, in particular,

2 i 22 _
Thg{l) Al (K, r)vol (k,T) = ili% A (k,7r)vol (k,7) =0
for the spin structure (e1,e2) = (1,0) and

hm M (k,r)vol (k,r) < 7

re—1
for the spin structure (¢1,e2) = (0,1) (for these two spin structures, no upper bounds
were available before). However, they turn out to yield no improvement for the in-
duced spin structure (e1,e2) = (1, 1); thus, in this case, the classical bound involving
the integral over H? divided by the volume is still the best one available.

For a conformal change of the Riemannian metric g = h*g, on a surface, one easily
proves the following C%-estimate for the first non vanishing eigenvalue A\?(g) of the
Dirac operator (see for example [1], Thm. 4.3.1)

M) _ o - Mla0)
h?nax S Al (g) B hfrlln .

Altogether, one obtains the following asymptotic behaviour for A?(g) on a tube of
radius r around a circle with curvature x:
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2 Extrinsic upper bounds

Let M? be a compact, oriented surface isometrically immersed into the Euclidean
space R and denote by N (m) the unit normal vector of M? at the point m € M?2.
The restriction ®|,,2 of a spinor field ¢ defined on R? is a spinor field on the surface
M?. Let ® be a parallel spinor on R3. Then the spinor field

1 ) 1 -
is of constant length on M? and satisfies the two-dimensional Dirac equation
D(¢*) = Hy",

where H denotes the mean curvature of the surface (see [10]). Thus, starting with
two parallel spinors @1, ®5 with

|Q)1| = |Q)2| =1 and <(I>1,q)2> = 0,
we obtain two solutions ¢7, ¢35 of the Dirac equation
D(gy) =Hey, , a=1,2

such that |o7(m)| = |p5(m)| = 1 and (pj(m),p3(m)) = 0 holds at any point
m € M?. Given a real-valued functions f : M? — R we consider the spinor field

¥ = for.
After applying the Dirac operator to v

D(y) = Hyp + grad (f) - 7,

a direct calculation yields the formula



ID(y)|* = H?f? + |grad (f)|.

In this case the Rayleigh quotient coincides with

[ p@PE [ Epa? [ e ()R
M?2 i M2 M2

Finally, we have proved Theorem 1.

3 Intrinsic upper bounds for a surface diffeomorphic to
S2 or T?

Let (M?,g,) be a compact, oriented 2-dimensional Riemannian spin manifold and
denote by D, its Dirac operator. Moreover, consider a conformally equivalent metric

g = h4go-

The corresponding Dirac operator D is related with D, by the formula (see [5])

1 grad (h)
D — ﬁDO + h3 .

Consequently, the equation D(¢) = A is equivalent to

Do) = M3 — grad(h) - .

For any spinor field ¢ we compute the L2-norm of D(z):

ra 2
[ wtpase = [ {ipae  E5OE 2 1 D erad 00Dt asi
M?2

M2

Suppose now that 1 is an eigenspinor of the Dirac operator D, with eigenvalue A;.
Then Re (grad (h) - ¢, Dy(¢)) = 0 and we obtain the formula

[ {e O g

M2

| 1Dt Pay? -
M?2

Hence, the first eigenvalue A\?(D) of the Dirac operator is bounded by

rad (h)[?
[ e )

R
M

M(D) <inf  inf
A D, ("/’):)\z"/)



Let us now discuss the special case that (M?, g,) is the two-dimensional sphere with
its standard metric and g a conformally equivalent metric. The first eigenvalue of
the Dirac operator on S? is \; = 1. Moreover, the corresponding eigenspinor 4 is a
real Killing spinor satisfying the differential equation

V()= —5X -y , X eT(s?)

In particular, the length of ¢ is constant and we obtain the inequality

[ Bt
S2
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2
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Starting with a surface (M?2,g) diffeomorphic to S2, the latter inequality holds for
any uniformization, i.e., for any conformal diffeomorphism ® : S? — M? such that
®*(g) = h3go. In particular, we have proved Theorem 2.

Remark: For any conformal diffeomorphism ¥ € SL(2,C) of the two-dimensional
sphere $? we denote by hy : S — R the function defined by the equation

¥V (g0) = hillfgo-

Let f: S? — R be a smooth function. Then we define the number
SO (f) = inf{/z lgrad(f o @) 4 grad(log(hy))[?dS? : ¥ € SL(Z,(C)} .
5

In case of a uniformization ® : S — M? such that ®*(g) = h}g,, we have

d(ha)|?
/ |g1“a (2 <I>)| dSZ — / |grad(log(hq>))|2dS2
52 hq> 52
and, consequently, for the quantity 02 (M?, g) defined in the introduction, the rela-
tion

0¢"(M?, g) = 62" (log(ha)).

We now consider the case that (M?2,g) is the flat torus 7% = (R?/T, g,) given by a
lattice I' in R? with trivial spin structure. In this case there are two parallel spinor
fields ¢ and ¢~ of constant length and the first non-trivial eigenvalue \?(g,) of the
square of the Dirac D, operator on T2 is

Ai(go) = 4 min{lv*l2 c 0#£v* € F},

where T'* denotes the dual lattice (see [8]). Suppose now that g is a metric on M?
conformally equivalent to g,, ¢ = h*g,. Then the kernel of the corresponding Dirac
operator is again two-dimensional and spanned by the spinor fields %(,0+, %(pﬁ Fix
a spinor field ¢ such that D,(1)) = A1(go)®. Then the length of 1) is constant, i.e.,
|| = 1. The spinor field ¢* = 4/h3 is orthogonal to the kernel of the Dirac operator
D with respect to the L?-norm of the metric ¢g. Indeed, we have



*1 + 2 1 1 + 4 g2
Juo (7)o = [, (o) o =

1
A1(90)

_ 1 4y 2
= /TZ (Do), o) dT? =

This observation yields the inequality

|, Do)y ar? =0,
T2

|, Ip@)pa?
M2

/ |’l/)*|2dM2
M2

for the first non-trivial eigenvalue of D? on (M?,g). Moreover, we have

1 1
%2 2 _ 4 32 _ 2
/2|1/)|dM _/T2_h6th _/TthdT

A(g) <

and

T 2
[ 1w = [ {10+ B s 2o G (g0, Dot far?,

Since the equation

Do(**) = Do() = Ai(go)th = Ai(go)h*9*
can be rewritten in the form

Do) = Mg — 5 grad ()9,
we obtain the formulas
2 Re (grad ()9, Do(4*)) = —7 [arad (1) |4

and

Do = {go) + 55 levad (1)} 102

Altogether, this implies

4 1
*\12 7772 2 = 2| L 2
[ ipwora = [ {3300 + 15 lerad®)? } et
and it proves Theorem 3, in particular.

Let us now consider the case that the spin structure on (M2, g) ~ T? is non-trivial.
Then the Dirac operator has no kernel and the eigenspinors of the Dirac operator
D, on T? are again of constant length (see [8]). Then our method provides the
inequality



[ ldf
)\2(9) < A%(go)VOI (T2ago) T2 h?
g7 = vol (M2, g) vol (M2, g)

The Gaussian curvature G of the metric g is given by
h*G = —2A(log(h)),

where A denotes the Laplacian with respect to the flat metric. We integrate this
latter equation:

|grad(h)|*

2
T

G - log(h)dM? = / h*G - log(h)dT? = —2
M? T2

thus obtaining

G - log(h)dM?
V(g < Mlovol (T2, 0,) 1 [, G tost)
L) = vol (M2, g) 2 vol (M2, g) ’

where G denotes the Gaussian curvature of (M2, g).

However, we can use a more delicate comparison for the Dirac operator depending
on the spin structure (e1,e2). Consider the dual lattice I'* with basis v}, v; as well
as the 1-form

w = mi(dz,dy) - (e1v] + £203).

The Dirac operator D¢142) corresponding to the spin structure (g1,e3) on (M2, g)
is related to the Dirac operator D for the trivial spin structure by

DEve2) = D 4 it,

where the vector field ¢ is dual with respect to the metric g to the 1-form w (see [8]
Let ™ be the parallel spinor field with respect to the flat metric. Then ) = %(p
is a harmonic spinor on (M?,g), i.e., D(3) = 0. Therefore, we obtain

).
)

|D(81’82)(¢)|2 = |t|3|1/)|2 = |w|3|1/)|2

In dimension n = 2 the L?-length of a 1-form depends only the conformal structure,
i.e., if the metrics ¢ = h*g, and g, are conformally equivalent, then for any 1-form
w the formula

2 79 12 2 2
|lwlygdMy = |wly dM,
holds. Now we integrate:

1 1
(£1562) (/) 27 Nf2 — 2 g2 _ 2\« %2 2
/ 2 |D ()|7dM /T? 2 |wly, dT° = 7°|e1v] + €903 o 2 dT=.

On the other hand, we have



1
/ |2 dM? :/ —h*dT? = | h*dT%
M? T2 h T2

finally, we obtain

1
/M2 |D(81782)(1/))|2dM2 T2 ﬁdTZ
= e} + v} ———.
/ [ip|2dM? h2dT?
M?2 T2

This equality finishes the proof of Theorem 4.

4 The first eigenvalue of the Dirac operator on the el-
lipsoid with S'-symmetry

We now discuss the first eigenvalue of the Dirac operator on the ellipsoid E(a) C R?
with S'-symmetry defined by the equation

2 2 2
a

For the calculations we will use the following convenient parametrization of E(a):

r=V1—w?cose , y=V1—w?sing , z=a-w |,

where the parameters (w, ) are restricted to the intervals —1 < w <1, 0 < ¢ < 27.
For brevity we introduce the function

Ay(w) = (1 — a®)w? + a?.

Then the Riemannian metric ds?, the Gaussian curvature G, the mean curvature H
and the volume form dFE/(a) are given by the formulas:

1) ds? = LaW) g2 4 (1 — w?)dy?;

a 1—w?

2

2) H?= A (w){Ag(w) + 1}
3.) G=a’A,%(w);
4.) dE(a) = A}L/Q(w)dw A dep.

4.1 Evaluation of the extrinsic upper bounds

We shall use the extrinsic upper bound for the eigenvalue of the Dirac operator for
the family of functions fg defined by

fo=2lw) B>

Notice that fgz is just the S-th power of (a multiple of) 1/v/G. The length of the
gradient of the function fz on the ellipsoid is given by

10



5.) lgrad (fp)]* = 45%(1 — a®)?AF7 7 (w)w? (1 — w?).

Let us first discuss the case that the parameter a < 1 is small. Then a? < A,(w) < 1
holds and we can estimate the first integral appearing in Theorem 1

1
0< /E( )H2f§dE'(a) < 47ra2/A3f8_5/2(w)dw.
0

The latter integral may be rewritten using the transformation v'1 — a? w = az, thus
yielding

o PTE
0</ H?f2dE(a) < 47 ———— / 1+ 22)26-5/24q.
>~ E(a) fﬂ ()_ ”Tm / ( )

We shall prove that for all g > %

lim H*f5dE(a) = 0.

a—0 E(a)
Indeed, in case 3 > g, we have AZ/B =5/ 2(w) < 1 and the result follows immediately.
If% <p< %, we use the inequality a? < A, (w), i.e., Azﬂ_w?(w) < ¢*¥=5, Finally,

consider the case that % < p < %. Then one has 1 < % —20 < % and, hence,

(14 2?) < (14 2?)%/2=28 which implies

V1—-a? 00
/ (14 22)2P=5245 < /
0 0

and finishes the argument. In a similar way we show

Q=

dzr
1+ 2

< 00

1

1
2
lim/ fng(a) = lim 47T/Azﬂ+1/2(w)dw = 47r/w4ﬂ+1dw S—
E(a) a—0 )

26+ 1

a—0

Finally, we investigate the integral
1
/E( | lgrad(f5)2dE(a) = 16m(1 — a2)2 5 /Agﬂ—5/2(w)w2(1 — w?)dw.
a
0

Using the Lebesgue theorem (8 > %) we conclude

- B
28— 1

1
lim lgrad(fs)|*dE(a) = 1675? /w4ﬂ*3(1 —w?)dw = 4
a
0

a—0 E(a)

Since the first eigenvalue A?(a) of the square of the Dirac operator on E(a) is bounded
by the expression

11



2 r2 2
foy HARE@ [ (1) PdB(a)

A(a) < ,
| 13aE@
E(a)
we obtain
4nB-(28+1) BB +1)
limAf(a) < @F—12r 2 28-1

in the limit ¢ — 0. The latter inequality holds for any g > % For 8 =1 we obtain,
for example, the inequality

TimA?(a) < 6

a—0

and the optimal parameter § = % + % yields the estimate

TimA%(a) < 3+4+2vV2=~5,8.
a—0

Later, this result will be sharpened with the aid of the intrinsic bounds; however,
we already get as a partial result that \? remains bounded.
We now discuss the case of a large parameter a (a > 1). It is convenient to write

Ay (w) in the form Ay (w) = (a? —1) [agi 2}. The formulas 1.) - 5.) used before

1

imply
1 o2 28-5/2 , ,
|, etz / [ 1 ] w1 —w)dw
_ 4,62 1 . 0
1B (a T a?—1 L 26+1/2
/ fﬁ / l 3 ] dw
a
0
We compute again its limit for ¢ — oo:
[ lerad(f) B ()
lim =~ —0.
a—r00
fFdE(a)
E(a)

Thus, the asymptotic behaviour is dominated by the second term of the estimate:

1
Ww22B-1/2
. E(a) 0
lim =

1
a—00 4 1
| f3dB()
E(a)

2]2/3+1/2dw

O\

This yields the inequality

12



[1 o w2]2ﬂfl/2dw

1
T A2(a) < 0/
a—o0 71 —4 1
/[1 — WP 2 gy
0
for any 8 > % The special value in case of the parameter 3 = 1 can easily be

calculated to be

S 3

0 2 2

alggokl(a) < 0"

However, the inequality holds for any 8 > %; for § — oo we obtain the optimal
result

lim \?(a) <

a— 00

e

Remark: Let us point out that, for 3 = 1, the integral approximation of A?(a) is, on
both sides a — 0, 00, not the best one among the extrinsic upper bounds considered,
but we may come very close to the optimal value using the family of functions fg.
The exact formula holding for all parameters 0 < a < oo is in this case:

2+ %az + %a‘l) + (%az — %a4 — %aﬁ) f(a)
(% + a2+ %a‘l) — 2a5f(a)

A(a) < (

where the function f(a) is given by

fla) =
1
a?—1

\/1127—1) a>1

arcsin (
a

Figure 1 (a € [0,1]) and figure 2 (a €]1,00[) give an overview of the different ex-
trinsic bounds. The lower solid line is the only known lower bound proportional
to the inverse of the volume due to Lott and Bar; the upper solid line is the well
known upper bound involving the integral over H? divided by the volume. The short
dashed curve corresponds to § = 1/2 in our family of functions; as seen before, this
is the maximal value for 8 for which the curve does not remain bounded as a — 0.
Its limit for a — oo is 1/3. Finally, the long dashed curve is the upper bound for
B =1 as discussed previously.

13
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4.2 Evaluation of the intrinsic upper bound

We now apply Theorem 2 to the ellipsoid E(a). We can find a uniformization map
® : S? — E(a) of the form ®(z,p) = (w(z),p). By formula 1.) for ds? we obtain

v (as2) = P )P de? + (1w o)

and the condition

&* (ds?) = hi(a) S{da? + a?di?}

4
(14 z?)
implies the differential equation

1/2’LU$
Aa ( ())wl:_l (*)

1—w? T

as well as the boundary conditions w(0) = 1 and w(co) = —1. The function hi(z)
is then given by

(1 + z2)?
472 7

ha(2) = (1 — wj(2))

where w, () is the unique solution of the differential equation (*) depending on the
parameter a. We calculate the gradient of h,(x) with respect to the standard metric

4
Yy = d2 2d 2
g 7(1+x2)2{ z” + 2z dp”}

of the sphere S§? and finally obtain

/'grad s = 5701 Lol 2dac
_20:)0 1/2 x)) w2 +1 '

Theorem 2 then provides the inequality

, 47 I, (a)
NS SoE@) T vel(E(@)

The solution of the differential equation () has the symmetry wq(z) = —w, (l>

x

Indeed, suppose that wg(z) is a solution and consider w*(z) = —wy, (%) Then
w* solves again the differential equation (%) and w*(0) = —w,(oc0) = 1,
w*(00) = —wq(0) = —1. This implies that, for any parameter 0 < a < oo, the

solution wy(x) of the equation () vanishes at z = 1. Consequently wg(z) is a
decreasing function and we have

we(z) >0 for 0<z<1, 0<a<oo,
we(z) <0 for 1<z<00, 0<a< oo

In particular, I;(a) may be reduced to an integral over the interval [0, 1]:

15



1 2
1 wq () 2?2 -1
Li(a) = —< + ) dzx.
o/ T \A (w(w) 7 H1

We study again the limits for a — 0,00. First we consider the case that a < 1.
Then, for all points 0 < x < 1, we have

AV (wy(x)) = /(1 — a?)wd(z) + a2 > VI - a? w,(x)
and, consequently,

A (wa(2))
1 — w2(z)

wa (x)wy ()

wh(z) <V1—a? |02
a

We integrate this inequality on the interval [y, 1]. Using the fact that we(1) = 0, we
obtain the estimate

2
wiy) <1l—yvie® | 0<y<L

On the other hand, we have Ay 2(wa(gc)) < 1. This inequality implies

1/2
wy(@) _ A (wa(@)w(@) 1
1 —w?(z) = 1 —w?(x) x
and, finally,
1— 2
wa(y)Zl+Z2 , 0<y<L

Altogether, for any = € [0, 1], we obtain the inequalities

2

l_x . T
22 Silil[l] We () §;1_r>r(1) we(x) <1 — 22,

Now we apply the following observation: Let w, be a sequence of numbers such that

a.) 0 <w, <1

b.) lim w, >0 .
a—0

Then the sequence wa/A}/2 with A, = (1 — a?)w? + a? converges to 1, i.e.,

In our situation we can conclude that

we ()

lim ————-2—=1
=0 Ay (wq (w))

and finally we are able to calculate the limit:

16



2 1\2
lim[;(a) = limn / E lw“(‘r) + ) e
a—0 a—0 / T Aa/2(wa($)) z? 41

1 2
1 2?2 -1 z3
= — (1 de =4 ——dT.
W/a:(_'_x?-i—l) T 7r/(1+x2)2x
0

Using liII(l) vol (E(a)) = 2m we obtain
a—

3

1

—_— 3

im\2(a) < /7‘% = — R .

i%Al(a)_2+2 (1+x2)2d$ 2—|—ln2 2,2
0

In a similar way we handle the case that ¢ > 1. The inequalities (0 < z < 1)
1 < Ag(we(z)) < a?
allow us to prove the estimate

1— $2/a

1+$2/(L Swa

(z) <

which is valid for all 0 < z <1 and a > 1. However, the function w/A}Lﬂ(w) is a
monotone decreasing function for w > 0. Consequently, we have

1—g2/a

14a2/a wq ()
o~ < <1
AL () T A (wa()

and from this inequality we can deduce

we () ? 4a2z?/
(1 ) m) = (=)0 — 2+ {1+ a7

a

We split the integral I;(a) into three parts:

1 2
1 we () 22
Li(a) = = —<<7—1>+ ) dr =
0/ z \\ Ay (wa(2)) L+ a2
1 1

_ z® wa($) rdx
— in [ i [ (St 1) 5

0 0 @
/ 1 < we () >2
tr [ = | —t— — 1| dax.
0/ 2\ AL (wa ()

We calculate the last term using the differential equation for w,(z) and obtain the
value of the integral. The volume vol (E(a)) of the ellipsoid behaves like 2a, i.e.,
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lim M —
a—00 a

Therefore, we can control the asymptotic behaviour of \?(a) for a — oc:

1
47 a I(a) a < 4 4 1
)\2 < — ~ — _/ d —
1) s TolE@) ¥ o vl E@) 7 ra ) Tty

5 The first eigenvalue of the Dirac operator on the tube
around a circle

We consider a circle in a plane with curvature x and length L = 27/k. Let r be a
fixed radius and denote by M?(r) its tube in R?® of radius 7, r& < 1. The induced
metric on the surface M?(r) is given by the formula

g = (1 —rrcosp)ids® + ridy?,

where we use the length parameter 0 < s < L for the circle and 0 < ¢ < 27
parametrizes the angle of the tube. First of all we calculate a uniformization

® :[0,L] x [0, A] — [0,L] x [0,27]

of this metric on 7. Suppose ® is given by the condition ®(s, ) = (s,(1)). Then
the equation ®*(g) = h*(ds? + dy?) yields the differential equation

¢' () 1

1 —rrcos(p(y)) r
and the function h = h(s, ) is given by

h? =rg' (1) = 1 —rrcos(p(y)).
Using the integral (a < 1)

/ de 2 . ((Q+a)tg(5)
1 —acos(z) /1— a2 & V1 — a2

we obtain the solution (1))

o (49) - i o ().

Since (1) maps the interval [0, A] bijectively onto [0,27], we conclude
A = 27nr/v/1 — r2K2. Moreover, the function h? is determined by

e (22
1+ tg? (@) -
1+ tg? (VI —r2R2 )
1+ 7K+ (1 —rk)tg? (%mz/)) .

2 = 1—rrcos(p(yh)) =1—rk

= (1—r%s?
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Hence, we obtain a uniformization of the metric of the tube M?(r) parametrized on
[0, L] x [0, 27 ] The basis of the lattice is

Vi—
2r
U1 = (Lao) , U2 = <03 W) )

and thus the dual lattice has the basis

1 V1 —r2r2
i=(Lo) U;:(O,$>.

L 2nr

By Theorem 4 we obtain the estimate

1

1 —r2K2 > 72 h?
€2

dT?
1
M(k,r) < - (/{%1 + 5
,
h2dT?

4
T2
for the first eigenvalue of the Dirac operator on the tube M?(r) with respect to the

spin structure (e1,€2). We compute these two integrals:

A 21

h2dT2 / / h%(s,4)dsdyp = L - / '(4)dip = Lr / do = 2nrL,
0 0

and

2w

A
e ‘/ s (1—mcgz(so(w)»?"”'(WM:LTO/ e

Consequently, this ratio is equal to

— 2 2
T2 h2 dT ]_ 4 d(p ].

27 ) (1 —rrcos(p))? - (1 —r2g2)3/2 7

h2dT?
T2

ie.,

1 1 — r2k2 1
22 e )
1(k,7) < 1 (” &1+ ) 82) (1 — r2x2)3/2

The volume vol (k,7) of the tube equals
r
1 = 4’ —
vol (k,r) =4 -

and we obtain the inequality

9 9 1 —r2k? 1
A (K, r)vol (k,r) < 7° | ree; + s =22t - (%)

Now we apply the inequality
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|grad (h)[”

AT’

A (s, 7)vol (s, 7) < Mg )vol (T2, g,) + |
T2

to our situation. Since h? = r¢/ (1)) = 1 —rkcos(p(1))), we can calculate the gradient
of h:

jgrad (R)[* _ rk* sin®(p(4))¢' (1)

h? 4 1—rrcos(p(y))
and, therefore, we obtain
grad (W2 7 [ sin’(y) i
/Tszirﬁ/Tcos(cp)d(p:R(1_\/1_T2n2)'

0

Then we have proved the estimate

1_ 2.2 1 2
M (k,r)vol (k,r) < 7 <rﬁ61 + 7":; i 52> . m+:_"5(1_\/ 1 —7r2k2) . (xx)

We discuss the inequalities (x) and (xx) for the three non-trivial spin structures on
the tube. For all cases, we provide a figure in which the long dashed line represents
the estimate(x), and the short dashed line the estimate (x). The z-axis uses the
variable @ = 7k, the y-axis is to be understood in multiples of 72. For comparison
matters only, we have also drawn the line for constant value 2.

Case 1: £; =1, g5 = 0. In this case we obtain

1

A2 (k,r)vol (k,r) < W2Tﬁm (%)

M (k,r)vol (k,r) < ﬂ + 7r_2 (1 —V1-— r2i<;2) (%)
1\ ) = ,71 — 2,2 e

In particular, we conclude

2 e 22 _
}1_1)1(1) A (K, r)vol (k,r) = ilg%) Al (k,m)vol(k,r) = 0.
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o= 0.2 0.4 0'6 0.8
a
Figure 3 (e1 = 1,62 =0)
Case 2: £; =0, g5 = 1. In this case the inequalities are
2
T 1
N2, r)vol (1) < — = (x)
TR /1 — r2K2
2
(%)

A (k,r)vol (K, 1) < —
TK

and, in particular, we conclude
im \?(k,r)vol (k,7) < 72
rk—1
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Figure 4 (¢; = 0,692 = 1)

Case 3: ¢ =1=¢9.

In this case we obtain the estimates

A (k,r)vol (k,T) < W—2
’ Tk

1
(1 — r252)3/2
2

M (k,r)vol (k,7) < T
-

1
V1 —1r2K2

,/T2

+ —
K

(1 —V1- r2i<;2)

()

. ()

Let us compare these estimates obtained via the uniformization of the tube with the
estimate using the embedding M?(r) C R®. Notice that the embedding induces the

spin structure e; = 1 = €5 on the tube. Then we obtain

M (k,r)vol (k, 1) < /

M?3(r)

2

s 1

H2dM?*(r) < — ——
(r) < Yy o R

(% * )

i.e., the extrinsic bound (drawn as a solid line in figure 5) for A? is better than the
intrinsic estimates.
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4

Figure 5 (e; = 1 = e9)

Case 4: ¢ =0=¢9 In thiscase \g(D) = 0 is an eigenvalue of the Dirac oper-
ator and Theorem 3 yields the following estimate for the first non-trivial eigenvalue
M (k,7):

[ e
(1 — rrcosp)?

2
T dp
/ (1 — rK cos p)?
In particular, we obtain
2 T 2 2
= <
’11_1% A(k,7)=0 , }1_1}1(1) Ak, 1) <2k

and

. 2 o
r-l/iIBO Al (k,m)vol(k,r) = 0.
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