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1 IntroductionThe Dirac operator D acting on spinor �elds de�ned over a 2-dimensional, compact,oriented Riemannian manifold (M2; g) with a �xed spin structure has a non-trivialkernel in general. Therefore, lower bounds for the eigenvalues of D are not knownin case the genus of M2 is positive. The genus zero case is an exceptional one: usingthe uniformization theorem for simply-connected Riemann surfaces, we concludethat any metric g on S2 is conformally equivalent to the standard metric go of S2.Since the dimension of the space of all harmonic spinors depends on the conformalstructure only, it turns out that, for any metric g on S2, there are no harmonicspinors. This observation yields a lower bound for the �rst eigenvalue �21 of D2proved by J. Lott (1986) and Chr. B�ar (1992): the inequality4�vol (S2; g) � �21holds for any Riemannian metric on S2 (see [2], [12]).�Supported by the SFB 288 of the DFG. 1



On the other hand, several upper bounds for �21 depending on di�erent geometricdata are known. Intrinsic upper bounds involving the injectivity radius and theGaussian curvature have been obtained by H. Baum (see [6]) and Chr. B�ar (see[3]). In case the Riemannian surface (M2; g) is isometrically immersed into the3-dimensional Euclidean space R3 , one has extrinsic upper bounds depending onthe C0-norm of the principal curvatures �1; �2 of the surface (see [6]). Denote byH = (�1+�2)=2 the mean curvature. Then the following estimate for �21 dependingon the L2-norm of the mean curvature H is well-known (see [7], [4]):�21 � ZM2 H2dM2vol (M2; g) :In the present paper we will prove stronger extrinsic upper bounds for �21 in caseof an isometrically immersed surface M2 ,! R3 of arbritrary genus as well as anintrinsic upper bound for genus zero and genus one. Moreover, we will comparethe di�erent estimates of the eigenvalue of the Dirac operator for special families ofmetrics.The extrinsic upper bound in case of a surface isometrically immersed into R3 de-pends on a smooth functions f :M2 ! R.Theorem 1: The �rst eigenvalue �21 of the square of the Dirac operator on a surfaceM2 ,! R3 is bounded by�21 � ZM2 H2f2dM2 + ZM2 jgrad f j2dM2ZM2 f2dM2 ;where f :M2 ! R is a smooth function.Suppose now that (M2; g) is a two-dimensional Riemannian manifold di�eomorphicto S2. Denote by go the standard metric of S2. Then there exists a uniformizationmap, i.e., a conformal di�eomorphism � : S2 ! M2. Let us introduce the functionh� : S2 ! R by the formula ��(g) = h4�go:The set U(S2;M2) of all uniformization maps preserving the orientation can beparametrised by the elements of the connected component of the group of all con-formal di�eomorphisms of S2, i.e., U(S2;M2) � SL(2; C ). We introduce a newinvariant �Dirc (M2; g) de�ned in a similar way as the conformal volume of a Riemannsurface (see [11]):�Dirc (M2; g) = inf8<:ZS2 jgrad(h�)j2h2� dS2 : � 2 U(S2;M2)9=; :The vector �eld grad(h�) is the gradient of the function h� : S2 ! R with respectto the standard metric of S2. 2



Theorem 2: Let (M2; g) be a two-dimensional Riemannian manifold di�eomorphicto the sphere S2. Then0 � �21 � 4�vol (M2; g) � �Dirc (M2; g)vol (M2; g)holds.The same method applies to Riemannian metrics on the two-dimensional torus T 2.The spin structures of T 2 are described by pairs ("1; "2) of numbers "i = 0; 1, thetrivial spin structure corresponding to the pair ("1; "2) = (0; 0). Let � be a lattice inR2 with basis v1; v2 and denote by v�1 ; v�2 the dual basis of the dual lattice ��. We willcompare the 
at metric go on the torus T 2 = R2=� with a conformally equivalentmetric g = h4go.Theorem 3: Let (M2; g) be a two-dimensional Riemannian manifold conformallyequivalent to the 
at torus T 2 and equipped with the trivial spin structure. Then theDirac operator on (M2; g) has a two-dimensional kernel. Moreover, the �rst positiveeigenvalue �21(g) of D2 on (M2; g) is bounded by�21(g) � ZT 2 ��21(go) + 4h2 jgrad (h)j2� 1h6 dT 2ZT 2 1h2dT 2 :Theorem 4: Let (M2; g) be a two-dimensional Riemannian manifold conformallyequivalent to the 
at torus T 2. In case the spin structure ("1; "2) 6= (0; 0) is non-trivial, the Dirac operator has a trivial kernel and �21(D) is bounded by�21(D) � �2 j"1v�1 + "2v�2 j2 ZT 2 1h2 dT 2ZT 2 h2dT 2 :Moreover, the inequality�21(D)vol (M2; g) � �21(go)vol (T 2; go) + ZT 2 jgrad (h)j2h2 dT 2with �21(go)vol (T 2; go) = �2 j"1v�1 + "2v�2 j2qjv�1 j2jv�2 j2 � hv�1 ; v�2iholds.We shall apply the previous results to two families of surfaces of special interest.Let us �rst consider the ellipsoidE(a) = ((x; y; z) 2 R3 : x2 + y2 + z2a2 = 1) :3



A calculation of the volume yields that the lower bound 4�=vol (E(a)) for �21(a) isa monotone decreasing function of the parameter a:lima!0 4�vol (E(a)) = 2 ; lima!1 4�vol (E(a)) = 0:Using the upper bounds for �21(a) already known, we cannot control the behaviourof �21(a) for small or large values of the parameter a. For example, the L2-boundgiven by the mean curvature H has the following limits:lima!0 ZE(a) H2dE(a)vol (E(a)) =1 ; lima!1 ZE(a)H2dE(a)vol (E(a)) = 12 :Now, a combination of our stronger extrinsic and intrinsic upper bounds for the �rsteigenvalue of the Dirac operator yields the following improvement for the ellipsoid:Theorem 5: The �rst eigenvalue �21 of D2 on the ellipsoid E(a) satis�es1.) 2 � lima!0�21(a) � 32 + ln2 � 2; 2;2.) lima!1�21(a) � 14 .In the last part of this paper we apply our estimates to a tube of radius r arounda circle of curvature �, i.e., a "round" torus. Parametrizing the spin structure asbefore, the inequalities for �21(�; r) allow us to prove, in particular,limr!0�21(�; r)vol (�; r) = lim�!0�21(�; r)vol (�; r) = 0for the spin structure ("1; "2) = (1; 0) andlimr�!1�21(�; r)vol (�; r) � �2for the spin structure ("1; "2) = (0; 1) (for these two spin structures, no upper boundswere available before). However, they turn out to yield no improvement for the in-duced spin structure ("1; "2) = (1; 1); thus, in this case, the classical bound involvingthe integral over H2 divided by the volume is still the best one available.For a conformal change of the Riemannian metric g = h4go on a surface, one easilyproves the following C0-estimate for the �rst non vanishing eigenvalue �21(g) of theDirac operator (see for example [1], Thm. 4.3.1)�21(go)h4max � �21(g) � �21(go)h4min :Altogether, one obtains the following asymptotic behaviour for �21(g) on a tube ofradius r around a circle with curvature �:
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"1 = 0 = "2 "1 = 1 = "2 "1 = 1; "2 = 0 "1 = 0; "2 = 1limr!0�21(r; �) �2 1 14�2 1lim�!0�21(r; �) 0 14r2 0 14r2limr�!0 �21vol (r; �) 0 1 0 1
2 Extrinsic upper boundsLet M2 be a compact, oriented surface isometrically immersed into the Euclideanspace R3 and denote by ~N(m) the unit normal vector of M2 at the point m 2M2.The restriction �jM2 of a spinor �eld � de�ned on R3 is a spinor �eld on the surfaceM2. Let � be a parallel spinor on R3 . Then the spinor �eld'� = 12(1� i)�jM2 + 12(�1 + i) ~N � �jM2is of constant length on M2 and satis�es the two-dimensional Dirac equationD('�) = H'�;where H denotes the mean curvature of the surface (see [10]). Thus, starting withtwo parallel spinors �1;�2 withj�1j = j�2j = 1 and h�1;�2i = 0 ;we obtain two solutions '�1; '�2 of the Dirac equationD('��) = H'�� ; � = 1; 2such that j'�1(m)j = j'�2(m)j = 1 and h'�1(m); '�2(m)i = 0 holds at any pointm 2M2. Given a real-valued functions f :M2 ! R we consider the spinor �eld = f'�1:After applying the Dirac operator to  D( ) = H + grad (f) � '�1;a direct calculation yields the formula 5



jD( )j2 = H2f2 + jgrad (f)j2:In this case the Rayleigh quotient coincides withZM2 jD( )j2ZM2 j j2 = ZM2 H2f2dM2 + ZM2 jgrad (f)j2dM2ZM2 f2dM2 :Finally, we have proved Theorem 1.3 Intrinsic upper bounds for a surface di�eomorphic toS2 or T 2Let (M2; go) be a compact, oriented 2-dimensional Riemannian spin manifold anddenote by Do its Dirac operator. Moreover, consider a conformally equivalent metricg = h4go:The corresponding Dirac operator D is related with Do by the formula (see [5])D = 1h2Do + grad (h)h3 :Consequently, the equation D( ) = � is equivalent toDo( ) = �h2 � 1hgrad(h) �  :For any spinor �eld  we compute the L2-norm of D( ):ZM2 jD( )j2dM2 = ZM2 (jDo( )j2 + jgrad (h)j2h2 j j2 + 2hRe (grad (h) �  ;Do( ))) dM2o :Suppose now that  is an eigenspinor of the Dirac operator Do with eigenvalue �i.Then Re (grad (h) �  ;Do( )) = 0 and we obtain the formulaZM2 jD( )j2dM2 = ZM2 (�2i + jgrad (h)j2h2 ) j j2dM2o :Hence, the �rst eigenvalue �21(D) of the Dirac operator is bounded by�21(D) � inf�i infDo( )=�i ZM2 (�2i + jgrad (h)j2h2 ) j j2dM2oZM2 j j2h4dM2o :
6



Let us now discuss the special case that (M2; go) is the two-dimensional sphere withits standard metric and g a conformally equivalent metric. The �rst eigenvalue ofthe Dirac operator on S2 is �1 = 1. Moreover, the corresponding eigenspinor  is areal Killing spinor satisfying the di�erential equationrX( ) = �12X �  ; X 2 T (S2):In particular, the length of  is constant and we obtain the inequality�21(D) � 4�vol (S2; g) + ZS2 jgrad (h)j2h2 dS2vol (S2; g) :Starting with a surface (M2; g) di�eomorphic to S2, the latter inequality holds forany uniformization, i.e., for any conformal di�eomorphism � : S2 ! M2 such that��(g) = h4�go. In particular, we have proved Theorem 2.Remark: For any conformal di�eomorphism 	 2 SL(2; C ) of the two-dimensionalsphere S2 we denote by h	 : S2 ! R the function de�ned by the equation �(go) = h4	go:Let f : S2 ! R be a smooth function. Then we de�ne the number�Dirc (f) = inf �ZS2 jgrad(f �	) + grad(log(h	))j2dS2 : 	 2 SL(2; C )� :In case of a uniformization � : S2 !M2 such that ��(g) = h4�go, we haveZS2 jgrad(h�)j2h2� dS2 = ZS2 jgrad(log(h�))j2dS2and, consequently, for the quantity �Dirc (M2; g) de�ned in the introduction, the rela-tion �Dirc (M2; g) = �Dirc (log(h�)):We now consider the case that (M2; g) is the 
at torus T 2 = (R2=�; go) given by alattice � in R2 with trivial spin structure. In this case there are two parallel spinor�elds '+ and '� of constant length and the �rst non-trivial eigenvalue �21(go) of thesquare of the Dirac Do operator on T 2 is�21(go) = 4�2minnjv�j2 : 0 6= v� 2 �o ;where �� denotes the dual lattice (see [8]). Suppose now that g is a metric on M2conformally equivalent to go, g = h4go. Then the kernel of the corresponding Diracoperator is again two-dimensional and spanned by the spinor �elds 1h'+; 1h'�. Fixa spinor �eld  such that Do( ) = �1(go) . Then the length of  is constant, i.e.,j j � 1. The spinor �eld  � =  =h3 is orthogonal to the kernel of the Dirac operatorD with respect to the L2-norm of the metric g. Indeed, we have7



ZM2 � �; 1h'�� dM2 = ZT 2 � 1h3 ; 1h'��h4dT 2 == 1�1(go) ZT 2 �Do( ); '�� dT 2 = 1�1(go) ZT 2 � ;Do('�)� dT 2 = 0:This observation yields the inequality�21(g) � ZM2 jD( �)j2dM2ZM2 j �j2dM2for the �rst non-trivial eigenvalue of D2 on (M2; g). Moreover, we haveZM2 j �j2dM2 = ZT 2 1h6h4dT 2 = ZT 2 1h2 dT 2andZM2 jD( �)j2dM2 = ZT 2 (jDo( �)j2 + jgrad (h)j2h2 j �j2 + 2hRe (grad (h) �;Do( �))) dT 2:Since the equation Do(h3 �) = Do( ) = �1(go) = �1(go)h3 �can be rewritten in the formDo( �) = �1(go) � � 3h grad (h) �;we obtain the formulas2hRe (grad (h) �;Do( �)) = � 6h2 jgrad (h)j2j �jand jDo( �)j2 = ��21(go) + 9h2 jgrad (h)j2� j �j2:Altogether, this impliesZM2 jD( �)j2dM2 = ZT 2 ��21(go) + 4h2 jgrad(h)j2� 1h6 dT 2and it proves Theorem 3, in particular.Let us now consider the case that the spin structure on (M2; g) � T 2 is non-trivial.Then the Dirac operator has no kernel and the eigenspinors of the Dirac operatorDo on T 2 are again of constant length (see [8]). Then our method provides theinequality 8



�21(g) � �21(go)vol (T 2; go)vol (M2; g) + ZT 2 jgrad(h)j2h2 dT 2vol (M2; g) :The Gaussian curvature G of the metric g is given byh4G = �2�(log(h));where � denotes the Laplacian with respect to the 
at metric. We integrate thislatter equation:ZM2 G � log(h)dM2 = ZT 2 h4G � log(h)dT 2 = �2 ZT 2 jgrad(h)j2h2 dT 2thus obtaining �21(g) � �21(go)vol (T 2; go)vol (M2; g) � 12 ZM2 G � log(h)dM2vol (M2; g) ;where G denotes the Gaussian curvature of (M2; g).However, we can use a more delicate comparison for the Dirac operator dependingon the spin structure ("1; "2). Consider the dual lattice �� with basis v�1; v�2 as wellas the 1-form ! = �i(dx; dy) � ("1v�1 + "2v�2):The Dirac operator D("1;"2) corresponding to the spin structure ("1; "2) on (M2; g)is related to the Dirac operator D for the trivial spin structure byD("1;"2) = D + it;where the vector �eld t is dual with respect to the metric g to the 1-form ! (see [8]).Let '+ be the parallel spinor �eld with respect to the 
at metric. Then  = 1h'+is a harmonic spinor on (M2; g), i.e., D( ) = 0: Therefore, we obtainjD("1;"2)( )j2 = jtj2gj j2 = j!j2gj j2:In dimension n = 2 the L2-length of a 1-form depends only the conformal structure,i.e., if the metrics g = h4go and go are conformally equivalent, then for any 1-form! the formula j!j2gdM2g = j!j2godM2goholds. Now we integrate:ZM2 jD("1;"2)( )j2dM2 = ZT 2 1h2 j!j2godT 2 = �2j"1v�1 + "2v�2 j2 ZT 2 1h2 dT 2:On the other hand, we have 9



ZM2 j j2dM2 = ZT 2 1h2h4dT 2 = ZT 2 h2dT 2;�nally, we obtainZM2 jD("1;"2)( )j2dM2ZM2 j j2dM2 = �2j"1v�1 + "2v�2 j2 ZT 2 1h2 dT 2ZT 2 h2dT 2 :This equality �nishes the proof of Theorem 4.4 The �rst eigenvalue of the Dirac operator on the el-lipsoid with S1-symmetryWe now discuss the �rst eigenvalue of the Dirac operator on the ellipsoid E(a) � R3with S1-symmetry de�ned by the equationx2 + y2 + z2a2 = 1:For the calculations we will use the following convenient parametrization of E(a):x = p1�w2 cos' ; y = p1� w2 sin' ; z = a � w ;where the parameters (w;') are restricted to the intervals �1 � w � 1; 0 � ' � 2�.For brevity we introduce the function�a(w) = (1� a2)w2 + a2:Then the Riemannian metric ds2a, the Gaussian curvature G, the mean curvature Hand the volume form dE(a) are given by the formulas:1.) ds2a = �a(w)1�w2 dw2 + (1� w2)d'2;2.) H2 = a24 ��3a (w)f�a(w) + 1g2;3.) G = a2��2a (w);4.) dE(a) = �1=2a (w)dw ^ d'.4.1 Evaluation of the extrinsic upper boundsWe shall use the extrinsic upper bound for the eigenvalue of the Dirac operator forthe family of functions f� de�ned byf� = ��a(w) ; � > 12 :Notice that f� is just the �-th power of (a multiple of) 1=pG. The length of thegradient of the function f� on the ellipsoid is given by10



5.) jgrad (f�)j2 = 4�2(1� a2)2�2��3a (w)w2(1� w2).Let us �rst discuss the case that the parameter a < 1 is small. Then a2 � �a(w) � 1holds and we can estimate the �rst integral appearing in Theorem 10 � ZE(a)H2f2�dE(a) � 4�a2 1Z0 �2��5=2a (w)dw:The latter integral may be rewritten using the transformation p1� a2 w = ax, thusyielding 0 � ZE(a)H2f2�dE(a) � 4� a4��2p1� a2 1ap1�a2Z0 (1 + x2)2��5=2dx:We shall prove that for all � > 12lima!0 ZE(a)H2f2�dE(a) = 0:Indeed, in case � � 54 , we have �2��5=2a (w) � 1 and the result follows immediately.If 34 < � � 54 , we use the inequality a2 � �a(w), i.e., �2��5=2a (w) � a4��5. Finally,consider the case that 12 < � � 34 . Then one has 1 � 52 � 2� < 32 and, hence,(1 + x2) � (1 + x2)5=2�2� , which implies1ap1�a2Z0 (1 + x2)2��5=2dx � 1Z0 dx1 + x2 <1and �nishes the argument. In a similar way we showlima!0 ZE(a) f2�dE(a) = lima!0 4� 1Z0 �2�+1=2a (w)dw = 4� 1Z0 w4�+1dw = 2�2� + 1 :Finally, we investigate the integralZE(a) jgrad(f�)j2dE(a) = 16�(1 � a2)2�2 1Z0 �2��5=2a (w)w2(1� w2)dw:Using the Lebesgue theorem (� > 12) we concludelima!0 ZE(a) jgrad(f�)j2dE(a) = 16��2 1Z0 w4��3(1� w2)dw = 4� �2� � 1 :Since the �rst eigenvalue �21(a) of the square of the Dirac operator onE(a) is boundedby the expression 11



�21(a) � ZE(a) H2f2�dE(a) + ZE(a) jgrad(f�)j2dE(a)ZE(a) f2� dE(a) ;we obtain lima!0�21(a) � 4�� � (2� + 1)(2� � 1)2� = 2�(2� + 1)2� � 1in the limit a! 0. The latter inequality holds for any � > 12 . For � = 1 we obtain,for example, the inequality lima!0�21(a) � 6and the optimal parameter � = 12 + 1p2 yields the estimatelima!0�21(a) � 3 + 2p2 � 5; 8:Later, this result will be sharpened with the aid of the intrinsic bounds; however,we already get as a partial result that �21 remains bounded.We now discuss the case of a large parameter a (a > 1). It is convenient to write�a(w) in the form �a(w) = (a2�1) h a2a2�1 � w2i. The formulas 1.) - 5.) used beforeimplyZE(a) jgrad(f�)j2dE(a)ZE(a) f2�dE(a) = 4�2 1a2 � 1 � 1Z0 " a2a2 � 1 � w2#2��5=2 w2(1� w2)dw1Z0 " a2a2 � 1 � w2#2�+1=2 dw :We compute again its limit for a!1:lima!1 ZE(a) jgrad(f�)j2dE(a)ZE(a) f2�dE(a) = 0:Thus, the asymptotic behaviour is dominated by the second term of the estimate:lima!1 ZE(a) H2f2�dE(a)ZE(a) f2�dE(a) = 14 1Z0 [1� w2]2��1=2dw1Z0 [1� w2]2�+1=2dw :This yields the inequality 12



lima!1 �21(a) � 14 1Z0 [1� w2]2��1=2dw1Z0 [1� w2]2�+1=2dwfor any � > 12 . The special value in case of the parameter � = 1 can easily becalculated to be lima!1�21(a) � 310 :However, the inequality holds for any � > 12 ; for � ! 1 we obtain the optimalresult lima!1�21(a) � 14 :Remark: Let us point out that, for � = 1, the integral approximation of �21(a) is, onboth sides a! 0;1, not the best one among the extrinsic upper bounds considered,but we may come very close to the optimal value using the family of functions f�.The exact formula holding for all parameters 0 < a <1 is in this case:�21(a) � �2 + 138 a2 + 316a4�+ �72a2 � 32a4 � 316a6� f(a)�13 + 512a2 + 58a4�� 58a6f(a)where the function f(a) is given byf(a) = 8>><>>: 1p1�a2 ln�1�p1�a2a � a < 1� 1pa2�1 arcsin�pa2�1a � a > 1 :Figure 1 (a 2 [0; 1[) and �gure 2 (a 2]1;1[) give an overview of the di�erent ex-trinsic bounds. The lower solid line is the only known lower bound proportionalto the inverse of the volume due to Lott and B�ar; the upper solid line is the wellknown upper bound involving the integral over H2 divided by the volume. The shortdashed curve corresponds to � = 1=2 in our family of functions; as seen before, thisis the maximal value for � for which the curve does not remain bounded as a! 0.Its limit for a ! 1 is 1=3. Finally, the long dashed curve is the upper bound for� = 1 as discussed previously.
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4.2 Evaluation of the intrinsic upper boundWe now apply Theorem 2 to the ellipsoid E(a). We can �nd a uniformization map� : S2 ! E(a) of the form �(x; ') = (w(x); '). By formula 1.) for ds2a we obtain��(ds2a) = �a(w(x))1� w2(x) [w0(x)]2dx2 + (1� w2(x))d'2and the condition ��(ds2a) = h4a(x) 4(1 + x2)2 fdx2 + x2d'2gimplies the di�erential equation�1=2a (w(x))1� w2 w0 = �1x (�)as well as the boundary conditions w(0) = 1 and w(1) = �1. The function h4a(x)is then given by h4a(x) = (1� w2a(x))(1 + x2)24x2 ;where wa(x) is the unique solution of the di�erential equation (�) depending on theparameter a. We calculate the gradient of ha(x) with respect to the standard metricgo = 4(1 + x2)2 fdx2 + x2d'2gof the sphere S2 and �nally obtainI1(a) := ZS2 jgrad(ha)j2h2a dS2 = �2 1Z0 1x  wa(x)�1=2a (wa(x)) + x2 � 1x2 + 1!2 dx:Theorem 2 then provides the inequality�21(a) � 4�vol(E(a)) + I1(a)vol(E(a)) :The solution of the di�erential equation (�) has the symmetry wa(x) = �wa � 1x�.Indeed, suppose that wa(x) is a solution and consider w�(x) = �wa � 1x�. Thenw� solves again the di�erential equation (�) and w�(0) = �wa(1) = 1,w�(1) = �wa(0) = �1. This implies that, for any parameter 0 < a < 1, thesolution wa(x) of the equation (�) vanishes at x = 1. Consequently wa(x) is adecreasing function and we have8><>: wa(x) � 0 for 0 � x � 1; 0 < a <1;wa(x) � 0 for 1 � x � 1; 0 < a <1:In particular, I1(a) may be reduced to an integral over the interval [0; 1]:15



I1(a) = � 1Z0 1x  wa(x)�1=2a (wa(x)) + x2 � 1x2 + 1!2 dx:We study again the limits for a ! 0;1. First we consider the case that a � 1.Then, for all points 0 � x � 1, we have�1=2a (wa(x)) = q(1� a2)w2a(x) + a2 � p1� a2 wa(x)and, consequently, �1=2a (wa(x))1� w2a(x) w0a(x) � p1� a2 wa(x)w0a(x)1� w2a :We integrate this inequality on the interval [y; 1]. Using the fact that wa(1) = 0, weobtain the estimate w2a(y) � 1� y 2p1�a2 ; 0 � y � 1:On the other hand, we have �1=2a (wa(x)) � 1. This inequality impliesw0a(x)1� w2a(x) � �1=2a (wa(x))w0a(x)1� w2a(x) = �1xand, �nally, wa(y) � 1� y21 + y2 ; 0 � y � 1:Altogether, for any x 2 [0; 1], we obtain the inequalities1� x21 + x2 � lima!0 wa(x) � lima!0 wa(x) � 1� x2:Now we apply the following observation: Let wa be a sequence of numbers such thata.) 0 < wa < 1;b.) lima!0 wa > 0 .Then the sequence wa=�1=2a with �a = (1 � a2)w2a + a2 converges to 1, i.e.,lima!0 wa�1=2a = 1:In our situation we can conclude thatlima!0 wa(x)�1=2a (wa(x)) = 1and �nally we are able to calculate the limit:16



lima!0 I1(a) = lima!0� 1Z0 1x  wa(x)�1=2a (wa(x)) + x2 � 1x2 + 1!2 dx == � 1Z0 1x  1 + x2 � 1x2 + 1!2 dx = 4� 1Z0 x3(1 + x2)2 dx:Using lima!0 vol (E(a)) = 2� we obtainlima!0�21(a) � 2 + 2 1Z0 x3(1 + x2)2dx = 32 + ln 2 � 2; 2:In a similar way we handle the case that a � 1. The inequalities (0 � x � 1)1 � �a(wa(x)) � a2allow us to prove the estimate1� x2=a1 + x2=a � wa(x) � 1� x21 + x2 ;which is valid for all 0 � x � 1 and a � 1. However, the function w=�1=2a (w) is amonotone decreasing function for w > 0. Consequently, we have1�x2=a1+x2=a�1=2a �1�x2=a1+x2=a� � wa(x)�1=2a (wa(x)) � 1and from this inequality we can deduce 1� wa(x)�1=2a (wa(x))!2 � 4a2x2=a(1� a2)(1� x2=a)2 + a2(1 + x2=a)2 :We split the integral I1(a) into three parts:I1(a) = � 1Z0 1x   wa(x)�1=2a (wa(x)) � 1!+ 2x21 + x2!2 dx == 4� 1Z0 x3(1 + x2)2dx+ 4� 1Z0  wa(x)�1=2a (wa(x)) � 1! xdx1 + x2+� 1Z0 1x  wa(x)�1=2a (wa(x)) � 1!2 dx:We calculate the last term using the di�erential equation for w�(x) and obtain thevalue of the integral. The volume vol (E(a)) of the ellipsoid behaves like �2a, i.e.,17



lima!1 vol (E(a))a = �2:Therefore, we can control the asymptotic behaviour of �21(a) for a!1:�21(a) � 4�a avol (E(a)) + I1(a)a avol (E(a)) �� 4�a + 4�a 1Z0 x3(1 + x2)2 dx+ 12 :5 The �rst eigenvalue of the Dirac operator on the tubearound a circleWe consider a circle in a plane with curvature � and length L = 2�=�. Let r be a�xed radius and denote by M2(r) its tube in R3 of radius r, r� < 1. The inducedmetric on the surface M2(r) is given by the formulag = (1� r� cos')2ds2 + r2d'2;where we use the length parameter 0 � s � L for the circle and 0 � ' � 2�parametrizes the angle of the tube. First of all we calculate a uniformization� : [0; L] � [0; A]! [0; L]� [0; 2�]of this metric on T 2. Suppose � is given by the condition �(s;  ) = (s; '( )). Thenthe equation ��(g) = h4(ds2 + d 2) yields the di�erential equation'0( )1� r� cos('( )) = 1rand the function h = h(s;  ) is given byh2 = r'0( ) = 1� r� cos('( )):Using the integral (a < 1)Z dx1� a cos(x) = 2p1� a2 arc tg  (1 + a)tg �x2 �p1� a2 !we obtain the solution '( )tg �'( )2 � = s1� r�1 + r� tg � 12rp1� r2�2  � :Since '( ) maps the interval [0; A] bijectively onto [0; 2�], we concludeA = 2�r=p1� r2�2. Moreover, the function h2 is determined byh2 = 1� r� cos('( )) = 1� r� 1� tg2 �'( )2 �1 + tg2 �'( )2 � == (1� r2�2) 1 + tg2 � 12rp1� r2�2  �1 + r�+ (1� r�)tg2 � 12rp1� r2�2  � :18



Hence, we obtain a uniformization of the metric of the tube M2(r) parametrized on[0; L]� h0; 2�rp1�r2�2 i. The basis of the lattice isv1 = (L; 0) ; v2 = �0; 2�rp1� r2�2� ;and thus the dual lattice has the basisv�1 = � 1L; 0� ; v�2 =  0; p1� r2�22�r ! :By Theorem 4 we obtain the estimate�21(�; r) � 14  �2"1 + 1� r2�2r2 "2! ZT 2 1h2dT 2ZT 2 h2dT 2for the �rst eigenvalue of the Dirac operator on the tube M2(r) with respect to thespin structure ("1; "2). We compute these two integrals:ZT 2 h2dT 2 = LZ0 AZ0 h2(s;  )dsd = L � AZ0 r'0( )d = Lr 2�Z0 d' = 2�rL;andZT 2 1h2 dT 2 = Lr AZ0 1'0( )d = Lr AZ0 r2(1� r� cos('( )))2'0( )d = Lr 2�Z0 d'(1� r� cos('))2 :Consequently, this ratio is equal toZT 2 1h2 dT 2ZT 2 h2dT 2 = 12� 2�Z0 d'(1� r� cos('))2 = 1(1� r2�2)3=2 ;i.e., �21(�; r) � 14  �2"1 + 1� r2�2r2 "2! 1(1� r2�2)3=2 :The volume vol (�; r) of the tube equalsvol (�; r) = 4�2 r�and we obtain the inequality�21(�; r)vol (�; r) � �2  r�"1 + 1� r2�2r� "2! 1(1� r2�2)3=2 : (�)Now we apply the inequality 19



�21(�; r)vol (�; r) � �21(go)vol (T 2; go) + ZT 2 jgrad (h)j2h2 dT 2to our situation. Since h2 = r'0( ) = 1�r� cos('( )), we can calculate the gradientof h: jgrad (h)j2h2 = r�24 sin2('( ))'0( )1� r� cos('( ))and, therefore, we obtainZT 2 jgrad (h)j2h2 = �2 r� 2�Z0 sin2(')1� r� cos(')d' = �2r� �1�p1� r2�2� :Then we have proved the estimate�21(�; r)vol (�; r) � �2  r�"1 + 1� r2�2r� "2!� 1p1� r2�2+ �2r�(1�p1� r2�2) : (��)We discuss the inequalities (�) and (��) for the three non-trivial spin structures onthe tube. For all cases, we provide a �gure in which the long dashed line representsthe estimate(�), and the short dashed line the estimate (��). The x-axis uses thevariable a = r�, the y-axis is to be understood in multiples of �2. For comparisonmatters only, we have also drawn the line for constant value 2.Case 1: "1 = 1; "2 = 0. In this case we obtain�21(�; r)vol (�; r) � �2r� 1(1� r2�2)3=2 (�)�21(�; r)vol (�; r) � �2r�p1� r2�2 + �2r� �1�p1� r2�2� (��)In particular, we concludelimr!0�21(�; r)vol (�; r) = lim�!0�21(�; r)vol (�; r) = 0:
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aFigure 3 ("1 = 1; "2 = 0)Case 2: "1 = 0; "2 = 1. In this case the inequalities are�21(�; r)vol (�; r) � �2r� 1p1� r2�2 (�)�21(�; r)vol (�; r) � �2r� (��)and, in particular, we concludelimr�!1 �21(�; r)vol (�; r) � �2:
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aFigure 4 ("1 = 0; "2 = 1)

Case 3: "1 = 1 = "2. In this case we obtain the estimates�21(�; r)vol (�; r) � �2r� 1(1� r2�2)3=2 (�)�21(�; r)vol (�; r) � �2r� 1p1� r2�2 + �2r� �1�p1� r2�2� : (��)Let us compare these estimates obtained via the uniformization of the tube with theestimate using the embedding M2(r) � R3 . Notice that the embedding induces thespin structure "1 = 1 = "2 on the tube. Then we obtain�21(�; r)vol (�; r) � ZM2(r)H2dM2(r) � �2r� 1p1� r2�2 ; (� � �)i.e., the extrinsic bound (drawn as a solid line in �gure 5) for �21 is better than theintrinsic estimates.
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aFigure 5 ("1 = 1 = "2)Case 4: "1 = 0 = "2 In this case �0(D) = 0 is an eigenvalue of the Dirac oper-ator and Theorem 3 yields the following estimate for the �rst non-trivial eigenvalue�21(�; r): �21(�; r) � min�2�2; 1r2� 2�Z0 d'(1� r� cos')42�Z0 d'(1� r� cos')2 :In particular, we obtainlim�!0�21(�; r) = 0 ; limr!0 �21(�; r) � 2�2and limr��!0�21(�; r)vol (�; r) = 0:
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