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Abstract. Let ∇ be a metric connection with totally skew-symmetric torsion T on
a Riemannian manifold. Given a spinor field Ψ and a dilaton function Φ, the basic
equations in the common sector of type II string theory are

∇Ψ = 0 , δ(T) = a ·
`

dΦ T
´

, T · Ψ = b · dΦ · Ψ + µ · Ψ

for some auxiliary parameters a, b, µ. We derive some relations between the length
||T||2 of the torsion form, the scalar curvature of ∇, the dilaton function Φ and the
parameters a, b, µ. We show that for constant dilaton and µ = 0 (the physically
relevant case), there cannot be even local solutions to this system of equations with
vanishing scalar curvature. The main results deal with the divergence of the Ricci
tensor Ric∇ of the connection. In particular, if the supersymmetry Ψ is non-trivial
and if the conditions

(dΦ T) T = 0 , δ
∇(dT) · Ψ = 0

hold, then the energy-momentum tensor is divergence-free. We show that the latter
condition is satisfied in many examples constructed out of special geometries. A
special case is a = b. Then the divergence of the energy-momentum tensor vanishes
if and only if one condition δ∇(dT) · Ψ = 0 holds. Strong models (dT = 0) have this
property, but there are examples with δ∇(dT) 6= 0 and δ∇(dT) · Ψ = 0.

1. Type II B string theory with constant dilaton

The mathematical model discussed in the common sector of type II superstring theory
(also sometimes referred to as type I supergravity) consists of a Riemannian manifold
(Mn, g), a metric connection ∇ with totally skew-symmetric torsion T and a non-trivial
spinor field Ψ. Putting the full Ricci tensor aside for starters, there are three equations
relating these objects:

(∗) ∇Ψ = 0 , δ(T) = 0 , T · Ψ = µ · Ψ .

The spinor field describes the supersymmetry of the model. The first equation means
that the spinor field Ψ is parallel with respect to the metric connection ∇. The second
equation is a conservation law for the 3-form T. Since ∇ is a metric connection with
totally skew-symmetric torsion, the divergences δ∇(T) = δg(T) of the torsion form co-
incide (see [2], [8]). We denote this unique 2-form simply by δ(T). The third equation
is an algebraic link between the torsion form T and the spinor field Ψ. Indeed, the
3-form T acts as an endomorphism in the spinor bundle and the last equation requires
that Ψ is an eigenspinor for this endomorphism. Generically, µ = 0 in the physical
model; but the mathematical analysis becomes more transparent if we first include this
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parameter. A priori, µ may be an arbitrary function. Since T acts on spinors as a sym-
metric endomorphism, µ has to be real. Moreover, we will see that only real, constant
parameters µ are possible. It is well known (see [8]) that the conservation law δ(T) = 0
implies that the Ricci tensor Ric∇ of the connection ∇ is symmetric. Denote by Scal∇

the ∇-scalar curvature and by Scalg the scalar curvature of the Riemannian metric.
The existence of the ∇-parallel spinor field yields the so called integrability conditions
(see [6]), i. e. relations between µ, T and the curvature tensor of the connection ∇.

Theorem 1.1. Let (Mn, g,∇,T,Ψ, µ) be a solution of (∗) and assume that the spinor
field Ψ is non-trivial. Then the function µ is constant and we have

||T||2 = µ2 − Scal∇

2
≥ 0 , Scalg =

3

2
µ2 +

Scal∇

4
.

Moreover, the spinor field Ψ is an eigenspinor of the endomorphism defined by the
4-form dT,

dT · Ψ = − Scal∇

2
· Ψ .

Proof. Let us associate with the 3-form T the following 4-form σT,

σT :=
1

2

n
∑

k=1

(ek T) ∧ (ek T) .

The square T2 of the 3-form T in the Clifford algebra is the sum of a scalar and a
4-form (see [2]),

T2 − |||T||2 = − 2 · σT .

The existence of a ∇-parallel spinor yields the following condition (see [8])

3 · dT · Ψ + 2 · δ(T) · Ψ − 2 · σT · Ψ + Scal∇ · Ψ = 0 .

Finally, there is a formula for the anti-commutator of the ∇-Dirac operator DT and
the endomorphism T (see [8]),

DT ◦ T + T ◦ DT = dT + δ(T) − 2 · σT − 2

n
∑

i=1

(ei T) · ∇ei
.

Combining these formulas we obtain, for example,

grad(µ) · Ψ = Scal∇ · Ψ + 2 · (||T||2 − µ2) · Ψ
and the result follows immediately. �

Since µ has to be constant, equation T · Ψ = µ · Ψ yields:

Corollary 1.1. For all vectors X, one has

(∇XT) · Ψ = 0 .

Corollary 1.2. Assume that there exists a spinor field Ψ 6= 0 satisfying the equations
(∗). If µ = 0 and Scal∇ = 0, the torsion form T has to vanish.

Proof. The inequality Scal∇ ≤ 2µ2 holds whenever there exists a spinor field Ψ 6= 0
satisfying the equations; hence Scal∇ = 2µ2 implies T = 0. �
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Remark 1.1. This generalizes the observation (see [1]) that the existence of a non-
trivial solution of ∇Ψ = 0 , Ric∇ = 0 , T · Ψ = 0 implies T = 0 on compact manifolds.
It underlines the strength of the algebraic identities in Theorem 1.1. Note that no
assumption on the full Ricci tensor is needed, only the vanishing of its trace!

Remark 1.2. In the common sector of type II string theories, the ”Bianchi identity”
dT = 0 is usually additionally required. It does not affect the mathematical structure
of the equations (∗), hence we do not include it into our discussion.

The last equation in type II string theory deals with the Ricci tensor Ric∇ of the
connection. Usually one requires for constant dilaton that the Ricci tensor has to
vanish (see [11]). The result above, however, indicates that this condition may be too
strong. Understanding this tensor as an energy-momentum tensor, it seems to be more
convenient to impose a weaker condition, namely

div(Ric∇) = 0 .

A subtle point is however the fact that there are a priori two different divergence
operators. The first operator divg is defined by the Levi-Civita connection of the
Riemannian metric, while the second operator div∇ is defined by the connection ∇.
It turns out that this difference does not play a role in the formulation of the field
equation under discussion. Moreover, under the assumption that a ∇-parallel spinor
exists, we can reformulate the condition div(Ric∇) = 0 in such a way that only the
spinor Ψ and the torsion form T are involved. The next lemma, although simple to
prove, is crucial.

Lemma 1.1. If ∇ is a metric connection with totally skew-symmetric torsion and S a
symmetric 2-tensor, then

divg(S) = div∇(S) .

Proof. The difference

divg(S)(X) − div∇(S)(X) = − 1

2

n
∑

i,j=1

S(ei , ej)T(ei , X , ej) = 0

vanishes, since S is symmetric and T is skew-symmetric. �

Theorem 1.2. Let (Mn, g,∇,T,Ψ, µ) be a solution of (∗),
∇Ψ = 0 , δ(T) = 0 , T · Ψ = µ · Ψ

and assume that the spinor field Ψ is non-trivial. Then the Riemannian and the ∇-
divergence of the Ricci tensor Ric∇ coincide, divg(Ric∇) = div∇(Ric∇). Moreover,
div(Ric∇) vanishes if and only if δ∇(dT) · Ψ = 0 holds.

Proof. The assumption δ(T) = 0 implies that the Ricci tensor Ric∇ is symmetric (see

[8]). Therefore, the vectors divg(Ric∇) = div∇(Ric∇) coincide by Lemma 1.1. Any
∇-parallel spinor satisfies the condition (see [8])

(

X dT + 2∇XT
)

· Ψ − 2Ric∇(X) · Ψ = 0 .

Since we already know that (∇XT) · Ψ = 0, the condition simplifies,
(

X dT
)

· Ψ − 2Ric∇(X) · Ψ = 0 .
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First we differentiate this equation with respect to ∇ and compute the trace,
n

∑

k=1

∇ek

(

ek dT
)

· Ψ − 2

n
∑

k=1

∇ek

(

Ric∇(ek)
)

· Ψ = 0 .

The latter equation is equivalent to

2 divg(Ric∇) · Ψ = 2div∇(Ric∇) · Ψ = δ∇(dT) · Ψ . �

Tuples (Mn, g,∇,T,Ψ, µ) with a ∇-parallel torsion form, ∇T = 0, are particularly
interesting. This condition implies automatically the conservation law δ(T) = 0. Nearly
Kähler manifolds, Sasakian manifolds or nearly parallel G2-manifolds in dimension
n = 7, all equipped with their unique characteristic connection, are examples of metric
connections with this property (see [8]). In dimension n = 6 we constructed several
hermitian manifolds of that type ([4]). Moreover, the canonical connection of any
naturally reductive space satisfies ∇T = 0 (see [1]). The assumption ∇T = 0 implies
that the length ||T||2 is constant. If, moreover, there exists a spinor field Ψ such that
∇Ψ = 0 , T ·Ψ = µ ·Ψ, then by Theorem 1.1 the scalar curvatures Scalg and Scal∇ are
constant. On the other side, we use the formula

0 = d∇T =
n

∑

k=1

ek ∧∇ek
T =

n
∑

k=1

ek ∧∇g
ek

T + Σ(T , T) = dT + Σ(T , T) ,

where Σ(T , T) is a quadratic expression in T. Then we conclude that

∇(dT) = 0 , and δ∇(dT) = 0 ,

i. e., we can apply Theorem 1.2.

Corollary 1.3. Let (Mn, g,∇,T,Ψ, µ) be a tuple satisfying

∇Ψ = 0 , ∇(T) = 0 , T · Ψ = µ · Ψ
and assume that the spinor field Ψ is non-trivial. Then the scalar curvatures are con-
stant and the divergence of the Ricci tensor vanishes, div(Ric∇) = 0.

1.1. 5-dimensional examples.

Let (M5, g, η, ξ, ϕ) be a 5-dimensional quasi-Sasakian manifold. Its Nijenhuis tensor N
vanishes and the fundamental form F is a closed 2-form,

N = 0 , dF = 0 .

There exists a unique connection ∇ preserving the contact structure with totally skew-
symmetric torsion, the characteristic connection of (M5, g, η, ξ, ϕ). Its torsion form is
given by (see [8], [9])

T = η ∧ dη .

If the differential dT = dη ∧ dη is proportional to F ∧ F with a constant factor, the
characteristic connection ∇ (see [7] , [4]) of the 5-manifold solves the equation

δ∇(dT) = 0 .

Indeed, ∇ preserves the contact structure and we conclude that under this assumption
the “volume form” F ∧ F of the 4-dimensional bundle consisting of all vectors in TM5

orthogonal to ξ is ∇-parallel. In particular, δ∇(dT) = 0 holds. In general, a quasi-
Sasakian 5-manifolds does not have to admit any ∇-parallel spinor field. However, such
examples are known and have been thoroughly investigated. Let us first consider the
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case of a Sasakian manifold, dη = 2F. There are Sasakian 5-manifolds admitting a
∇-parallel spinor Ψ such that the following equations are satisfied (see [8])

∇Ψ = 0 , δ(T) = 0 , T · Ψ = ± 4Ψ , divg(Ric∇) = 0 .

The geometric data in these examples are

||T||2 = 8 , Scal∇ = 16 , Scalg = 28 .

Moreover, there is a (locally) unique Sasakian 5-manifolds admitting a ∇-parallel spinor
field Ψ such that T · Ψ = 0 holds (see [9]). It is the 5-dimensional Heisenberg group
equipped with its canonical Sasakian structure. In this case we have

∇Ψ = 0 , δ(T) = 0 , T · Ψ = 0 , divg(Ric∇) = 0

and the geometric data are

||T||2 = 8 , Scal∇ = − 16 , Scalg = − 4 .

In the paper [9], we constructed a family M5(a, b, c, d) depending on four real numbers
a, b, c, d of quasi-Sasakian manifolds with ∇-parallel spinor field Ψ. In this case we have

∇Ψ = 0 , δ(T) = 0 , T ·Ψ = ±
√

(a − d)2 + 4 b2 + 4 c2 ·Ψ , divg(Ric∇) = 0

and the geometric data are

||T||2 = a2 + 2 b2 + 2 c2 + d2 , Scal∇ = 4 (b2 + c2 − a d) .

1.2. 6-dimensional examples.

Let (M6, g, J) be a 6-dimensional nearly Kähler manifold. It admits a unique connection
∇ with totally skew-symmetric torsion preserving the nearly Kähler structure (see [8],
[4]), which was first investigated by A. Gray ([12]). Moreover, there are two ∇-parallel
spinor fields Ψ±, and there exists a positive number a such that

∇Ψ± = 0 , δ(T) = 0 , T · Ψ± = ± 2
√

2 aΨ± , divg(Ric∇) = 0 .

The geometric data are

||T||2 = 2 a , Scal∇ = 12 a , Scalg = 15 a .

The Ricci tensors Ricg and Ric∇ are proportional to the metric,

Ricg =
5

2
a Id , Ric∇ = 2 a Id .

There is another interesting example. The paper [4] contains the construction of a
hermitian 6-manifold (M6, g, J) of type W3 such that its characteristic connection ∇ has
a 3-dimensional, complex irreducible holonomy representation Hol(∇) ⊂ U(3) ⊂ SO(6).
There exist two ∇-parallel spinor fields Ψ± and we have

∇Ψ± = 0 , δ(T) = 0 , T · Ψ± = 0 , divg(Ric∇) = 0.

The Ricci tensors are again proportional to the metric,

Ric∇ = − 1

3
||T||2 Id , Scal∇ = − 2 ||T||2 , Scalg = − 1

2
||T||2.
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1.3. 7-dimensional examples.

Let (M7, g, ω3) be a 7-dimensional nearly parallel G2-manifold. The equation dω3 =
− a (∗ω3) , a = constant 6= 0 characterizes this class of G2-manifolds. The torsion form
of the characteristic connection is given by the formula (see [8])

T = − a

6
ω3.

There always exists a ∇-parallel spinor field Ψ and we have

∇Ψ = 0 , δ(T) = 0 , T · Ψ =
7

6
aΨ , divg(Ric∇) = 0 .

The Ricci tensors are again proportional to the metric (see [8], [3]),

Ricg =
3

8
a2 Id , Scalg =

21

8
a2 , Scal∇ =

7

3
a2 , ||T||2 =

7

36
a2.

If the nearly parallel G2-structure is induced by an underlying 3-Sasakian structure, we
can construct a 2-parameter family of torsion forms T satisfying ∇T = 0 and admitting
parallel spinors (see [2]). Corollary 1.3 applies to this family, too.

Let us next consider cocalibrated G2-manifolds such that the scalar product (dω3, ∗ω3)
is constant. G2-manifolds of that type are characterized by the conditions (see [5])

d ∗ ω3 = 0 , (dω3 , ∗ω3) = const.

The torsion form T of its characteristic connection is given by the formula (see [8])

T = − ∗ dω3 +
1

6
(dω3 , ∗ω3) · ω3.

There exists a ∇-parallel spinor field Ψ, and for any considered G2-manifold we have

∇Ψ = 0 , δ(T) = 0 , T · Ψ = − 1

6
(dω3 , ∗ω3)Ψ .

The geometric data are given by (see [10], [3])

Scalg = − 1

2
||T||2 +

1

18
(dω3 , ∗ω3)2 , Scal∇ = − 2 ||T||2 +

1

18
(dω3 , ∗ω3)2.

The Ricci tensor Ric∇ of the characteristic connection is in general not divergence
free, but both possible divergences coincide, divg(Ric∇) = div∇(Ric∇). This vector is
computable using the spinor field Ψ and the torsion form T only. On the other hand,
a 3-form π3 vanishes on the special parallel spinor Ψ (π3 · Ψ = 0) if and only if the
3-form satisfies the following two algebraic equations (see [8])

π3 ∧ ω3 = 0 , π3 ∧ (∗ω3) = 0 .

This algebraic observation yields the following result.

Corollary 1.4. Let (M7, g, ω3) be a cocalibrated G2-manifold such that the scalar prod-
uct (dω3, ∗ω3) is constant. Then the divergence of the Ricci tensor Ric∇ vanishes if
and only if

δ∇(dT) ∧ ω3 = 0 , δ∇(dT) ∧ (∗ω3) = 0 .
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Example 1.1. There exist G2-structures of pure type W3 in the Fernandez/Gray
classification (see [5]) on the product of R

1 by the 6-dimensional Heisenberg group
and on the product of R

1 by the 3-dimensional complex solvable Lie group. The
torsion form of its characteristic connection has been investigated in the paper [8].
Using these formulas, one computes directly that these examples satisfy the conditions
δ∇(dT) ∧ ω3 = 0 , δ∇(dT) ∧ (∗ω3) = 0, but δ∇(dT) 6= 0.

2. Type II B string theory with a dilaton function

In the first part of the paper, we discussed the Ricci tensor in the model of type II B
string theory. In fact, the model is much more flexible, it contains an additional function
Φ. In the second part of the paper, we study the corresponding results in this more
general situation. We use basically the same arguments (although computationally
more involved) as in the proofs of Theorems 1.1 and 1.2, hence we shall not repeat
them all. Again, the integrability conditions following from ∇Ψ = 0 as derived in [8],
[10] are the key ingredient.

The equations now read as

(∗∗) ∇Ψ = 0 , δ(T) = a ·
(

dΦ T
)

, T · Ψ = b · dΦ · Ψ + µ · Ψ .

Usually the constant a has a precise value, namely a = ± 2. In order to understand the
role of the parameters in the equations, we slightly generalized them and allow for two
arbitrary parameters a, b.

Theorem 2.1. Let (Mn, g,∇,T,Ψ,Φ, µ, a) be a tuple satisfying (∗∗) and assume that
the spinor field Ψ is non-trivial. Then

(b − a) · δ(T) · Ψ = 0 , dT · Ψ = − Scal∇

2
· Ψ − b

2
∆(Φ) · Ψ ,

||T||2 = µ2 − Scal∇

2
+ b2 ||dΦ||2 − 3b

2
∆(Φ) ,

and the Riemannian scalar curvature is given by the formula

Scalg =
3

2
µ2 +

3b2

2
||dΦ||2 +

Scal∇

4
− 9 b

4
∆(Φ) .

In particular, if b 6= a, we obtain δ(T) ·Ψ = 0. In this case, the endomorphism T2 acts
on the spinor by scalar multiplication,

T2Ψ =
(

b2 ||dΦ||2 + µ2
)

· Ψ .

The differential dΦ of the dilaton Φ is a 1-form. Its differentials ∇gdΦ , ∇dΦ with
respect to the Levi-Civita connection ∇g and with respect to the connection ∇, re-
spectively, are bilinear forms. Since the Levi-Civita connection is torsion-free, ∇gdΦ is
symmetric, ∇gdΦ(X,Y ) = ∇gdΦ(Y,X). By Lemma 1.1, one has

divg(∇gdΦ) = div∇(∇gdΦ) .

The difference between the two bilinear forms is given by the torsion,

∇dΦ = ∇gdΦ − 1

2
· (dΦ T) .

Now we generalize Theorem 1.2.
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Theorem 2.2. Let (Mn, g,∇,T,Ψ,Φ, a, b, µ) be a tuple satisfying (∗∗). Then we have

2 divg(Ric∇ − b · ∇gdΦ) · Ψ = δ∇(dT) · Ψ + (a − b) · δ∇(dΦ T) · Ψ ,

2 div∇(Ric∇ − b · ∇gdΦ) · Ψ = δ∇(dT) · Ψ − b · δ∇(dΦ T) · Ψ ,

2 divg(Ric∇ − b · ∇dΦ) · Ψ = δ∇(dT) · Ψ + (a − b) · δ∇(dΦ T) · Ψ ,

2 div∇(Ric∇ − b · ∇dΦ) · Ψ = δ∇(dT) · Ψ .

In particular, the differences are given by (λ ∈ R is an arbitrary parameter)

2 (divg − div∇)(Ric∇ − λ · ∇gdΦ) = a · δ∇(dΦ T) = δ∇δ(T) ,

2 (divg − div∇)(Ric∇ − b · ∇dΦ) = (a − b) · δ∇(dΦ T) .

Proof. 2Ric∇ − 2λ∇gdΦ + δ(T) is a symmetric tensor. Hence, Lemma 1.1 yields

2 (divg − div∇)(Ric∇ − λ · ∇gdΦ) = δ∇δ(T) − δgδg(T) = δ∇δ(T) .

2Ric∇ + δ(T) − 2 b∇dΦ − b (dΦ T) is symmetric, too. Consequently,

2 (divg − div∇)(Ric∇ − b · ∇dΦ) = δ∇δ(T) − b δ∇(dΦ T) − δgδg(T)

+ b δg(dΦ T ) = (a − b) · δ∇(dΦ T) .

Here we used once again the equation δ(T) = a · (dΦ T). The equation T · Ψ =
b · dΦ · Ψ + µ · Ψ yields

(∇XT) · Ψ = b · (∇XdΦ) · Ψ .

Next we differentiate the integrability condition
(

X dT + 2∇XT
)

· Ψ − 2Ric∇(X) · Ψ = 0 .

and proceed as in the proof of Theorem 1.2. The result is a similar one,

2 div∇(Ric∇ − b · ∇dΦ) · Ψ = δ∇(dT) · Ψ .

Finally, we have

2 div∇(Ric∇ − b · ∇gdΦ) · Ψ = 2div∇(Ric∇ − b · ∇dΦ) · Ψ
+ 2 bdiv∇(∇dΦ − ∇gdΦ) · Ψ

= δ∇(dT) · Ψ − b · δ∇(dΦ T) · Ψ .

The remaining formulas now follow directly from what has already been shown. �

Using the equation δ(T) = a · (dΦ T), the formula δgδ(T) = δgδg(T) = 0 as well as
the formulas comparing δg and δ∇ on differential forms (see [2]), we compute that the
1-form δ∇δ(T) is proportional to the 1-form (dΦ T) T. Consequently, we obtain
a necessary and sufficient algebraic condition under which the different divergences
coincide.

Corollary 2.1. If, in addition, (dΦ T) T = 0 holds, then the following divergences
coincide:

divg(Ric∇ − λ · ∇gdΦ) = div∇(Ric∇ − λ · ∇gdΦ) for any λ ∈ R,

divg(Ric∇ − b · ∇dΦ) = div∇(Ric∇ − b · ∇dΦ) .

Corollary 2.2. If (dΦ T) T = 0 and δ∇(dT) · Ψ = 0 hold, then all the divergences
vanish.
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The previous discussion shows that the case of a = b is a special one. Normalizing the
constants, we assume that a = b = − 2. Then the equations (∗∗) read as

∇Ψ = 0 , δ(T) = − 2 ·
(

dΦ T
)

, T · Ψ = − 2 · dΦ · Ψ + µ · Ψ .

In this case, the condition δ(T) ·Ψ = 0 is not an integrability condition and the correct
formula for T2 · Ψ is different,

T2 · Ψ = (4 ||dΦ||2 + µ2) · Ψ − 2 · δ(T) · Ψ .

The divergence of the energy-momentum tensor is given by

2divg(Ric∇ + 2 · ∇gdΦ) · Ψ = δ∇(dT) · Ψ .

In strong models (dT = 0) the divergence of the energy-momentum tensor vanishes,
but there are models with δ∇(dT) 6= 0 and δ∇(dT) ·Ψ = 0. The last example in Section
1.3 is one of them.

References

[1] I. Agricola, Connections on naturally reductive spaces, their Dirac operator and homogeneous

models in string theory, Comm. Math. Phys. 232 (2003), 535-563.
[2] I. Agricola and Th. Friedrich, On the holonomy of connections with skew-symmetric torsion,

Math. Ann. 328 (2004), 711-748.
[3] I. Agricola and Th. Friedrich, The Casimir operator of a metric connection with skew-symmetric

torsion, J. Geom. Phys. 50 (2004), 188-204.
[4] B. Alexandrov, Th. Friedrich and N. Schoemann, Almost hermitian 6-manifolds revisited, J.

Geom. Phys. 53 (2004), 1-30.
[5] M. Fernandez and A. Gray, Riemannian manifolds with structure group G2, Ann. Mat. Pura e

Appl. 32 (1982), 19-45.
[6] Th. Friedrich, Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics vol.

25, AMS, Providence 2000.
[7] Th. Friedrich, On types of non-integrable geometries, Rend. Circ. Mat. di Palermo 71 (2003),

99-113.
[8] Th. Friedrich and S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in

string theory, Asian J. Math. 6 (2002), 303-336.
[9] Th. Friedrich and S. Ivanov, Almost contact manifolds, connections with torsion, and parallel

spinors, J. reine angew. Math. 559 (2003), 217-236.
[10] Th. Friedrich and S. Ivanov, Killing spinor equations in dimension 7 and geometry of integrable

G2-manifolds, J. Geom. Phys. 48 (2003), 1-11.
[11] J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, hep-th/0302158.
[12] A. Gray, Nearly Kähler manifolds, Journ. Diff. Geom. 4 (1970), 283-310.

agricola@mathematik.hu-berlin.de

friedric@mathematik.hu-berlin.de

nagy@mathematik.hu-berlin.de

puhle@mathematik.hu-berlin.de

Institut für Mathematik

Humboldt-Universität zu Berlin

Sitz: WBC Adlershof

D-10099 Berlin, Germany


