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Abstract. We study geometric structures of W4-type in the sense of A. Gray on
a Riemannian manifold. If the structure group G ⊂ SO(n) preserves a spinor or a
non-degenerate differential form, its intrinsic torsion Γ is a closed 1-form (Proposi-
tion 2.1 and Theorem 2.1). Using a G-invariant spinor we prove a splitting theorem
(Proposition 2.2). The latter result generalizes and unifies a recent result obtained
in [15], where this splitting has been proved in dimensions n = 7, 8 only. Finally
we investigate geometric structures of vectorial type and admitting a characteristic
connection ∇

c. An interesting class of geometric structures generalizing Hopf struc-
tures are those with a ∇

c-parallel intrinsic torsion Γ. In this case, Γ induces a Killing
vector field (Proposition 4.1) and for some special structure groups it is even parallel.

1. Adapted connections of a geometric structure of vectorial type

Fix a subgroup G ⊂ SO(n) of the special orthogonal group and decompose the Lie
algebra so(n) = g ⊕ m into the Lie algebra g of G and its orthogonal complement m.
The different geometric types of G-structures on a Riemannian manifold correspond to
the irreducible G-components of the representation R

n⊗m. Indeed, consider an oriented
Riemannian manifold (Mn, g) and denote its Riemannian frame bundle by F(Mn). It
is a principal SO(n)-bundle over Mn. A G-structure is a reduction R ⊂ F(Mn) of the
frame bundle to the subgroup G. The Levi-Civita connection is a 1-form Z on F(Mn)
with values in the Lie algebra so(n). We restrict the Levi-Civita connection to R and
decompose it with respect to the decomposition of the Lie algebra so(n),

Z
∣

∣

T (R)
:= Z∗ ⊕ Γ .

Then, Z∗ is a connection in the principal G-bundle R and Γ is a 1-form on Mn with val-
ues in the associated bundle R×G m. This 1-form, or more precisely the G-components
of the element Γ ∈ R

n ⊗ m, characterizes the different types of non-integrable G-
structures (see [12]). The 1-form Γ is called the intrinsic torsion of the G-structure.
There is a second notion for G-structures, namely that of characteristic connection and
its characteristic torsion. By definition, a characteristic connection is a G-connection
∇c with totally skew symmetric torsion tensor. Typically, not every type of G-structure
admits a characteristic connection. In order to formulate the condition, we embed the
space of all 3-forms into R

n ⊗ m using the morphism

Θ : Λ3(Rn) −→ R
n ⊗ m , Θ(T) :=

n
∑

i=1

ei ⊗ prm(ei T) .
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A G-structure admits a characteristic connection ∇c if and only if the intrinsic torsion
Γ belongs to the image of the Θ. In this case, the characteristic torsion is the pre-image
of the intrinsic torsion (see [12])

2 Γ = −Θ(Tc) and ∇c
XY = ∇g

XY +
1

2
Tc(X , Y , −) .

For different geometric structures, the characteristic torsion form has been computed
explicitly in terms of the underlying geometric data. Formulas of that type are known
for almost hermitian structures, almost contact metric structures and G2- and Spin(7)-
structures in dimensions seven and eight. In case of a Riemannian naturally reductive
space Mn = G1/G, we obtain a G-reduction R := G1 ⊂ F(Mn) of the frame bundle.
Then the characteristic connection of the G-structure coincides with the canonical

connection of the reductive space. In this sense, we can understand the characteristic
connection of a Riemannian G-structure as a generalization of the canonical connection
of a Riemannian naturally reductive space. The canonical connection of a naturally
reductive space has parallel torsion form and parallel curvature tensor, ∇cTc = 0 =
∇cRc. For arbitrary G-structures and their characteristic connections, these properties
do not hold anymore. Corresponding examples are discussed in [13]. The space R

n⊗m

contains R
n in a natural way,

Θ1 : R
n −→ R

n ⊗ m , Θ1(Γ) =
n

∑

i=1

ei ⊗ prm(ei ∧ Γ) .

The class of geometric structures we will study in this paper is the following one.

Definition 1.1. Let Mn be an oriented Riemannian manifold and denote by F(Mn)
its frame bundle. A geometric structure R ⊂ F(Mn) is called of vectorial type if its
intrinsic torsion belongs to Γ ∈ R

n ⊂ R
n ⊗ m.

Remark 1.1. These geometric structures are usually called W4-structures. They occur
in the description of almost hermitian manifolds, of G2-structures in dimension seven,
of Spin(7)-structures in dimension eight and Spin(9)-structures in dimension sixteen
(see [10]).

We will identify vectors field on the Riemannian manifold (Mn, g) with 1-forms. De-
noting the vector field corresponding to the intrinsic torsion by Γ, too, we obtain the
following formula for the intrinsic torsion defined by a vector field Γ,

Γ(X) = prm(X ∧ Γ) .

Of course, a geometric structure of vectorial type does not have to admit a charac-
teristic connection. It depends on the decomposition of the G-representation Λ3(Rn).
For example, consider the subgroup SO(3) ⊂ SO(5) defined by the 5-dimensional, real
representation of SO(3). Then Λ3(R5) splits into a 3-dimensional and a 7-dimensional
SO(3)-representation, i. e., Θ(Λ3(R5)) ⊂ R

5 ⊗ m and R
5 ⊂ R

5 ⊗ m are complementary
subspaces. A similar situation occurs for the subgroups Spin(9) ⊂ SO(16) and for
F4 ⊂ SO(26) (see [12]). On the other side, many interesting geometric structures of
vectorial type admit characteristic connection. This situation occurs for example for
the subgroups U(n) ⊂ SO(2n), G2 ⊂ SO(7) and Spin(7) ⊂ SO(8). The corresponding
characteristic torsion has been computed explicitely for these cases in [13].

The first observation is a link to E. Cartan (see [1], [8]), who classified the types of
metric connections. There are two special classes. The first class are metric connections
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of vectorial type, the second class are metric connections with a totally skew-symmetric
torsion. There also exists a third class, but does not have direct geometric interpreta-
tion. The geodesic flow of metric connections of vectorial type has been investigated
in [8] and [2]. On the other side, the geodesic flow of metric connections with totally
skew-symmetric torsion coincides with the Riemannian geodesic flow.

Proposition 1.1. If a G-structure is of vectorial type, then there exists a unique metric

connection ∇vec of vectorial type in the sense of Cartan and preserving the G-structure.

The formula is

∇vec
X Y = ∇g

XY − g(X , Y ) · Γ + g(Y , Γ) · X .

Conversely, if a G-structure R admits a connection of vectorial type in the sense of

Cartan, then R is of vectorial type in our sense.

Proof. The Levi-Civita connections splits into

Z(X) = Z∗(X) + prm(X ∧ Γ) = Z∗(X) − prg(X ∧ Γ) + X ∧ Γ .

The formula β(X) := prg(X ∧ Γ) defines a 1-form with values in the Lie algebra g.
Therefore, the connection

Zvec(X) := Z(X) − X ∧ Γ = Z∗(X) − prg(X ∧ Γ)

is a G-connection. It is of vectorial type in the sense of Cartan. Suppose vice versa that
there exists a G-connection Z∗∗ of vectorial type. We compare it with the Levi-Civita
connection and obtain the relation

Z∗∗(X) = Z(X) + X ∧ Γ .

Moreover, the definition of the 1-form Γ as well as the G-connection Z∗ yields the
equation

Z(X) = Z∗(X) + Γ(X) .

Finally, since Z∗∗ preserves the G-structure, there exists a 1-form β with values in the
Lie algebra g such that

Z∗∗(X) = Z∗(X) + β(X) .

Combining these three formulas we obtain, for any vector X, the equation

β(X) = Γ(X) + X ∧ Γ .

We now take the projection onto m. Since β(X) belongs to the Lie algebra g, we
conclude that Γ should be in the image of R

n ⊂ R
n ⊗ m. �

Let Γ be a vector field on a Riemannian manifold (Mn, g). Then we define a metric
connection ∇vec as before. Its holonomy group is a subgroup of SO(n) and its holo-
nomy bundle is a reduction of the frame bundle F(Mn). Obviously, the corresponding
structure is of vectorial type. Therefore, any vector field can occur. However, if the
structure group G is fixed, then we obtain restrictions for the possible vector field Γ.
In the next section we will explain the corresponding results.

A geometric structure of vectorial type induces a triple (Mn, g,Γ) consisting of a Rie-
mannian manifold and a vector field. A similar situation occurs in Weyl geometry (see
[7], [14]). A Weyl structure is a pair consisting of a conformal class of metric and a
torsion free connection preserving the conformal structure. Choosing a metric g in the
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conformal class, the connection defines a vector field and the corresponding covariant
derivative on vectors is defined by the formula

∇w
XY = ∇g

XY + g(X , Γ) · Y + g(Y , Γ) · X − g(X , Y ) · Γ .

Weyl geometry deals with the geometric properties of these connections. The two
connections ∇vec and ∇w are different. The Weyl connection does not preserve any
Riemannian geometric structure, moreover, it is torsion free. However, the curvature
tensors and the Ricci tensors are closely related,

Rvec(X,Y )Z = Rw(X,Y )Z − dΓ(X,Y ) · Z , Ricvec = Ricw + dΓ .

In particular, the symmetric parts of the Ricci tensors coincide. If one can prove that
certain geometric structures induce Weyl-Einstein structures, one can apply several
results known in Weyl geometry. Examples of this approach can be found in Theorem
2.1 and Proposition 2.2. Otherwise, the topics are quite different.

Of course, a conformal change of G-structures is again possible. Let us discuss it.
The total space R ⊂ F(Mn, g) of a G-structure consists of n-tuples (e1, e2, . . . , en)
of orthonormal vectors tangent to Mn. Let g∗ := e2fg be a conformal change of the
metric. Then we define a new G-structure R∗ ⊂ F(Mn, g∗) by

R∗ =
{

(e−f · e1 , e−f · e2 . . . , e−f · en) : (e1 , e2 , . . . , en) ∈ R
}

.

The intrinsic torsion changes by the element df ∈ R
n ⊂ R

n ⊗ m, Γ∗ = Γ + df . In
particular, the conformal change of a geometric structure of vectorial type is again
of vectorial type. Moreover, the differentials dΓ = dΓ∗ coincide. On the other side,
starting with an arbitrary geometric structure on a compact manifold, the equation

0 = δg∗(Γ∗) = δg(Γ) + ∆(f) + (n − 2) ·
(

(df,Γ) + ||df ||2
)

has a unique solution f = −∆−1(δg(Γ)). Consequently, an arbitrary geometric struc-
ture of vectorial type on a compact manifold admits a conformal change such that the
new 1-form is coclosed (see [14], [7]). In principle, one can reduce the investigation of
geometric structures of vectorial type on compact manifolds to those structures with a
coclosed form, δg(Γ) = 0.

2. Parallel forms and spinors

Let Ωk ∈ Λk(Rn) be a G-invariant k-form. It defines a k-form on any Riemannian
manifold with a fixed G-structure which is parallel with respect to any G-connection.
The Lie algebra so(n) = Λ2(Rn) acts on the vectors space Λk(Rn) via the formula

ρ∗(ω
2)Ωk =

n
∑

i=1

(ei ω2) ∧ (ei Ωk) , ω2 ∈ so(n) .

Consequently, we can compute the Riemannian covariant derivative of Ωk,

∇g
XΩk = ρ∗

(

prm(X ∧ Γ)
)

Ωk = ρ∗
(

X ∧ Γ
)

Ωk =

n
∑

i=1

(

ei (X ∧ Γ)
)

∧
(

ei Ωk
)

= Γ ∧
(

X Ωk
)

− X ∧
(

Γ Ωk
)

.
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The differential of Ωk as well as its codifferential are given by

dΩk =

n
∑

i=1

ei ∧∇g
ei

Ωk = − k · (Γ ∧ Ωk) ,

δgΩk = −
n

∑

i=1

ei ∇g
ei

Ωk = (n − k) · (Γ Ωk) .

In particular, for any geometric structure of vectorial type and any G-invariant form
Ωk we have

∇g
Γ Ωk = 0 and dΓ ∧ Ωk = 0 .

From these equations we see that Γ is automatically closed if the k-form Ωk – treated
as a linear map defined on 2-forms – has trivial kernel.

Proposition 2.1. Let G ⊂ SO(n) be a subgroup such that

(1) there exists a G-invariant differential form Ωk of some degree k, and

(2) the multiplication Ωk : Λ2(Rn) → Λk+2(Rn) is injective.

Then, for any G-structure of vectorial type, the 1-form Γ is closed, dΓ = 0.

Remark 2.1. The groups G2 ⊂ SO(7) and Spin(7) ⊂ SO(8) satisfy the conditions of
the Proposition. Consequently, it generalizes results of Cabrera (see [5], [6]). Moreover,
there are other groups satisfying the conditions, namely U(n) ⊂ SO(2n) for n > 2 and
Spin(9) ⊂ SO(16). In particular, there is an analogon of Cabrera’s result for Spin(9).
On the other side, there are interesting G-structures where the group does not satisfy
the conditions. The first example SO(3) ⊂ SO(5) (the irreducible representation) does
not admit any invariant differential form. The subgroup U(2) ⊂ SO(4) admits an
invariant form, but the second condition of the Proposition is not satisfied. In these
geometries the condition dΓ = 0 is an additional requirement on the geometric structure
of vectorial type.

Example 2.1. Consider the subgroup U(2) ⊂ SO(4). There are only two types of U(2)-
structures. An almost hermitian manifold (M4, g, J) is of vectorial type if and only if
the almost complex structure is integrable, see [3]. Consequently, starting with an
arbitrary complex 4-manifold (M4, J), any hermitian metric g yields an U(2)-structure
of vectorial type and the vector field Γ is defined by the formulas

dΩ = − 2Γ ∧ Ω , δgΩ = 2Γ Ω .

Solving this algebraic equation, we obtain 2Γ = ∗ J(dΩ). In general, this 1-form is not
closed. Hermitian manifolds with a closed form Γ are called locally conformal Kähler
manifolds. In higher dimensions (i.e. for G = U(n) and n ≥ 3) all hermitian manifolds
of vectorial type are automatically locally conformal Kähler.

Example 2.2. Consider the subgroup G = SO(n − 1) ⊂ SO(n). A G-structure on
(Mn, g) is a vector field Ω of length one. The geometric structure is of vectorial type if
and only if there exists a vector field Γ such that

0 = ∇vec
X Ω = ∇g

XΩ − g(X , Ω)Γ + g(Ω , Γ)X
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holds. This condition implies that Ω defines a codimension one foliation on Mn,

dΩ = Ω ∧ Γ .

Moreover, the second fundamental form of any leave Fn−1 ⊂ Mn is given by the formula

II(X) = − g(Ω , Γ) · X , X ∈ TFn−1 .

Therefore, the leaves are umbilic. Conversely, let Ω be a 1-form defining an umbilic
foliation. Let us define the vector field Γ by the formulas

II(X) = − g(Ω , Γ) · X , Γ = ∇g
ΩΩ + g(Ω , Γ) · Ω .

Then the induced SO(n − 1)-structure is of vectorial type and Γ is the corresponding
vector field. In consequence, SO(n−1)-structures of vectorial type coincide with umbilic

foliations of codimension one. The vector field Γ satisfies the condition Ω ∧ dΓ = 0,
but in general it does not have to be closed.

Remark 2.2. An almost contact metric structure (M2k+1, ξ, η, ϕ) is never of vectorial
type. Indeed, the condition η ∧ (dη)k 6= 0 contradicts dη = η ∧ Γ.

Fix a spin structure of the manifold (Mn, g). The metric connection ∇vec acts on
arbitrary spinor fields by

∇vect
X Ψ = ∇g

XΨ −
1

2
· (X ∧ Γ) · Ψ .

We now consider the case that the group G lifts into the spin group Spin(n) and admits
a G-invariant algebraic spinor Ψ ∈ ∆n in the n-dimensional spin representation ∆n.
We normalize the length of the spinor, ||Ψ|| = 1. It defines a spinor field on any
Riemannian manifold with a G-structure. Moreover, Ψ is parallel with respect to any
G-connection. Using this parallel spinor field we can calculate the Riemannian Ricci
tensor Ricg completely. Furthermore, we obtain an algebraic restriction for the 2-form
dΓ.

Theorem 2.1. Let G ⊂ SO(n) be a subgroup lifting into the spin group and suppose

that there exists a G-invariant spinor 0 6= Ψ ∈ ∆n. Then the Clifford product dΓ ·Ψ = 0
vanishes for any G-structure of vectorial type. If the dimension n ≥ 5 is at least five,

then Γ is closed, dΓ = 0. The Ricci tensor is given in dimension n = 4 by

g(Ricg(X) , Y ) = g(∇g
XΓ , Y ) + g(∇g

Y Γ , X) − δg(Γ) · g(X , Y ) + g(A(X , Γ) , Y ) ,

and in higher dimensions n ≥ 5 by

Ricg(X) = (n − 2)∇g
XΓ − δg(Γ) · X + A(X , Γ) .

The vector A(X,Γ) is defined by

A(X , Γ) :=

{

0 if X and Γ are proportional
(n − 2)||Γ||2 · X if X and Γ are orthogonal

The scalar curvature Scalg is given by the formula

Scalg = 2 (1 − n) δg(Γ) + (n − 1)(n − 2) ||Γ||2.
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Proof. The spinor field Ψ is parallel with respect to the connection ∇vec, i. e.

∇g
XΨ =

1

2
· (X ∧ Γ) · Ψ .

We compute the square of the Dirac operator as well as the spinorial Laplacian on Ψ,

(

Dg)2Ψ =
1 − n

2

(

δg(Γ) + dΓ
)

· Ψ +
(n − 1)2

4
||Γ||2 · Ψ ,

∆ Ψ = −
1

2
· dΓ · Ψ +

n − 1

2
||Γ||2 · Ψ .

The Schrödinger-Lichnerowicz formula (Dg)2 = ∆ + Scalg/4 yields the equation

2 (1 − n) δg(Γ) · Ψ + (n − 1)(n − 2) ||Γ||2 · Ψ + 2 (2 − n) dΓ · Ψ = Scalg · Ψ .

Then we conclude that dΓ · Ψ = 0 and

2 (1 − n) δg(Γ) + (n − 1)(n − 2) ||Γ||2 = Scalg.

The differential equation for the spinor Ψ allows us to compute the action of the cur-
vature Rg(X,Y ) ·Ψ = ∇g

X∇g
Y Ψ−∇g

Y ∇
g
XΨ−∇g

[X,Y ]Ψ on the spinor. Then we use the

well-known formula (see [11])

Ricg(X) · Ψ = − 2

n
∑

i=1

ei · R
g(X, ei) · Ψ ,

and after a straightforward algebraic calculation in the Clifford algebra we obtain

Ricg(X) ·Ψ = A(X , Γ) ·Ψ + (n−3) (∇g
XΓ) ·Ψ − δg(Γ)X ·Ψ +

n
∑

i=1

g(X , ∇g
ei

Γ) ·ei ·Ψ .

Consider the inner product of the latter equation by the spinor Y ·Ψ. Then we obtain

g(Ricg(X), Y ) = g(A(X,Γ), Y ) + (n − 3) g(∇g
XΓ, Y ) − δg(Γ) g(X,Y ) + g(X,∇g

Y Γ) .

Since the Riemannian Ricci tensor Ricg is symmetric, the antisymmetric part

n − 4

2
dΓ(X , Y )

of the right side has to vanish. The formula for the Ricci tensor follows immediately. �

Remark 2.3. The conditions of the latter theorem are satisfied for the groups G2 ⊂
SO(7) and Spin(7) ⊂ SO(8). The subgroups U(n) ⊂ SO(2n) or Spin(9) ⊂ SO(16) do
not satisfy the conditions, there are no invariant spinors.

Remark 2.4. In dimension n = 4, the condition dΓ · Ψ = 0 defines a 3-dimensional
subspace V 3(Ψ) ⊂ Λ2(R4) of 2-forms depending on the spinor Ψ. It is the isotropy Lie
algebra of the spinor Ψ.

For the special vector X = Γ, the formula for the Ricci tensor simplifies,

Ricg(Γ) = (n − 2)∇g
ΓΓ − δg(Γ) · Γ .

We multiply the latter equation by the vector field Γ. In this way we obtain the product
g(Ricg(Γ) , Γ) of the two vectors.
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Corollary 2.1. Suppose that the subgroup G ⊂ SO(n) lifts into the spin group and

admits an invariant spinor 0 6= Ψ ∈ ∆n. Then, for any G-structure of vectorial type,

we have

g(Ricg(Γ) , Γ) =
(n − 2)

2
· Γ(||Γ||2) − δg(Γ) · ||Γ||2.

If the manifold Mn is compact, then
∫

Mn

g(Ricg(Γ) , Γ) =
(n − 4)

2
·

∫

Mn

δg(Γ) · ||Γ||2.

The next Proposition states that – up to a conformal change of the metric – compact G-
structures of vectorial type admitting a parallel spinor are locally conformal to products
of Einstein spaces by R. The compactness is an essential assumption here. In [9] the
authors constructed non-compact, 7-dimensional solvmanifolds equipped with a G2-
structure of vectorial that are not Riemannian products of R by an Einstein space of
positive curvature.

Proposition 2.2. Let G ⊂ SO(n) be a subgroup that can be lifted into the spin group

and suppose that there exists a spinor G-invariant 0 6= Ψ ∈ ∆n. Consider a G-structure

of vectorial type on a compact manifold and suppose that δg(Γ) = 0 holds. In dimension

n = 4 we assume moreover that Γ is a closed form, dΓ = 0. Then we have

(1) ∇gΓ = 0 .

(2) Ricg(Γ) = 0.
(3) If X is orthogonal to Γ, then Ricg(X) = (n − 1) · ||Γ||2 · X .

(4) The scalar curvature is positive

Scalg = (n − 1)(n − 2)||Γ||2 > 0 .

(5) The Lie derivative of any G-invariant differential form Σk ∈ Λk(Rn) vanishes

LΓΣk == ∇g
ΓΣk = 0 .

(6) The universal covering M̃n = Y n−1×R
1 splits into R and an Einstein manifold

Y n−1 with positive scalar curvature admitting a real Riemannian Killing spinor.

Proof. The 1-form Γ is by assumption harmonic and the Bochner formula for 1-forms
yields

0 =

∫

Mn

||∇gΓ||2 +
1

3

∫

Mn

g(Ricg(Γ) , Γ) =

∫

Mn

||∇gΓ||2 .

Consequently, Γ is parallel with respect to the Levi-Civita connection. Moreover, the
restriction of the spinor field Ψ to the submanifold Y n−1 defines a spinor field such that

∇Y n−1

X Ψ =
1

2
· X · Γ · Ψ , ∇Y n−1

X Γ · Ψ =
1

2
||Γ||2 · X · Ψ

holds for any vector X ∈ T (Y n−1). The spinor field Ψ∗ := ‖|Γ|| · Ψ + Γ · Ψ is a Killing
spinor on Y n−1. �

Remark 2.5. Let us discuss the latter proposition from the point of view of Weyl
geometry. Theorem 2.1 means that any G-structure with a fixed spinor on a compact
manifold induces a Weyl-Einstein geometry with a closed form Γ (n ≥ 5). Indeed, after
a conformal change of the metric the condition δg(Γ) = 0 is satisfied. In this sense,
Proposition 2.2 is a reformulation of Theorem 3 in [14]. In dimensions n = 7 and n = 8
this splitting has been discussed in [15].
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3. Geometric structures of vectorial type admitting a characteristic

connection

Consider a geometric structure R ⊂ F(Mn) of vectorial type and suppose that it admits
a characteristic connection. Then the intrinsic torsion Γ ∈ R

n ⊗m is given by a vector
Γ ∈ R

n,
Γ(X) = prm(X ∧ Γ) .

On the other side, there exists a 3-form Tc such that

2 · Γ(X) = −Θ(Tc)(X) = − prm(X Tc)

holds. Consequently, the vector field Γ and the characteristic torsion Tc are related by
the condition

2 · (X ∧ Γ) + X Tc ∈ g

for all vectors X. In this case, we have two connection ∇vec and ∇c preserving the G-
structure. The map R

n ⊂ R
n⊗m is injective for any subgroup G 6= SO(n). If, moreover,

the map Θ : Λ3(Rn) → R
n ⊗ m is injective too, then the characteristic torsion Tc is

uniquely defined by the vector field Γ. Structures with this property and with a non
trivial Γ cannot occur for all geometric structures. Indeed, the G-representation R

n

has to be contained in the G-representation Λ3(Rn). For example, for the subgroups
G = SO(3) ⊂ SO(5) , Spin(9) ⊂ SO(16) or G = F4 ⊂ SO(26) this condition is not
satisfied (see [12]). In dimensions n = 7, 8 any G2- or Spin(7)-structure of vectorial
type admits a characteristic connection (see [13], [12]).

If the group G preserves a spinor, the corresponding spinor field Ψ on the manifold is
parallel with respect to the connections ∇vec and ∇c. A similar computation as in the
proof of Theorem 2.1 yields the following formulas linking Γ, Tc and Ψ.

Theorem 3.1. Let G ⊂ SO(n) be a subgroup lifting into the spin group and suppose

that there exists a G-invariant spinor 0 6= Ψ ∈ ∆n. Consider a G-structure of vectorial

type that admitas a characteristic connection. Denote by Γ the corresponding vector

field and by Tc the torsion of the characteristic connection. Then we have

(

Γ Tc
)

· Ψ = 0 , δ(Tc) · Ψ = 0 , Tc · Ψ =
2

3
(n − 1) Γ · Ψ ,

(Tc)2 · Ψ =
4

9
(n − 1)2 ||Γ||2 · Ψ ,

dTc · Ψ =
1

3

(

||Tc||2 −
4

9
(n − 1)2 ||Γ||2 − Scal∇

T
c
)

· Ψ ,

2 (n − 1) δg(Γ) = 2
( 4

9
(n − 1)2 ||Γ||2 − ||Tc||2

)

− Scal∇
T

c

.

Example 3.1. Consider a 7-dimensional Riemannian manifold (M7, g) equipped with
a G2-structure of vectorial type, i. e., with a generic 3-form ω. The differential equations
defining the vectorial type of the the structure read as

dω = − 3 (Γ ∧ ω) , δ(ω) = 4 (Γ ω) .

The characteristic torsion is given by the formula Tc = − ∗ (Γ ∧ ω), see [13]. In
particular, we have

Γ Tc = 0 , δ(Tc) = 0 , ||Tc||2 = 4 ||Γ||2 , 12 δ(Γ) = 6 ||Tc||2 − Scal∇
T

c

.
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4. Generalized Hopf structures

The condition ∇vecΓ = 0 or ∇vecTc = 0 is very restrictive. Indeed, it implies that

δg(Γ) = (n − 1) · ||Γ||2.

Integrating the latter equation over a compact manifold, we obtain Γ ≡ 0. The condi-
tions ∇cΓ = 0 or ∇cTc = 0 are more interesting (see [3]).

Proposition 4.1. Suppose that Θ : Λ3(Rn) → R
n ⊗ m is injective and let R be a

G-structure of vectorial type admitting a characteristic connection. If ∇cΓ = 0, then

δg(Γ) = 0 , δg(Tc) = 0 , dΓ = Γ Tc , 2 · ∇gΓ = dΓ .

In particular, Γ is a Killing vector field.

Proof. The formulas follow directly from the assumption,

0 = ∇c
XΓ = ∇g

XΓ +
1

2
Tc(X , Γ , −) . �

In complex geometry, a hermitian manifold of vectorial type such that its characteristic
torsion Tc is ∇c-parallel is called a generalized Hopf manifold. These W4-manifolds have
been studied by Vaisman, see [16]. Let us revisit this geometry in more detail.

Example 4.1. Consider the subgroup U(2) ⊂ SO(4). There are only two types of
U(2)-structures. Moreover, a U(2)-structure is of vectorial type if and only if it admits
a characteristic connection. The link between the 3-form Tc and the vector field Γ is
Γ = ∗Tc (see [3]). Consequently, we obtain

∇c
XΓ = ∇g

XΓ +
1

2
Tc(X , Γ , −) = ∇g

XΓ .

The condition ∇c
XΓ = 0 is equivalent to ∇g

XΓ = 0. These are generalized Hopf surfaces.
They are locally conformal Kähler manifolds (dΓ = 0) with a non-parallel vector field
(∇gΓ 6= 0 , see [4]). There are also U(2)-structures of vectorial type with a non-closed
form Γ (see Example 2.1).

Example 4.2. Consider a hermitian manifold (M6, g, J)) and denote by Ω its Kähler
form. The vector field Γ (the vector part of the intrinsic torsion) is defined by

δg(Ω) = 4 · J(Γ) = 4 · (Γ Ω) , dΩ = − 2 · (Γ ∧ Ω) .

Suppose that M6 is of vectorial type and that ∇cΓ = 0 holds. Then its characteristic
connection as well as the differential are given by the formulas (see [3])

Tc = 2 ·
(

J(Γ) ∧ Ω
)

, dΓ = 0 = Γ Tc , ∇gΓ = 0 .

In particular, Γ is parallel with respect to the Levi-Civita connection and J(Γ) is a
Killing vector field.

Definition 4.1. A G-structure R ⊂ F(Mn) of vectorial type and admitting a charac-
teristic connection is called a generalized Hopf structure if ∇cΓ = 0 holds.
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The vector field Γ of a Hopf G-structure is a Killing vector field. Γ is ∇g-parallel if and
only if dΓ = 0 holds. Proposition 2.1 and Theorem 2.1 contain sufficient conditions
that the vector field of any Hopf G-structure is ∇g-parallel. This situation occurs for
the standard geometries of the groups G = G2,Spin(7) and for U(n) , n ≥ 3. However,
there are subgroups G ⊂ SO(n) and Hopf G-structures (∇cΓ = 0) with a non ∇g-
parallel vector field.
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