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ON THE TOPOLOGY AND THE GEOMETRY OF SO(3)-MANIFOLDS

ILKA AGRICOLA, JULIA BECKER-BENDER, AND THOMAS FRIEDRICH

Abstract. Consider the nonstandard embedding of SO(3) into SO(5) given by the 5-dimensional
irreducible representation of SO(3), henceforth called SO(3)ir. In this note, we study the
topology and the differential geometry of 5-dimensional Riemannian manifolds carrying such
an SO(3)ir structure, i. e. with a reduction of the frame bundle to SO(3)ir.

1. Introduction

We consider the nonstandard embedding of SO(3) into SO(5) given by the 5-dimensional ir-
reducible representation of SO(3), henceforth called SO(3)ir. In this note, we investigate the
topology and the differential geometry of 5-dimensional Riemannian manifolds carrying such
an SO(3)ir structure, i. e. with a reduction of the frame bundle to SO(3)ir. These spaces are
the non-integrable analogues of the symmetric space SU(3)/SO(3) and its non-compact dual
SL(3,R)/SO(3). While the general frame work for the investigation of such structures was out-
lined in [Fri03b], first concrete results were obtained by M. Bobienski and P. Nurowski (general
theory, [BN07]) as well as S.G. Chiossi and A. Fino (SO(3)ir structures on 5-dimensional Lie
groups, [CF07]).
In the first part of the paper, we describe the topological properties of the two different types
of SO(3) structures. While classical results by E. Thomas and M. Atiyah are available for the
standard diagonal embedding of SO(3)st → SO(5), the case of SO(3)ir is first investigated in
this paper. We show that the symmetric space SU(3)/SO(3) admits a SO(3)ir structure, but
no SO(3)st structure. We prove necessary relations for the characteristic classes of a 5-manifold
with a topological SO(3)ir structure: its first Pontrjagin class p1(M) has to be divisible by five,
the Stiefel-Whitney classes w1(M), w4(M), w5(M) vanish etc. Moreover, a simply-connected
SO(3)ir-manifold that is spin is automatically parallelizable. We construct explicit examples of
S1-fibrations over a 4-dimensional base that admit a topological SO(3)ir structure.
In the second part, the differential geometry of some homogeneous examples is studied in detail.
We will focus on a ‘twisted’ Stiefel manifold V ir

2,4 = SO(3) × SO(3)/SO(2)ir, its non compact

partner Ṽ ir
2,4 = SO(2, 1) × SO(3)/SO(2)ir and the space W ir = R × (SL(2,R) ⋉ R2)/SO(2)ir.

On each of these, a family of metrics depending on three deformation parameters α, β, γ is
considered; in the caseW ir it is in addition necessary to consider a family of possibble embeddings
of SO(2)ir into R× (SL(2,R)⋉R2), as the ones leading to SO(3)ir structures are far from trivial.
The standard Stiefel manifold is known to admit an Einstein-Sasaki metric that was crucial
for the understanding of Riemannian Killing spinors. In contrast, we show that the twisted
Stiefel manifold admits a nearly integrable SO(3)ir structure with parallel torsion (it can even
be naturally reductive for some parameters of the metric), a compatible Sasaki structure whose
contact connection coincides with the SO(3)ir connection, but none of the Sasaki structures is
Einstein (however, an Einstein metric is shown to exist). All in all, the twisted Stiefel manifold
is an example of a rather well-behaved SO(3)ir-manifold. The manifold W ir carries an SO(3)ir
structure that disproves several conjectures on SO(3)ir-manifolds that one might be tempted
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to conclude from the previous example. It carries a SO(3)ir structure only for two possible
embeddings of SO(2)ir that depend on the parameters α, β, γ of the metric. The torsion of the
SO(3)ir connection turns out to be non parallel, the space is never Einstein and never naturally
reductive, and there does not exist a compatible contact structure whose contact connection
would coincide with the SO(3)ir connection. In particular, this shows that a SO(3)ir structure is
conceptionally really different from a contact structure; it thus defines a new type of geometry
on 5-manifolds.

2. General remarks on SO(3) structures

The Lie group SO(3) admits two inequivalent embeddings into SO(5). The standard embedding
is as upper diagonal matrices, SO(3)st ⊂ SO(5), A 7→ diag(A, 1, 1), while the second embedding
corresponds to the unique faithful irreducible 5-dimensional representation of SO(3) and will
henceforth be denoted by SO(3)ir ⊂ SO(5). A realization of this representation which is particular
adapted to the spirit of this note is by conjugation on symmetric trace free endomorphisms of
R3, denoted by S2

0(R
3),

̺(h)X := hXh−1 for h ∈ SO(3), X ∈ S2
0(R

3) ∼= R
5.

If we choose the following basis for S2
0(R

3),

X =

5
∑

i=1

xiei =







x1√
3
− x5 x4 x2

x4
x1√
3
+ x5 x3

x2 x3 −2 x1√
3






,

and denote by Eij the endomorphism sending ei to ej, ej to −ei and everything else to zero, the
Lie algebras of the two embeddings above are spanned by the bases

so(3)st = 〈s1 := E23, s2 := E31, s3 := E12〉, so(3)ir = 〈X1, X2, X3〉,
X1 = ̺(s1) =

√
3E13 + E42 + E53, X2 = ̺(s2) =

√
3E21 + E34 + E52, X3 = ̺(s3) = E23 + 2E45.

By definition, a SO(3)st resp. SO(3)ir structure on a 5-manifold is a reduction of its frame
bundle to a subgroup SO(3) ⊂ SO(5) isomorphic to SO(3)st resp. SO(3)ir. The first example of
a manifold with a SO(3)ir structure is the Riemannian symmetric space SU(3)/SO(3) with its
natural Sasaki-Einstein metric, see [BN07] for a detailed description.
One crucial observation of [BN07] is that so(3)ir may be characterized as being the isotropy
group of of a symmetric (3, 0)-tensor Υ on R5. Basically, this symmetric tensor is one of the
coefficients of the characteristic polynomial of X ∈ S2

0(R
3), more precisely,

det(X − λ Id) = −λ3 + g(X,X)λ− 2
√
3

9
Υ(X,X,X).

The coordinates are chosen in such a way that the bilinear form g takes the simple expression

g(X,X) =
∑5

1 x
2
1, while Υ is the homogeneous polynomial

Υ(X,X,X) = x3
1 +

3

2
x1(x

2
2 + x2

3 − 2x2
4 − 2x2

5) +
3
√
3

2
(x2

2 − x2
3)x5 − 3

√
3x2x3x4.

In fact, a SO(3)ir structure on a 5-dimensional Riemannian manifold (M5, g) can equally be
characterised as being a rank 3 tensor field Υ for which the associated linear map TM →
End(TM), v 7→ Υv defined by (Υv)ij = Υijkvk satisfies

(1) it is totally symmetric: g(u,Υvw) = g(w,Υvu) = g(u,Υwv),
(2) it is trace-free: trΥv = 0,
(3) it reconstructs the metric: Υ2

vv = g(v, v)v.

Recall that for a G structure, a metric connection ∇ is called a characteristic connection if it is
a G connection whose torsion is totally antisymmetric [Fri03b].
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Theorem 2.1 ([BN07]). A SO(3)ir structure (M, g,Υ) can only admit a characteristic connec-
tion if it is nearly integrable, i. e. if the tensor Υ satisfies (∇g

vΥ)(v, v, v) = for all vector fields v.
In this case, the torsion of the characteristic connection is of algebraic type Λ3(R5) ∼= Λ2(R5) ∼=
so(5) = so(3)ir ⊕ n.

The analogy to the definition of a nearly Kähler manifold is evident. However, contrary to nearly
Kähler manifold (see [Kir77], [AFS05]), the torsion T of the characteristic connection of a nearly
integrable SO(3)ir structure is not always parallel. Examples will be discussed in Section 4.

3. Topological existence conditions

Necessary and sufficient conditions for the existence of a SO(3)st structure on an oriented 5-
manifold were investigated in the late 1960ies. In fact, the existence of such a structure is
equivalent to the existence of two global linearly independent vector fields. Recalling that the
Kervaire semi-characteristic is defined by

k(M5) :=

2
∑

i=0

dimR H2i(M5;R) mod 2,

one has the following classical result:

Theorem 3.1 ([Th68], [At70]). A 5-dimensional compact oriented manifold admits two global
linearly independent vector fields if and only if

w4(M
5) = 0 and k(M5) = 0.

There is a second semi-characteristic,

χ̂2(M
5) :=

2
∑

i=0

dimZ2
Hi(M

5;Z2) mod 2.

The Lusztig-Milnor-Peterson formula [LMP69] establishes the link between these two semi-
characteristics,

k(M5) − χ̂2(M
5) = w2(M

5) ∪ w3(M
5) .

In particular, if M5 is spin or w3(M
5) = 0, then k(M5) = χ̂2(M

5).

In [BN07] and [Bob06], it was claimed that the existence of a SO(3)ir structure is equivalent to
the existence of a SO(3)st structure and the divisibility of the first integral Pontrjagin class by
five. However, the symmetric space SU(3)/SO(3) is known to have a SO(3)ir structure, but it
does not have a SO(3)st structure.

Example 3.1. The symmetric space M5 := SU(3)/SO(3) admits a SO(3)ir structure, but no
SO(3)st structure.

Proof. Let us start by computing the isotropy representation of M5. We choose as a basis of
so(3) the elements a1 := E23, a2 := E31, a3 := E12 and complete it to a basis of su(3) by choosing

b1 = i





0 1 0
1 0 0
0 0 0



 , b2 = i





0 0 1
0 0 0
1 0 0



 , b3 = i





0 0 0
0 0 1
0 1 0



 ,

b4 = i





1 0 0
0 −1 0
0 0 0



 , b5 =
i√
3





1 0 0
0 1 0
0 0 −2



 .

In this basis, the isotropy representation λ : so(3) → so(5) is given by

λ(a1) = E12 + E34 −
√
3E35, λ(a2) = −E13 + E24 +

√
3E25, λ(a3) = −2E14 + E23.
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This representation is irreducible, hence isomorphic to the 5-dimensional irreducible represen-
tation of so(3). M5 cannot admit a SO(3)st structure as claimed. Indeed, M5 is a rational
homology sphere and a computation of the Z2-cohomology yields the following result:

H1(M5;Z2) = H4(M5;Z2) = 0 , H2(M5;Z2) = H3(M5;Z2) = Z2 .

Consequently, we obtain k(M5) = 1 and χ̂2(M
5) = 0. Moreover, M5 does not admit any spinC

structure (see [Fr02], page 50). �

Our description of the irreducible representation of SO(3) on S2
0(R

3) implies the following char-
acterization:

Lemma 3.1. A 5-manifold M5 admits a SO(3)ir structure if and only if there exists a 3-
dimensional oriented vector bundle E3 → M5 such that the tangent bundle TM5 is isomorphic
to the bundle of symmetric trace free endomorphisms of E3, TM5 ∼= S2

0(E
3).

This characterization allows to formulate some necessary topological conditions for the existence
of SO(3)ir structures.

Theorem 3.2. Suppose that M5 admits a SO(3)ir structure and that E3 is a vector bundle over
M5 as just described. Then the following relations hold:

(1) p1(M
5) = 5 p1(E

3) ∈ H4(M5;Z).
In particular, the first Pontrjagin class p1(M

5) is divisible by five.
(2) w1(M

5) = 0, w4(M
5) = 0, w5(M

5) = 0,
(3) w2(M

5) = w2(E
3), w3(M

5) = w3(E
3).

Proof. We use the Borel-Hirzebruch formalism and consider, for a connected and compact Lie
group G and its maximal torus T ⊂ G, the maps H∗(BT )W = H∗(BG) → H∗(M5) induced by
the classifying maps of the bundles T (M5) and E3. Denote by ω1, ω2 the weights of SO(5) and
by ω the weight of SO(3). Then we have

1 + p1(TM
5) = 1 + (ω2

1 + ω2
2) , 1 + p1(E

3) = 1 + ω2 .

The inclusion SO(3)ir ⊂ SO(5) induces the map ω → (ω1, 2ω2) and we obtain

p1(M
5) = ω2

1 + ω2
2 = ω2 + (2ω)2 = 5ω2 = 5 p1(E

3) .

If the Stiefel-Whitney classes of E3 are given by the elementary symmetric functions

w(E3) = (1 + x1)(1 + x2)(1 + x3) ,

then the classes of S2
0(E

3) are computed by

w(S0(E
3)) = w(S(E3)) =

∏

1≤i≤j≤3

(1 + xi + xj) .

The bundle E3 is oriented, x1 + x2 + x3 = w1(E
3) = 0. A direct computation mod 2 yields now

the results
w1(S(E

3)) = w4(S(E
3)) = w5(S(E

3)) = 0 ,

and

w2(S(E
3)) = (x1 + x2 + x3)

2 + x1x2 + x1x3 + x2x3 = w2(E
3) ,

w3(S(E
3)) = (x1 + x2 + x3)(x1x2 + x1x3 + x2x3) + x1x2x3 = w3(E

3) .

�

Remark 3.1. The construction and classification of oriented 3-dimensional vector bundles over
compact, oriented 5-manifolds in terms of topological data is difficult. But assume that we have
such a bundle E3 over M5 and w2(E

3) = w2(M
5) , 5 p1(E

3) = p1(M
5) holds. Moreover, assume

that H4(M5;Z) = H1(M
5;Z) has no 2-torsion. Then w2(S

2
0(E

3)) = w2(T (M
5)), p1(S

2
0(E

3)) =
p1(T (M

5)) and the real vector bundles S2
0(E

3) and T (M5) are stable equivalent (see [DW59]
and [Th68]).



SO(3)-MANIFOLDS 5

Wu’s formulas linking the Stiefel-Whitney classes of an oriented 5-manifold M5 read as

w3(M
5) = Sq1(w2(M

5)) , w4(M
5) = w2(M

5) ∪ w2(M
5) ,

w2(M
5) ∪ w3(M

5) = Sq1(w2(M
5) ∪ w2(M

5)) + Sq2(w3(M
5)) .

In particular, we obtain

Corollary 3.1. If M5 admits a SO(3)ir or a SO(3)st structure, then

w2(M
5) ∪ w2(M

5) = 0 , w3(M
5) = Sq1(w2(M

5)) , w2(M
5) ∪ w3(M

5) = Sq2(w3(M
5))

holds.

Example 3.2. The real projective space RP5 cannot have either kind of a SO(3) structure, for in
both cases the vanishing of w4(RP

5) would be a necessary condition. Indeed, its Stiefel-Whitney
class w4(RP

5) 6= 0 is non-trivial.

The necessary conditions expressed via the Pontrjagin class as well as the Stiefel-Whitney classes
do not imply the existence of a SO(3)ir structure. In fact, there is a further obstruction in
H5(M5;Z2), probably the vanishing of χ̂2(M

5). Here we prove only a weaker statement.

Theorem 3.3. Let M5 be a compact, simply-connected spin manifold admitting a SO(3)ir or
a SO(3)st structure. Then M5 is parallelizable. In particular, the sphere S5 does not admit a
SO(3)ir nor a SO(3)st structure.

Remark 3.2. The Theorem is well known for the standard embedding. Indeed, if w2(M
5) = 0

and the simply-connected M5 admits a SO(3)st structure, then p1(M
5) = 0 as well as k(M5) =

χ̂2(M
5) = 0. These conditions imply that M5 is parallelizable (see [Th68]).

In order to prove this theorem, we need the following

Lemma 3.2. Let i : SO(3) → SO(5) be the standard or the irreducible embedding of the group
SO(3) into SO(5). Then the induced homomorphism

i∗ : π4(SO(3)) = Z2 −→ π4(SO(5)) = Z2

is trivial.

Proof of Lemma 3.2. We remark that both homotopy groups are isomorphic to Z2,

π4(SO(3)) = π4(Spin(3)) = π4(S
3) = Z2,

π4(SO(5)) = π4(Spin(5)) = π4(Sp(2)) = π4(Sp(1)) = π4(S
3) = Z2 .

The second line is a consequence of the classical isomorphism Spin(5) = Sp(2) and the fibra-
tion Sp(2)/Sp(1) = S7. First consider the standard embedding ist : SO(3) → SO(5). Then
SO(5)/ist(SO(3)) = V5,2 is the Stiefel manifold and we obtain the exact sequence

. . . −→ π4(SO(3)) = Z2 −→ π4(SO(5) = Z2 −→ π4(V5,2) −→ π3(SO(3)) = Z −→ . . . .

Since π4(V5,2) = Z2 (see [Pae56]) we conclude that π4(SO(5)) → π4(V5,2) is surjective, i.e.
(ist)∗ : π4(SO(3)) → π4(SO(5)) is trivial. If iir : SO(3) → SO(5) is the irreducible embedding
then we denote by X7 = SO(5)/iir(SO(3)) = Sp(2)/iir(Sp(1)) the corresponding homogeneous
space (the so called Berger space). Its homotopy groups are known,

π1(X
7) = π2(X

7) = 0 , π3(X
7) = Z10 .

The exact sequence of the homotopy groups of that fibration yields that (iir)∗ : π3(Sp(1)) =
Z → π3(Sp(2)) = Z is multiplication by 10. Consequently, the map iir : S3 = Sp(1) → Sp(2)
represents ten times the generator [h] ∈ π3(Sp(2)), [iir] = 10 · [h]. A similar argument proves
that [ist] = 2 · [h] holds. Fix a map g : S3 = Sp(1) → Sp(1) = S3 of degree 5. Then we obtain

[ist ◦ g] = 10 · [h] = [iir] ,

i. e. the maps ist ◦ g, iir : Sp(1) → Sp(2) are homotopic. The induced map (iir)∗ = (ist)∗ ◦ g∗
of the embedding iir is given by the induced maps of ist and of g. Finally we see that (iir)∗ :
π4(SO(3)) → π4(SO(5)) is again trivial. �
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Proof of Theorem 3.3. Suppose that M5 admits a SO(3)ir structure. Then E3 is a 3-dimensional,
oriented bundle with a spin structure. Its frame bundle PE3 is given by a classifying map
M5 → BSpin(3) = HP

∞. The manifold M5 is 5-dimensional and, consequently, the classifying
map is a map into S4. Since H4(M5;Z) = H1(M

5;Z) = 0 there are at most two homotopy
classes of maps from M5 into S4 (see [Span66, Ch. 8, S. 5, Thm. 15]). The frame bundle PE3 is
trivial over the 4-skeleton of M5 and the two bundles are given by their obstruction classes in
H5(M5;π4(SO(3))) = π4(SO(3)) = Z2. However, the map i∗ : π4(SO(3)) → π4(SO(5)) is trivial.
This implies that the bundles E3 ⊕ θ2 (in case of the standard embedding) or S2

0(E
3) (in case of

the irreducible embedding) are trivial. Finally, M5 is parallelizable. �

Example 3.3. The connected sums (2l + 1)#(S2 × S3) are simply-connected, spin and they
admit a SO(3)st structure (the Kervaire semi-characteristic k vanishes). Therefore they are
parallelizable.

The subgroup SO(2)ir :=
{

(A,A2, 1) : A ∈ SO(2)
}

is contained in SO(3)ir ⊂ SO(5). A 5-manifold

M5 admits a SO(2)ir structure (and, in particular, a SO(3)ir structure) if and only if there exists
a complex line bundle E such that T (M5) = E ⊕ E2 ⊕ θ1. Suppose that M5 is a S1-fibration
over a 4-manifold X4. Then the tangent bundle of X4 should split into T (X4) = E⊕E2. Let us
discuss the latter condition. In this way we are able to construct whole families of 5-manifolds
admitting a topological SO(3)ir structure.

Proposition 3.1. Let X4 be a smooth, compact, oriented 4-dimensional manifold. Then the
following conditions are equivalent:

(1) The tangent bundle splits into T (X4) = E ⊕ E2.
(2) There exists an element c ∈ H2(X4;Z) such that

p1(X
4) = 5 c2 , χ(X4) = 2 c2 , and c ≡ w2(X

4) mod 2 .

(3) There exists an element c ∈ H2(X4;Z) such that

χ(X4) = 2 c2 , c ≡ w2(X
4) mod 2 and 6 σ(X4) = 5χ(X4).

Proof. If T (X4) = E ⊕ E2 then the first Chern class c = c1(E) of the line bundle E satisfies
all the conditions. Conversely, suppose that there exists an element c ∈ H2(X4;Z) with the
described properties. Then we consider the line bundle E defined by the condition c = c1(E).
The Euler, the Pontrjagin and the Stiefel-Whitney classes of the real bundles T (X4) and E⊕E2

coincide and H4(X4;Z) has no 2-torsion. Consequently, the 4-dimensional real vector bundles
T (X4) and E ⊕ E2 are isomorphic (see [DW59], [Th68]). �

Compact spin manifolds X4 with finite fundamental group and admitting a decomposition
T (X4) = E ⊕ E2 do not exist. Indeed, denote by U the intersection form of S2 × S2 and
by Γ8 the non-trivial, positive definite quadratic form of rank 8. The intersection form of the
universal covering X̃4 is isomorphic to p · U ⊕ q · Γ8 (see [Serre70], chapter 5, Theorem 5). But

σ(X̃4) = 8 q, χ(X̃4) = 2 p + 8 q + 2

and 6 σ(X̃4) = 5χ(X̃4) yields 8q = 10p + 10 > 8p. Finally we obtain p < q and the manifold
cannot be smooth (the 11/8 conjecture, see [Fu01]).

Any indefinite and odd quadratic form over Z can be realized as the intersection form of a
smooth, compact and simply-connected 4-manifold X4. Any such form is isomorphic to the sum
of two trivial forms (see [Serre70], chapter 5, Theorem 4), H2(X4;Z) = s · 〈1〉 ⊕ t · 〈−1〉. Then
we obtain

χ(X4) = 2 + s+ t, σ(X4) = s− t

and the condition 6 σ(X4) = 5χ(X4) implies s − 11 t = 10. Consider the generators e1, . . . , es
and f1, . . . , ft of the quadratic form with e2α = 1 as well as f2

β = −1, α = 1, . . . , s and β = 1, . . . , t.
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An admissible class c ≡ w2(X
4) is a linear combination with odd coefficients,

c = a1 e1 + . . .+ as es + b1 f1 + . . . + bt ft

and the equation 2 c2 = χ(X4) becomes a21 + . . .+ a2s − b21 − . . .− b2t = 6 + 6 t. The system

s − 11 t = 10 , a21 + . . . + a2s − b21 − . . . − b2t = 6 + 6 t .

has solutions in odd number aα, bβ. A first solution is s = 21, t = 1, a1 = . . . = a21 = 1, b1 = 3

and the corresponding manifold is homeomorphic to 21CP2#C̄P
2
. A second solution is s =

43, t = 3, a1 = . . . = a43 = 3, b1 = b2 = b3 = 11 with the manifold 43CP2 #3 C̄P
2
. A third

solution is s = 197, t = 17, a1 = . . . = a197 = 15, b1 = . . . = b17 = 51 with the manifold

197CP2 #17 C̄P
2
. Any S1-bundle M5 over these spaces admits a SO(2)ir ⊂ SO(3)ir structure.

Remark 3.3. The Thom-Gysin sequence yields the relations

χ̂2(M
5) ≡ dimZ2

H2(X
4;Z2), k(M5) ≡ dimR H2(X

4;R), χ̂2(M
5) = k(M5)

for any oriented S1-bundle π : M5 → X4 over a compact, simply-connected 4-manifold X4. Note
that w3(M

5) = π∗(w3(X
4)) = 0 holds anyway. M5 is a spin manifold if and only if the Chern

class c∗ ∈ H2(X4;Z) of the fibration π : M5 → X4 represents the Stiefel-Whitney class of X4,
c∗ ≡ w2(X

4) mod 2. The Pontrjagin class p1(M
5) vanishes if and only if there exists an element

x ∈ H2(X4;Z) such that p1(X
4) = c∗ ∪ x.

4. Homogeneous examples and their geometric properties

Homogeneous manifolds with a SO(3)ir structure have been classified using Cartan’s method of
integration by Bobienski and Nurowski, see [Bob06]. In this section, it is our goal to describe
their geometric properties.
Given that a non-discrete subgroup H ⊂ SO(3)ir can only have dimension 1 or 3, a homogeneous
space M5 = G/H can only be the quotient of a group G of dimension 8 or 6. The case dimG = 8
is not so interesting, as these are precisely the symmetric spaces SU(3)/SO(3), SL(3,R)/SO(3)
and R

5. We shall therefore concentrate our attention on homogeneous spaces M5 = G6/SO(2),
whith SO(2) ⊂ SO(3)ir. The case of 5-dimensional Lie groups with SO(3)ir structure has been
discussed in detail by Chiossi and Fino, see [CF07].

4.1. The ‘twisted’ Stiefel manifold V ir
2,4 = SO(3)×SO(3)/SO(2)ir. We consider the inclusion

H := SO(2) ∋ A 7−→ (A,A2) ∈ SO(3)× SO(3) =: G

and the corresponding homogeneous space V ir
2,4 := SO(3)×SO(3)/SO(2). If we choose as standard

basis of the Lie algebra so(3) the elements s1, s2 and s3 defined in Section 2 and as basis of
g = so(3) ⊕ so(3) the elements ai = (si, 0), bi = (0, si), i = 1, 2, 3, the Lie algebra h of SO(2) is
given by

h = R · ẽ0 with ẽ0 = (s3, 2s3) = (a3 + 2b3).

We further define

ẽ1 = b3 − 2a3, ẽ2 = a1, ẽ3 = a2, ẽ4 = b1, ẽ5 = b2.

As a reductive complement m of h, we may then choose

m = n⊕m1 ⊕m2, n = R · ẽ1, m1 = 〈ẽ2, ẽ3〉, m2 = 〈ẽ4, ẽ5〉.
One checks that the isotropy representation λ = Ad

∣

∣

H
: SO(2) → SO(5) is given by λ(A) =

diag(1, A,A2) and has differential dλ(ẽ0) = E23 + E45. In particular, one sees that λ(H) is
indeed a subgroup of SO(3)ir ⊂ SO(5), but not of SO(3)st ⊂ SO(5). Thus, the quotient G/H
has a SO(3)ir structure as claimed. In order to make this property more transparent, we shall
write SO(2)ir for the chosen embedding of SO(2) inside SO(3) × SO(3) as well as for its image
λ(SO(2)ir) ⊂ SO(5).
In order to define a suitable family of metrics on m and thereby of Riemannian metrics on G/H ,
we first note that not only m itself, but each of the spaces n,m1,m2 is λ(H) invariant. Thus,
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it makes sense to consider a metric that is a renormalization of the Killing form on each of the
factors n,m1 and m2. Since our initial basis consists of orthogonal vectors for the Killing form,
we define a 3-parameter family of metrics by

gαβγ = diag(α, β, β, γ, γ), α, β, γ > 0.

We set e0 = ẽ0 and renormalize our previous basis so that it becomes an orthonormal basis for
this new metric,

e1 =
ẽ1√
α
, e2 =

ẽ2√
β
, e3 =

ẽ3√
β
, e4 =

ẽ4√
γ
, e5 =

ẽ5√
γ
.

For later reference, we state all non-vanishing commutator relations:

[e0, e2] = e3, [e0, e3] = −e2, [e0, e4] = 2e5, [e0, e5] = −2e4,

[e1, e2] = − 2√
α
e3, [e1, e3] =

2√
α
e2, [e1, e4] =

1√
α
e5, [e1, e5] = − 1√

α
e4,

[e2, e3] =
1

5β
(e0 − 2

√
α e1), [e4, e5] =

1

5γ
(2e0 +

√
α e1).

Remark 4.1. Before investigating its properties in more detail, let us compare the homogeneous
space V ir

2,4 = SO(3) × SO(3)/SO(2)ir with the classical Stiefel manifold V st
2,4 = SO(4)/SO(2).

Because of SO(4) = S3 × SO(3), the corresponding Lie algebra embedding so(2) → so(3)× so(3)
is just h 7→ (h, 0) in the classical case, h 7→ (h, 2h) in the case that we are considering. Hence,
we see that that V st

2,4 carries an SO(3)st structure, hence justifying the superscript. In [Jen75], it

was shown that the classical Stiefel manifold V st
2,4 carries an Einstein metric. Later, this Einstein

metric was recognized to be Sasaki and the existence of two Riemannian Killing spinors was
established [Fri80]. Connections with antisymmetric torsion on V st

2,4 were investigated in [Agr03].
All in all, this example turned out to be crucial for the understanding of the relations between
contact structures and the existence of Killing spinors.

Remark 4.2. Let us display the SO(3)ir structure of V
ir
2,4 in yet another way, namely, as a bundle

E3 satisfying S2
0(E

3) ∼= TV ir
2,4 as used in Section 3. The frame bundle of the homogeneous space

V ir
2,4 is R = G×λ(H) SO(5) and its tangent bundle is TV ir

2,4 = G×λ(H) m; therefore, the following
vector bundle is well defined,

E3 = G×λ(H) so(3)ir,

where the action of H is by conjugation on the subspace so(3)ir ⊂ so(5) as always. One then
checks that, as H representations, S2

0(so(3)ir)
∼= m, hence showing S2

0(E
3) ∼= TV ir

2,4 as claimed.

Theorem 4.1 (Connection properties). The twisted Stiefel manifold V ir
2,4 = SO(3)×SO(3)/SO(2)ir

equipped with the family of metrics gαβγ has the following properties:

(1) For parameters α, β, γ > 0 satisfying αβ + 4 γα − 25 βγ = 0, the SO(3)ir structure is
nearly integrable and the torsion Tαβγ of its characteristic connection ∇αβγ is, in a
suitable orthonormal basis, given by

Tαβγ =
2
√
α

5β
e1 ∧ e2 ∧ e3 −

√
α

5γ
e1 ∧ e4 ∧ e5.

Its holonomy is SO(2)ir ⊂ SO(5) and its torsion is parallel, ∇αβγTαβγ = 0.
(2) The metric of the nearly integrable SO(3)ir structure is naturally reductive if and only if

α = 5β = 5γ.

Proof. By a Theorem of Wang [KN96, X.2], invariant metric connections ∇αβγ on V ir
2,4 = G/H

are in bijective correspondence with linear maps Λm : m → so(5) that are equivariant under the
adjoint representation,

(∗) Λm(hXh−1) = Ad (h)Λm(X)Ad (h)−1 ∀h ∈ H, X ∈ m.



SO(3)-MANIFOLDS 9

Since Λm is basically the connection form, ∇αβγ will be a SOir connection if and only if Λm

takes values in the structure group SO(3)ir of the reduction of the frame bundle. We have
λ(e0) = e23+2E45 = X3 in the notation of Section 2 and complete it to a basis of so(3)ir ⊂ so(5)
by choosing as additional elements X1 and X2. Thus, Λm(ei) is a priori for each i = 1, . . . , 4
a linear combination of the elements Xi, i = 1, 2, 3. However, the equivariance condition (∗)
further restrics the possible values of Λm(ei); one checks that the most general Ansatz for a SOir

connection is (a, b, c ∈ R)

Λm(e1) = aX3, Λm(e2) = bX1 − cX2, Λm(e3) = cX1 + bX2, Λm(e4) = Λm(e5) = 0.

For the possible torsion Tαβγ ∈ Λ3(G/H), observe that the only λ-invariant 3-forms are e1∧e2∧e3
and e1 ∧ e4 ∧ e4, thus the torsion has to be of the form (m,n ∈ R)

Tαβγ = me1 ∧ e2 ∧ e3 + n e1 ∧ e4 ∧ e5.

Since the torsion of the connection defined by Λm is given by [KN96, X.2.3]

(∗) T (X,Y )o = Λm(X)Y − Λm(Y )X − [X,Y ]m, X, Y ∈ m,

one concludes by a routine evaluation on all pairs of vectors ei 6= ej that

b = c = 0, m = a+
2√
α

=
2
√
α

5β
, n = 2a− 1√

α
= −

√
α

5γ
.

A SO(3)ir connection is thus obtained if and only if αβ+4αγ− 25βγ = 0 and is then defined by

Λm(e1) =

(

2
√
α

5β
− 2√

α

)

X3, Tαβγ =
2
√
α

5β
e1 ∧ e2 ∧ e3 −

√
α

5γ
e1 ∧ e4 ∧ e5.

If one requires further that Tαβγ(X,Y, Z) = −g([X,Y ]m, Z), one obtains a naturally reductive
space and a comparison with the commutator relations yields the stronger condition α = 5β =
5γ. Indeed, under this condition Λm = 0, and the characteristic connection coincides with the
canonical connection.
We now show that the torsion Tαβγ is ∇αβγ-parallel. Invariant tensor are parallel with respect
to the canonical connection defined by Λc

m = 0, hence ∇αβγ
ei T = Λm(ei)T . We first note that on

the invariant vector e1, trivially Λm(e1)e1 = 0 holds, and after the identification so(m) ∼= Λ2(m),
the action of the connection on 2-forms ω is given

(∗∗) ∇αβγ
ei ω = Λm(ei)ω =

5
∑

j=1

(ej Λm(ei)) ∧ (ej ω).

Thus, one checks that ∇αβγ(e2 ∧ e3) = ∇αβγ(e4 ∧ e5) = 0 and, consequently, ∇αβγTαβγ = 0
holds.
Finally, it is worth computing the curvature of the characteristic connection. In gereral, it is
given by [KN96, X.2.3]

R(X,Y )o = [Λm(X),Λm(Y )]− Λm([X,Y ]m)− λ([X,Y ]h).

In the case at hand, one obtains as the only non-vanishing terms

R(e2, e3) =
1

5β

[

4α

5β
− 5

]

X3, R(e4, e5) = − 2α

25 βγ
X3.

Let m0 ⊂ m be the space spanned by the non-vanishing curvature transformations. The holonomy
algebra of the connection is then

hol(∇αβγ) = m0 + [Λm(m),m0] + [Λm(m), [Λm(m),m0]] + . . . = R ·X3 = so(2)ir ⊂ so(5). �

Remark 4.3. In the positive quadrant {(α, β, γ) ∈ R3 : α > 0, β > 0, γ > 0}, the metrics
gαβγ defining a nearly integrable SO(3)ir structure form a ruled surfaces of rays through the
origin. The naturally reductive metrics are exactly one ray (line) on this ruled surface.

Theorem 4.2 (Riemannian Curvature properties).
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(1) The Riemannian Ricci tensor of the metric gαβγ is given by Ric(e1, e1) =
2α

25β2
+

α

50γ2
,

Ric(e2, e2) = Ric(e3, e3) =
1

β
− 2α

25β2
, Ric(e4, e4) = Ric(e5, e5) =

1

γ
− α

50γ2
.

(2) The metric is Einstein (but not naturally reductive) for α = 1 and

β =
18

25(102/3 − 2 · 101/3 + 4)
∼= 0.166177, γ =

3(9 +
√
21 + 12 · 101/3 + 3 · 102/3)

25(20− 4 · 101/3 − 102/3)
∼= 0.299009.

The Riemannian scalar curvature is Scalg =
[

5
3

]3
(100−2·101/3−102/3/2) ∼= 15.60340835.

(3) The Riemannian holonomy of (V ir
2,4, gαβγ) is SO(5), i. e. maximal.

Proof. The Levi-Civita connection ∇g is the unique metric connection whose torsion vanishes,
hence a calculation similar to that in the proof of Theorem 4.1 yields that ∇g corresponds to the
map Λg

m : m → so(5),

Λg
m(e1) =

[√
α

5β
− 2√

α

]

E23 +

[

1√
α
−

√
α

10γ

]

E45, Λg
m(e2) =

√
α

5β
E13,

Λg
m(e3) = −

√
α

5β
E12, Λg

m(e4) = −
√
α

10γ
E15, Λg

m(e5) =

√
α

10γ
E14.

The Riemannian curvature, its Ricci tensor and the Riemannian holonomy then follow from a
lengthy, but routine calculation, see the proof of Theorem 4.1 for the general method.
Let us investigate the Einstein condition g = κ · Ric. It leads to the equations

κ =
1

γ
− 1

50γ2
, κ =

2

25β2
+

1

50γ2
, κ =

1

β
− 2

25β2
,

which in turn are equivalent to

25 κβ2 − 25 β + 2 = 0, 50 κγ2 − 50 γ + 1 = 0,
2

25 β2
+

1

50γ2
− κ = 0.

The last condition implies that κ 6= 0, the metric cannot be Ricci-flat. In this case, the general
solution of the first two quadratic equations is

β± =
5±

√
25− 8κ

10κ
, γ± =

5±
√
25− 2κ

10κ
.

Inserting all four combinations into the last equation, we obtain four possible conditions for
an Einstein metric. One then checks that the combination (β+, γ+) yields the Einstein metric
given in the theorem (satisfying, in particular, κ < 25/8), while the other combinations have no
admissible solutions. �

Theorem 4.3 (Contact properties).
(1) (V ir

2,4, g
αβγ) carries two invariant normal almost contact metric structures, characterized

by

ξ ∼= η = e1, ϕ± = −E23 ± E45, dF± = 0.

Both normal almost contact metric structures admit a unique characteristic connection
with the same characteristic torsion

T c = η ∧ dη =
2
√
α

5β
e1 ∧ e2 ∧ e3 −

√
α

5γ
e1 ∧ e4 ∧ e5.

For a metric gαβγ defining a nearly integrable SO(3)ir structure, this connection coincides
with the characteristic connection of the SO(3)ir structure.

(2) The invariant normal almost contact metric structure (ξ, η, ϕ+) is Sasakian if and only
if α = 25β2 = 100γ2; it is in addition an SO(3)ir structure for (α, β, γ) = (2536 ,

1
6 ,

1
12 ).
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Proof. An almost contact structure ist given by a vector field ξ with dual 1-form η and a (1, 1)-
tensor field ϕ such that ϕ2 = −Id+η⊗ξ. In order to become an almost contact metric structure,
a compatibility condition about the underlying Riemannian metric is required,

g(ϕ(X), ϕ(Y )) = g(X,Y )− η(X)η(Y ).

With the Sasaki case already in mind, e1 – being a Killing vector field – is a natural choice for
ξ ∼= η. Furthermore, it is reasonable in our setting to restrict our attention to invariant structures,
i. e. endomorphisms ϕ : 〈e1〉⊥ → 〈e1〉⊥ that are invariant under the isotropy representation.
These are precisely the endomorphisms commuting with dλ(ẽ0), hence ϕ has to be of the form
ε1E23 + ε2E45, ε1,2 = ±1. This leads to the two only inequivalent cases described in (1). The
almost contact metric structure will be called normal if its Nijenhuis tensor Nϕ vanishes,

Nϕ(X,Y ) = [ϕ(X), ϕ(Y )]− ϕ[X,ϕ(Y )]− ϕ[ϕ(X), Y ] + ϕ2[X,Y ] + dη(X,Y )ξ.

One computes dη = 2
√
α

5β e2 ∧ e3 −
√
5

5γ e4 ∧ e5 and uses this fact to check that, indeed, Nϕ±
= 0.

The fundamental form of a contact structure is defined by F (X,Y ) := g(X,ϕ(Y )), hence one
obtains in our case

F± = e2 ∧ e3 ∓ e4 ∧ e5.

By a routine calculcation, onw shows that d(e2 ∧ e3) = d(e4 ∧ e5) = 0, hence dF± = 0 and
the general expression for the torsion of an almost contact metric structure [FrI02, Thm 8.2] is
reduced to T c = η ∧ dη, and hence yields the formula stated in (1).
In order to become Sasakian, only 2F = dη still needs to be satisfied. Thus, F− can never be
Sasakian and F+ has to satisfy the condition α = 25β2 = 100γ2. This finishes the proof. �

Remark 4.4. Together with Theorem 4.2, we conclude that all Sasaki metrics on V ir
2,4 are non-

Einstein, contrary to the standard Sasaki metric on V st
2,4 (see, for example, [BFGK91, Ch. 4.3]

for a detailed discussion of this Einstein-Sasaki structure and its properties).
Geometrically speaking, the set of Sasaki metrics defines a roughly square root shaped curve in
the positive quadrant {(α, β, γ) ∈ R3 : α > 0, β > 0, γ > 0} that intersects the ruled surface
of nearly integrable SO(3)ir metrics in exactly one point, as described in (2).

The twisted Stiefel manifold V ir
2,4 = SO(3)× SO(3)/SO(2)ir has a non-compact partner, namely,

Ṽ ir
2,4 := SO(2, 1)× SO(3)/SO(2)ir. We realize so(2, 1) as

so(2, 1) = 〈a1, a2, a3〉 with basis a1 =





0 0 0
0 0 −1
0 −1 0



 , a2 =





0 0 1
0 0 0
1 0 0



 , a3 =





0 −1 0
1 0 0
0 0 0



 .

The commutator relations are [a1, a2] = −a3, [a2, a3] = a1, [a3, a1] = a2. For so(3), we use the
same basis b1, b2, b3 as before. The embedding of H = SO(2) into G = SO(2, 1)× SO(3) is also
unchanged, namely, with generator a3 +2b3, and a good choice for a reductive complement m is

m = n⊕m1 ⊕m2, n = R · (b3 − 2a3), m1 = 〈a1, a2〉, m2 = 〈b1, b2〉.
The isotropy representation is given by λ : so(2) → so(5), λ(a3 +2b3) = E23+2E45, i. e. it turns
out to agree with the result in the compact case. A metric gαβγ is then defined by deformation
in the three summands of m as before.
Yet, there are a few differences worth noticing. We summarize the results in the following theorem
without proof (see [BB09] for details).

Theorem 4.4 (Properties of Ṽ ir
2,4 = SO(2, 1)×SO(3)/SO(2)ir). The reductive homogeneous space

(Ṽ ir
2,4, gαβγ) has the following properties:

(1) For parameters α, β, γ > 0 satisfying −αβ + 4 γα + 25 βγ = 0, the SO(3)ir structure
is nearly integrable and the torsion Tαβγ of its characteristic connection ∇αβγ is, in a
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suitable orthonormal basis, given by

Tαβγ = −2
√
α

5β
e1 ∧ e2 ∧ e3 −

√
α

5γ
e1 ∧ e4 ∧ e5.

Its holonomy is SO(2)ir ⊂ SO(5) and its torsion is parallel, ∇αβγTαβγ = 0.
(2) The metric of the nearly integrable SO(3)ir structure is never naturally reductive and

never Einstein.

4.2. The manifold W ir = R × (SL(2,R) ⋉ R2)/SO(2)ir. In contrast to the compact and non-
compact twisted Stiefel manifold, this space will turn out to carry a full SO(3)ir structure (i. e. not
only a SO(2)ir structure) and will prove that the torsion of nearly integrable SO(3)ir structure
is not necessarily parallel. Let G = R× (SL(2,R)⋉R2), and take as standard basis of sl(2,R)

X =

[

1 0
0 −1

]

, E+ =

[

0 1
0 0

]

, E− =

[

0 0
1 0

]

, [X,E±] = ±2E±, [E+, E−] = X.

We choose a basis for g = R⊕ sl(2,R)⊕ R2 that depends on a parameter µ ∈ R,

ēµ0 = E+ − E− + µ, ēµ1 = 1− µ(E+ − E−), ē2 = (0, 1)t, ē3 = (1, 0)t, ē4 = E+ + E−, ē5 = X.

The element ēµ0 generates a one-dimensional subgroup Hµ of G isomorphic to SO(2), the isotropy
representation is λ : hµ → so(5), λ(ē0) = E23 + 2E45. In particular, µ = 0 corresponds to the
standard embedding so(2) → sl(2,R); we will see later that, as to be expected, µ = 0 is not
admissible for a nearly integrable SO(3)ir structure. The subspace

m = nµ ⊕m1 ⊕m2, nµ = R · ēµ1 , m1 = 〈ē2, ē3〉, m2 = 〈ē4, ē5〉,
is a reductive complement of hµ in g, and each if its summands is isotropy invariant. We can thus
define a homogeneous metric on G/Hµ by gαβγ = diag(α, β, β, γ, γ), α, β, γ > 0. We drop the
bar to denote the rescaled elements that form an orthonormal basis for this metric, and agree to
write eµ0 for ēµ0 as well. All non-vanishing commutator relations between these new base vectors
are

[eµ1 , e2] = − µ√
α
e3, [eµ1 , e3] =

µ√
α
e2, [eµ1 , e4] = − 2µ√

α
e5, [eµ1 , e5] =

2µ√
α
e4

[e2, e4] = − 1√
γ
e3, [e2, e5] =

1√
γ
e2, [e3, e4] = − 1√

γ
e2, [e3, e5] = − 1√

γ
e3

[e4, e5] =
2

γ(µ2 + 1)
(µ
√
αe1 − e0).

Observe that these do not only depend on the metric, but also on the embedding parameter µ.

Theorem 4.5 (Properties of W ir = R× (SL(2,R) ⋉R2)/SO(2)ir). The reductive homogeneous
space (W ir, gαβγ) has the following properties:

(1) For any β > 0 and parameters α, γ > 0 satisfying α ≥ 12γ, the SO(3)ir structure is
nearly integrable for the two embeddings of SO(2) ∼= Hµ → SO(5) defined by

µ =

√
α±√

α− 12γ

2
√
3γ

and the torsion Tαβγ of its characteristic connection ∇αβγ is, in a suitable orthonormal
basis, given by

Tαβγ = −2
√
3√
γ

(e1 ∧ e2 ∧ e3 + e1 ∧ e4 ∧ e5).

Its holonomy is SO(3)ir ⊂ SO(5). Its torsion is not parallel, ∇αβγTαβγ 6= 0, but it is
divergence-free, δTαβγ = 0.

(2) The metric of the nearly integrable SO(3)ir structure is never naturally reductive and
never Einstein.
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Proof. In contrast to the spaces treated before, we choose the more appropriate basis of so(3)ir ⊂
so(5)

Y3 := h = E23 + 2E45, Y1 := −
√
3E12 + E35 + E24, Y2 := −

√
3E13 + E25 − E34.

These elements satisfy the same commutator rules as the previously used basis X1, X2, X3. We
describe a metric connection Λm : hµ → so(3)ir and its invariant torsion T via the standard
Ansatz (a, b, c,m, n ∈ R)

Λm(e
µ
1 ) = aY3, Λm(e

µ
2 ) = bY1 − cY2, Λm(e3) = cY1 + bY2, Λm(e4) = Λm(e5) = 0,

T = meµ1 ∧ eµ2 ∧ e3 + n eµ1 ∧ e4 ∧ e5.

Using the relation (∗) between T and Λm, one checks that the coefficients have to satisfy b =
0, c = 1/

√
γ and

m = a−
√
3√
γ
+

µ√
α
, n = 2a+ 2

µ√
α
, m = −2

√
3√
γ
, n = − 2µ

√
α

γ(µ2 + 1)
.

Thus, a short calculation yields a = −
√

3/γ − µ/
√
α and the quadratic equation for the embed-

ding parameter µ √
3γ µ2 −√

αγ µ+ γ
√
3 = 0.

It has real solutions if and only if α ≥ 12γ; for further use, we give the final expression for the
non-vanishing parts of the connection map Λm:

Λm(e1) = −
[√

3√
γ
+

µ√
α

]

Y3, Λm(e2) = − 1√
γ
Y2, Λm(e3) =

1√
γ
Y2,

where it is understood that µ takes one of the two admissible values. We observe that Λm = 0 is
not in the the admissible parameter range, hence the nearly integrable SO(3)ir structure is never
naturally reductive. Using formula (∗∗) for the action of ∇αβγ on 2-forms, one checks that T
has the non vanishing covariant derivatives

∇αβγ
e2 T = Λm(e2)T = − 6

γ
e3 ∧ e4 ∧ e5, ∇αβγ

e3 T = Λm(e3)T =
6

γ
e2 ∧ e4 ∧ e5.

One next computes the map Λg
m representing the Levi-Civita connection,

Λg
m(e1) = − µ√

α
E23 −

[

2µ√
α
+

√
3√
γ

]

E45, Λg
m(e2) =

1

γ
(E34 − E25),

Λg
m(e3) =

1

γ
(E24 + E35), Λg

m(e4) = −
√
3√
γ
E15, Λg

m(e5) =

√
3√
γ
E14.

One deduces that the only non-vanishing ∇g-derivatives of the elementary invariant forms e123
and e145 are

∇g
e2e123 =

1

γ
(e135+e124), ∇g

e3e123 =
1

γ
(e125−e134), ∇g

e4e123 = −
√
3√
γ
e235, ∇g

e4e123 =

√
3√
γ
e234

as well as

∇g
e2e145 = − 1

γ
(e135 + e124), ∇g

e3e145 =
1

γ
(e134 − e125),

One thus checks that

de123 = −2
√
3√
γ
e2345, de145 = 0, dT =

6

γ
e2345 6= 0, δT = −

5
∑

i=1

ei ∇g
eiT = 0.

A computation of the Riemannian curvature tensor and its contraction shows that the Ricci
tensor is diagonal, with

Ricg(e1, e1) =
2µ2α

γ2(µ2 + 1)
, Ricg(e2, e2) = Ricg(e3, e3) = 0, Ricg(e4, e4) = Ricg(e5, e5),
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and with the somehow uninspiring expression

Ricg(e4, e4) = − (α+ 6γ)(µ4 + 2µ2) + 6γ

γ2(µ2 + 1)2
.

However, it is plain that the space will never be Einstein. �

Remark 4.5. It is a natural question to ask in this case, as before for the twisted Stiefel
manifold, about compatible contact structures. It turns out that the picture is rather different.
As explained in Theorem 4.3 and its proof,

ξ ∼= η = e1, ϕ± = −E23 ± E45,

is a natural choice for an almost contact structure (basically, because the isotropy representation
is the same). However, one checks that the Nijenhuis tensor of ϕ+ is not a 3-form, hence, by
[FrI02, Thm 8.2], it does not admit an invariant metric connection with skew-symmetric torsion.
For ϕ−, the Nijenhuis tensor vanishes and dF− = 0, but the corresponding contact connection
has torsion

T− = η ∧ dη = −2
√
3√
γ

e145 6= Tαβγ .

Thus, the almost metric contact structure defined by (η, ϕ−) is not compatible with the SO(3)ir
structure.

Remark 4.6. In [BN07, p.77 and p.88], it was claimed that W ir with the standard embedding
of SO(2) → SL(2,R) (corresponding to µ = 0 in our notation) carries an SO(3)ir structure (that
was not further investigated). The results above correct this point.
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nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980), 117-146.
[FrI02] Th. Friedrich and S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string

theory, Asian Journ. Math. 6 (2002), 303-336.

[Fu01] M. Furuta, Monopole equation and the 11

8
-conjecture, Math. Res. Lett. 8 (2001), 279-291.

[Jen75] G. Jensen, Imbeddings of Stiefel manifolds into Grassmannians, Duke Math. J. 42 (1975), 397-407.
[Kir77] V. F. Kirichenko, K-spaces of maximal rank, Mat. Zam. 22 (1977), 465-476.

http://lanl.arxiv.org/abs/math/0601066


SO(3)-MANIFOLDS 15

[KN91] S. Kobayashi and K. Nomizu, Foundations of differential geometry I, Wiley Classics Library, Wiley
Inc., Princeton, 1963, 1991.

[KN96] , Foundations of differential geometry II, Wiley Classics Library, Wiley Inc., Princeton, 1969,
1996.

[LMP69] G. Lusztig, J. M. Milnor, G. Peterson, Semi-characteristics and cobordism, Topology 8 (1969), 357-359.
[MS74] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, 1974.
[Pae56] G. Paechter, The groups πr(Vn,m), Quart. J. Math. Oxford 7 (1956), 249-268.
[Serre70] J.-P. Serre, Cours d’arithmétique, Paris 1970.
[Span66] E. Spanier, Algebraic topology, Springer 1966.
[Th68] E. Thomas, Vector fields on low dimensional manifolds, Math. Zeitschr. 103 (1968), 85-93.

Ilka Agricola, Julia Becker-Bender

Fachbereich Mathematik und Informatik

Philipps-Universität Marburg

Hans-Meerwein-Strasse

D-35032 Marburg, Germany

agricola@mathematik.uni-marburg.de

beckbend@mathematik.uni-marburg.de

Thomas Friedrich

Institut für Mathematik

Humboldt-Universität zu Berlin

Sitz: WBC Adlershof

D-10099 Berlin, Germany

friedric@mathematik.hu-berlin.de


	1. Introduction
	2. General remarks on SO(3) structures
	3. Topological existence conditions
	4. Homogeneous examples and their geometric properties
	4.1. The `twisted' Stiefel manifold Vir2,4=SO(3)SO(3)/ SO(2)ir
	4.2. The manifold Wir=R(SL(2,R)R2)/ SO(2)ir

	References

