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Abstract

Abstract. This paper is devoted to the first systematic investigation of manifolds that are

Einstein for a connection ∇ with skew symmetric torsion. We derive the Einstein equation

from a variational principle and prove that, for parallel torsion, any Einstein manifold with

skew torsion has constant scalar curvature; and if it is complete of positive scalar ∇-curvature,

it is necessarily compact and it has finite first fundamental group π1. The longest part of

the paper is devoted to the systematic construction of large families of examples. We discuss

when a Riemannian Einstein manifold can be Einstein with skew torsion. We give examples

of almost Hermitian, almost metric contact, and G2 manifolds that are Einstein with skew

torsion. For example, we prove that any Einstein-Sasaki manifold and any 7-dimensional

3-Sasakian manifolds admit deformations into an Einstein metric with parallel skew torsion.

1 Preliminaries

1.1 Introduction

Torsion, and in particular skew torsion, has been a topic of interest to both mathematicians
and physicists in recent decades. The first attempts to modify general relativity by introducing
torsion go back to the 1920’s with the work of É. Cartan [Car23], and were deepened–in modified
form–from the 1970’s in Einstein-Cartan theory. More recently, the torsion of a connection makes
its appearance in superstring compactifications, where the basic model of type II string theory
consists of a Riemannian manifold, a connection with skew torsion, a spinorial field and a dilaton
function.

From the mathematical point of view, skew torsion has played a significant role in the proof
of the local index theorem for Hermitian non-Kähler manifolds [Bis89] and it is a standard tool
for the investigation of non-symmetric homogeneous spaces, since the canonical connection of
such a space does not coincide with the Levi-Civita connection anymore [TV83]. In generalized
geometry [Hit10, Gua03], there are natural connections with skew torsion, the exterior derivative
of the B-field.

Torsion is also ubiquitous in the theory of non-integrable geometries. This field has been
revived in recent years through the development of superstring theory. Firstly, integrable ge-
ometries (like Calabi-Yau manifolds, Joyce manifolds, etc.) are exact solutions of the Strominger
model with vanishing B-field. By deforming these vacuum equations and looking for models with
non-trivial B-field, a new mathematical approach implies that solutions can be constructed ge-
ometrically from non-integrable geometries with torsion (for example, almost Hermitian, almost
metric contact or weak G2 structures). If (M, g) denotes a Riemannian manifold, we will write
any metric connection on M as (∇g denotes the Levi-Civita connection)

∇XY = ∇g
XY +A(X,Y ).
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We say that ∇ has skew torsion if the contraction of its torsion H(X,Y ) with g, H(X,Y, Z) :=
g(H(X,Y ), Z), is totally antisymmetric. In this case, A(X,Y ) = 1/2H(X,Y,−). From the three
Cartan classes of torsion, this is by far the richest and the best understood: such connections
are always complete, they are the only ones with non-trivial coupling to the Dirac operator such
that the resulting Dirac operator is still formally self-adjoint [Fri79], and many non-integrable
geometric structures admit a unique invariant connection with totally antisymmetric torsion,
thus it is a natural replacement for the Levi-Civita connection [FI02]. Also, many new results
on the holonomy properties of connections with skew torsion are now available [OR12], and a lot
of effort has been devoted by many researchers to the construction of geometrically interesting
examples.

Outline. In this article, we propose a notion of ‘Einstein manifold with skew torsion’ for an
n-dimensional Riemannian manifold equipped with a metric connection with skew torsion1. Our
approach will be mostly dimension independent and deal, where possible, with general issues;
the comparison with the results obtained previously in General Relativity (Section 1.2) will
illustrate how our approach differs from the previous work in the area. We start by deducing
the Einstein equation with skew torsion from a variational principle. In order to investigate
the curvature properties of ∇-Einstein manifolds, more assumptions are needed; for example,
easy examples illustrate that, in general, the scalar curvature will not be constant. We show
that a very suitable restriction is to impose that the torsion be parallel, ∇H = 0. There are
several families of manifolds that are classically known to admit parallel characteristic torsion,
namely nearly Kähler manifolds, Sasakian manifolds, nearly parallel G2-manifolds, and naturally
reductive spaces; these classes have been considerably enlarged in more recent work (see [Vai79],
[GO98], [AFS05], [Ale06], [Fri07], [Sch07]), leading to a host of instances to which our theorems
can be applied. The key result illustrating that this is the ‘right’ condition is the following: If
∇H = 0, any ∇-Einstein manifold has constant scalar curvature (both Riemannian and of the
connection with torsion); and if it is complete of positive scalar ∇-curvature, it is necessarily
compact and it has finite first fundamental group π1. Thus, we obtain the best possible analogy
to the Riemannian case. We then discuss an easy, but powerful criterion when a Riemannian
Einstein space will be ∇-Einstein for a given torsion 3-form.

The longest part of the paper is devoted to the systematic construction of examples in different
situations. We first treat the case n = 4, where the second author had proposed an alternative
definition of ‘Einstein with torsion’ based on the phenomenon of self-duality [Fer10, Fer11]. In
general, this is a different concept, but we will show that they coincide if one assumes parallel
torsion. Under this condition, we observe that a 4-dimensional Hermitian Einstein manifold is
locally isometric to R × S3. After a quick discussion of the Lie group case, we treat almost
Hermitian manifolds in dimension 6, where we identify a class of homogeneous manifolds of type
W1⊕W3 that is always Einstein with parallel skew torsion; this includes, in particular, all nearly
Kähler manifolds. For almost contact manifolds, ∇-Einstein implies ∇-Ricci-flatness, since the
contact distribution is a ∇-parallel vector field. We prove that every Einstein-Sasaki manifold
with its characteristic torsion admits a deformation into a ∇-Einstein-Sasaki manifold. Thus,
there is a multitude of ∇-Ricci-flat Einstein spaces in all odd dimensions. The 7-dimensional
case is treated separately because of its relevance for G2 geometry. Again, all nearly parallel
G2 manifolds are Einstein with parallel skew torsion; moreover, we show that any 7-dimensional
3-Saskian manifold carries three different connections that turns it into an Einstein manifold
with parallel skew torsion, and that it admits a deformation of the metric that carries again an
Einstein structure with parallel skew torsion. Finally, we present several ∇-Einstein structures
on Aloff-Wallach manifolds SU(3)/S1; several of them are new, i. e. not among those that were
predicted theoretically in the previous sections.

We end this outline with some conjectural remarks. In the past years, there has been a revived
interest in higher dimensional black holes, i. e. Ricci flat manifolds with Lorentzian signature,
because of the exciting discovery of new horizon topologies (‘black rings’) and the option to use

1To prevent any confusion: This is to be understood as a generalization of the mathematical Einstein equation,
and not as an alternative field equation for the gravitational field.
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these as more sophisticated backgrounds for superstring theories. On the other side, the use of
skew torsion is by now a well-established tool in superstring compactifications. Thus, we believe
that Einstein spaces with torsion will be of interest for future developments in this area as well,
although the present paper will not deal with these issues.
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1.2 Einstein spaces with torsion in General Relativity

The first attempts to introduce torsion as an additional ’data’ for describing physics in general
relativity go back to Cartan himself [Car24]. Viewing torsion as some intrinsic angular momen-
tum, he derived a set of gravitational field equations from a variational principle, but postulated
that the energy-momentum tensor should still be divergence-free, a condition too restrictive for
making this approach useful. The idea was taken up again in broader context in the late fifties.
The variation of the scalar curvature and of an additional Lagrangian generating the energy-
momentum and the spin tensors on a space-time endowed with a metric connection with torsion
yielded the two fundamental equations of Einstein-Cartan theory, first formulated by Kibble
[Kib61] and Sciama (see his article in [Inf62]). The first equation can, by some elimination pro-
cess, be reduced to an equation which is similar to Einstein’s classical field equation of general
relativity with an effective energy momentum tensor Teff depending on torsion, the second one
relates the torsion to the spin density (in the absence of spin, the torsion vanishes and the whole
theory reduces to Einstein’s original formulation of general relativity). A. Trautman provided an
elegant formulation of Einstein-Cartan theory in the language of principal fibre bundles [Tra73].
For a general review of gravity with spin and torsion including extensive references, we recom-
mend the article [HHKN76] or the new ‘source’ book [BH12], which contains most of the articles
cited in this section with extensive commentaries.

For this article, our main interest will be in general results about and exact solutions of the
Einstein equation with torsion. Recall that according to Cartan [Car25], the torsion of a metric

connection ∇ on (M, g) is either in Λ3(M), TM , or a
n(n2 − 4)

3
-dimensional representation

space. In dimension four, these components are called in the physical literature the axial vector
(since Λ3(M4) ∼= TM4), the vector, and the tensor part of torsion. As will be discussed in Section
2.3.1, requiring the torsion to be skew symmetric (i. e., only ‘axial’ torsion) is rather restrictive
in dimension 4, in particular if one imposes further mathematical conditions like parallel torsion.
Thus, most models of general relativity with torsion allow a priori all three possibilities. Only few
exact solutions to the Einstein equations with torsion appear in the literature; these are mainly
of two types,

(1) Generalizations of classical solutions: On the Schwarzschild solution (R × S3, gS), one can
construct a metric ∇-Ricci flat connection with torsion, but it is of mixed torsion type
[OMBH97], see also Example 2.15; with a rotationally symmetric Ansatz for metric and
torsion, one obtains solutions of Schwarzschild-De Sitter [Bae81] or Kerr-type [MBG87],
again of mixed torsion.

(2) Conformal changes of the flat Minkowski metric (R4, gM ): for example, the following Ansatz
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for metric and torsion

g̃ = e2ω(t)(−dt2 + dx2 + dy2 + dz2), H = f(t) dx ∧ dy ∧ dz

can be adjusted in such a way to yield an exact solution of both field equations, this time
with pure axial torsion [Len84].

As far as we know, no general investigation of Einstein manifolds with torsion was carried out.
In practice, torsion turned out to be hard to detect experimentally, since all tests of general
relativity are based on experiments in empty space. Many concepts that Einstein-Cartan theory
inspired are still of relevance (see [HMMN95] for a generalization with additional currents and
shear, [Tra99] for optical aspects, [RT03] for the link to the classical theory of defects in elastic
media). In cosmology, Einstein-Cartan theory is again being considered in recent times (see for
example [Pop11]).

1.3 Notations and review of curvature relations

We end this Section by recalling a few standard identities. Let (M, g) be a Riemannian manifold
and H ∈ Λ3(M). The metric connection with skew torsion H is

∇XY = ∇g
XY +

1

2
H(X,Y,−).

Quantities refering to the Levi-Civita connection will carry an upper index g, while quantities
associated with the new connection will have an upper index ∇. For example, sg and s∇ will be
the Riemannian and the ∇-scalar curvatures, respectively. From the 3-form H , we can define an
associated algebraic 4-form σH , quadratic in H , given by

2σH =
n

∑

i=1

(eiyH) ∧ (eiyH)

where e1, e2, . . . , en denotes an orthonormal frame of TM . The following well-known curvature
identities are crucial for the topic of this paper; they can for example be found in [FI02], [Agr06].
We introduce the tensor

S(X,Y ) :=
n

∑

i=1

g(H(ei, X), H(ei, Y )) =
n

∑

i,j=1

H(ei, X, ej)H(ei, Y, ej) (1.1)

that measures the (symmetric part of the) difference between the Riemannian and the ∇-
curvature. We normalize the length of a 3-form H as ‖H‖2 = 1

6

∑

ij g(H(ei, ej), H(ei, ej)).

Theorem 1.1. The Riemannian curvature quantities and the ∇-curvature quantities are related
by

R∇(X,Y, Z,W ) = Rg(X,Y, Z,W ) + 1
4g(H(X,Y ), H(Z,W )) + 1

4σH(X,Y, Z,W )
+ 1

2∇XH(Y, Z,W ) − 1
2∇Y H(X,Z,W )

Ric∇(X,Y ) = Ricg(X,Y ) − 1
4S(X,Y ) − 1

2δH(X,Y )

s∇ = sg − 3
2‖H‖2

2 Einstein metrics with skew torsion

2.1 The variational principle

The standard Einstein equations of Riemannian geometry can be obtained by a variational ar-
gument. They are the critical points of the Hilbert functional

g 7−→
∫

M

[sg − 2Λ] dvolg,
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where Λ is a cosmological constant. Thus, one way of obtaining Einstein equations with skew
torsion is to look for the critical points (with respect to the metric) of the following functional

(g,H) 7−→
∫

M

[

s∇ − 2Λ
]

dvolg =

∫

M

[

sg − 3

2
‖H‖2 − 2Λ

]

dvolg.

For this, we will study the variation of ‖H‖2
g with respect to g; the torsion H does not yet need

to be ∇-parallel.

Theorem 2.1. The critical points of the functional

L(g,H) =

∫

M

[

s∇ − 2Λ
]

dvolg

are given by pairs (g,H) satisfying the equation

−Ric∇ +
1

2
s∇g − Λg = 0.

In particular, the antisymmetric part of Ric∇ vanishes, i.e., H is coclosed.

Proof — We use the summation convention throughout the proof in order to increase readability.
Set g(t) = g + th and {ei(t)} an orthonormal basis for g(t) such that ei(0) = ei. We have ,
according to our normalization, the following identity

‖H‖2
g(t) =

1

6
g(t)(H(ei(t), ej(t)), H(ei(t), ej(t))).

Taking the derivative in order to t and making t = 0, we get

dt‖H‖2
g(t)|t=0 = 1

6h(H(ei, ej), H(ei, ej)) + 1
3g(dt(H(ei(t), ej(t))|t=0, H(ei, ej))

= 1
6h(g(H(ei, ej), ek)ek, g(H(ei, ej), el)el)+
+ 1

3g(H(dtei|t = 0, ej) +H(ei, dtej |t = 0, H(ei, ej))

= 1
6g(H(ei, ej), ek)g(H(ei, ej), el)h(ek, el)+
+ 1

3g(H(dtei|t = 0, ej), H(ei, ej)) + 1
3g(H(ei, dtej|t = 0, H(ei, ej))

Using now the new tensor field S defined by equation (1.1), we have

dt‖H‖2
g(t)|t=0 = 1

6H(ei, ej, ek)H(ei, ej , el)h(ek, el) + 1
3S(dtei|t=0, ei) + 1

3S(dtej |t=0, ej)

= 1
6 (S, h)g + 2

3S(dtei|t=0, ei) = 1
6 (S, h)g + 2

3S(g(dtei|t=0, ek)ek, ei)

= 1
6 (S, h)g + 2

3S(ek, ei)g(dtei|t=0, ek)

If we differenciate the equality g(t)(ei(t), ej(t)) = δij with respect to t and replace t = 0, we
obtain the following equation

g(dtei|t=0, ej) + g(ei, dej |t=0) + h(ei, ej) = 0.

Using the above identity and the fact that TH
g is symmetric, we then get that

dt‖H‖2
g(t)|t=0 = 1

6 (S, h)g + 1
3T

H
g (ek, ei)(g(dtei|t=0, ek) + g(ei, dtek|t=0))

= 1
6 (S, h)g − 1

3S(ek, ei)h(ek, ei)

= 1
6 (S, h)g − 1

3 (S, h)g = − 1
6 (S, h)g .

Finally we can conclude that ‖H‖2
g(t) has a first order Taylor expansion as follows

‖H‖2
g(t) = ‖H‖2

g −
1

6
(S, h)g t+ o(t2).
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We can then calculate the stationary points for the functional L(g,H) by finding the solutions
to the equation

d

dt
L(g + th,H) = 0.

Moving the derivative under the integral sign, this is then equivalent to

∫

M

d

dt

[(

sg(t) − 3

2
‖H‖2

g(t) − 2Λ

)

dvolg(t)

]

|t=0

= 0.

Recall from the classical theory that the following identities hold

sg(t) = sg + (div(X) − (Ricg, h)g)t+ o(t2),

where X is a vector field whose particular form is not important for us, and

dvolg(t) = dvolg +

(

1

2
(h, g)g dvolg

)

t+ o(t2).

Then the stationary points of our functional L are given by the equation

∫

M

[

div(X) − (Ricg, h)g − 3

2
(−1

6
S, h)g +

1

2
(sg − 3

2
‖H‖2 − 2Λ)(g, h)g

]

dvolg = 0.

The divergence term integrates to zero and simplifying the expression we get

∫

M

[

(

−Ricg +
1

4
S +

1

2
s∇g − Λg, h

)

g

]

dvolg = 0.

Noticing that ( , )g is a scalar product on the space of all symmetric 2-tensors and that h is
arbitrary we can then conclude that

−Ricg +
1

4
S +

1

2
s∇g − Λg = 0

which is then equivalent to having −Ric∇ + 1
2s

∇g − Λg = 0. �

Definition 2.2. A triple (M, g,H) is said to be ‘Einstein with skew torsion’ or just ‘∇-Einstein’
if the connection ∇ with torsion H satisfies the Einstein equation

Ric∇ =
s∇

n
g.

It will be called ‘Einstein with parallel skew torsion’ if in addition it satisfies ∇H = 0.

In particular, Ric∇ has to be symmetric by definition, so our definition implies that an ∇-
Einstein manifold will have coclosed 3-form, δH = 0.

Example 2.3. All manifolds admitting a flat metric connection with skew torsion will be trivially
∇-Einstein with skew torsion. These were studied by É. Cartan and J. Schouten [CS26] who
argued (with a wrong proof) that, up to universal cover, such manifolds are products of a Lie
group (in the case where the torsion is parallel) or otherwise the 7-sphere (where the torsion is
closed). A modern, classification-free proof using holonomy theory can be found in [AF10b].

2.2 Curvature properties

One of the most important features of Riemannian Einstein spaces is the fact that their scalar
curvature is constant, and the many consequences that follow from it. We begin with an easy
example illustrating that ∇-Einstein manifolds with non-constant scalar curvature exist:

6



Example 2.4 (An example on S3). Consider the 3-dimensional sphere S3 and take g to be the
round metric. Then it is well known that (S3, g) is Einstein with sg = 6 and a parallelizable
manifold. Let f : S3 −→ R be any non-constant smooth function (like the height function)
and consider the three-form H given by H = 2fe1 ∧ e2 ∧ e3. Then the connection defined by
∇ = ∇g + 1

2H is Einstein with skew torsion and

s∇ = sg − 3

2
‖H‖2 = 6 − 6f(x)2,

which is clearly not a constant; the example also shows that an Einstein manifold with skew
torsion can have scalar curvature of any sign, even in the compact case.

Thus, extra conditions are required to conclude the constancy of s∇. We shall argue that
a sufficient — and very natural — condition to impose is that ∇H = 0, i. e. the torsion of the
connection is parallel. As in the Riemannian situation, the second Bianchi identity is the key
ingredient.

Proposition 2.5 (Second Bianchi identity). Let (M, g,H) be a Riemannian manifold equipped
with a connection ∇ with skew torsion H such that ∇H = 0. Then

WXY
σ ∇WR∇(X,Y )Z =

WXY
σ

(

Rg(W,H(X,Y ))Z − 1

2
Rg(W,X)H(Y, Z))

)

Proof — For the (1, 3)-curvature tensor quantities the following identity holds

R∇(X,Y )Z = Rg(X,Y )Z +
1

2
H(H(X,Y ), Z) +

1

4
H(H(Y, Z), X) +

1

4
H(H(Z,X), Y )

Set

RH(X,Y )Z =
1

2
H(H(X,Y ), Z) +

1

4
H(H(Y, Z), X) +

1

4
H(H(Z,X), Y )

and notice that since ∇H = 0 then also ∇RH = 0. Then it is easy to check that

∇WR∇(X,Y )Z = ∇gRg(X,Y )Z−1

2
(Rg(H(W,X), Y )Z+Rg(X,H(W,Y ))Z+Rg(X,Y )H(W,Z))

Now we just need to take the cyclic permutation, use the second Bianchi identity for Rg and the
proposition follows. �

Corollary 2.6. Assume ∇H = 0. The divergence of the ∇-Ricci tensor is proportional to the
derivative of the ∇-scalar curvature, more precisely:

δRic∇ +
1

2
ds∇ = 0.

1st proof — Taking traces in the second Bianchi identity for R∇ we immediately get the following
equation

−∇XR
∇(ei, ej , ej, ei) + ∇ei

R∇(ej , X, ei, ej) + ∇ej
R∇(ei, X, ej, ei) =

= Rg(X,H(ei, ej), ei, ej) +Rg(ej , H(X, ei), ei, ej) +Rg(ei, H(ej , X), ei, ej)

− 1
2R

g(X, ei, H(ej , ei), ej) − 1
2R

g(ei, ej, H(X, ei), ej)

which then simplifies to

−ds∇(X) − 2δ∇Ric∇(X) =
= Rg(X,H(ei, ej), ei, ej) + 1

2R
g(X, ei, H(ei, ej), ej) + 5

2Ricg(H(X, ei), ei)

= H(ei, ej , ek)Rg(X, ek, ei, ej) + 1
2H(ei, ej , ek)Rg(X, ei, ek, ej) + 5

2H(X, ei, ek)Ricg(ek, ei)
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Now the first two terms on the right-hand-side simplify because H is antisymmetric and Rg

satisfies the first Bianchi identity and the last term vanishes because H is antisymmetric and
Ricg is symmetric. Finally, observe that since H is totally antisymmetric, the ∇-divergence of
any symmetric (0, 2)-tensor is the same as the usual divergence ([Agr06], Proposition A.2), hence
δ∇Ric∇ = δRic∇.

�

2nd proof — Let S be the symmetric 2-tensor introduced before that satisfies Ric∇ = Ricg−S/4.
Notice that S is ∇ parallel since it is a composition of two parallel tensors. Then

δ∇Ric∇ = δ∇Ricg,

and this is again δRicg by the preceding comment on divergences. But from the Riemannian case,
we know that δgRicg = − 1

2ds
g. Since H is parallel, d(‖H‖2) = 0, hence the relation between the

∇- and the Riemannian scalar curvature implies dsg = ds∇.
�

Using the corollary of the second Bianchi identity we can prove the following.

Proposition 2.7. Assume ∇H = 0. If δRicg = 0, the scalar curvatures s∇ and sg are constant.
In particular, this holds if (M, g,H) is Einstein with parallel skew torsion H.

Proof — The first claim is immediate. For the ∇-Einstein case, taking the divergence on both

sides of the equation Ric∇ = s∇

n g and using the proposition above we get that − 1
2ds

∇ = 1
nds

∇.
Therefore ds∇ = 0 and s∇ is constant. But as observed before, a parallel torsion form has
constant length, hence the relation between the scalar curvatures (see Theorem 1.1) implies that
the Riemannian scalar curvature will be constant as well.

�

Remark 2.8. There are other situations with ∇H = 0 where one can conclude that the scalar
curvatures s∇ has to be constant: For example, this holds if M is spin and if there exists a
non trivial parallel spinor field ψ, ∇ψ = 0 (see [FI02, Cor. 3.2]). Since any G2 manifolds with
a characteristic connection ∇ admits a ∇-parallel spinor (see Section 2.3.5) and many of them
are known to have parallel torsion, many examples of this kind that are not Einstein with skew
torsion exist.

Corollary 2.9. Any complete connected Riemmanian manifold (M, g,H) that is Einstein with
parallel skew torsion H and with positive scalar curvature s∇ > 0 is compact and has finite first
fundamental group π1(M).

Proof — The crucial point is that the assumption of the Bonnet-Myers Theorem has to hold,
i. e. the inequality Ricg(X,X) > c‖X‖2 for some positive constant c and all X ∈ TM . But this
is easy:

Ricg(X,X) = Ric∇(X,X) +
1

4
S(X,X) =

s∇

n
‖X‖2 +

1

4
S(X,X) >

s∇

n
‖X‖2,

since S is a non-negative tensor by definition. All claims now follow from the classical Riemannian
results. Observe that is is not necessary to specify further with respect to which connection
completeness is meant: A metric connection with skew torsion on a Riemannian manifold (M, g)
is complete if an only if the Levi-Civita connection is complete, because their geodesics coincide.

�

We describe now how our notion of Einstein with parallel skew torsion is consistent with the
algebraic decomposition of the curvature tensor. Let CM be the space of all symmetric curvature
tensors on TM . Consider the Bianchi map

b : CM −→ CM, Rabcd 7−→ Rabcd +Rbcad +Rcabd.

It is well known (see [Bes87] for details) that S2(Λ2M) = ker b ⊕ im b and that im b = Λ4M .
Suppose now that our Riemannian manifold with torsion (M, g,H) is such that H is ∇ parallel.
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Then the Riemannian curvature tensor simplifies to

R∇(X,Y, Z,W ) = Rg(X,Y, Z,W ) +
1

4
g(H(X,Y ), H(Z,W )) +

1

4
σH(X,Y, Z,W ).

Observe that in this case R∇ is indeed in S2(Λ2M). We have the following proposition:

Proposition 2.10. Let (M, g,H) be such that ∇H = 0. Then R∇ decomposes under the Bianchi
map as R∇ = R∇

k + R∇
i , where R∇

k lies in the kernel of the Bianchi map and R∇
i in its image,

with

R∇
k (X,Y, Z,W ) = Rg(X,Y, Z,W ) +

1

4
g(H(X,Y ), H(Z,W )) − 1

12
σH(X,Y, Z,W )

and

R∇
i (X,Y, Z,W ) =

1

6
σH(X,Y, Z,W )

Proof — Notice that
XY Z
σ g(H(X,Y ), H(Z,W ) = σH(X,Y, Z,W ) and

XY Z
σ σH(X,Y, Z,W ) =

3σH(X,Y, Z,W ). Since Rg is in ker b then so is R∇
k . Notice also that σH ∈ Λ4M .

�

Following the classical theory we can then decompose the ∇-curvature tensor as

R∇ = W∇ +
1

n− 2
(Z∇ ⊠ g) +

s∇

n(n− 1)
g ⊠ g +

1

6
σH

where ⊠ denotes the Kulkarni-Nomizu product, Z∇ = Ric∇ − s∇

n g is the trace-free part of the
∇-Ricci tensor and W∇, which we shall call the ∇-Weyl tensor, can be explicitly written as

W∇(X,Y, Z,W ) = W g(X,Y, Z,W ) +
1

4
g(H(X,Y ), H(Z,W )) + σH(X,Y, Z,W )

+
1

4(n− 2)
(g(H(ei, X), H(ei,W ))g(Y, Z) + g(H(ei, Y ), H(ei, Z))g(X,W )

− g(H(ei, X), H(ei, Z))g(Y,W ) − g(H(ei, Y ), H(ei,W ))g(X,Z))

− 3‖H‖2

2(n− 1)(n− 2)
(g(X,W )g(Y, Z) − g(X,Z)g(Y,W ))

Note that W∇ is traceless. This can be checked by direct calculation but, of course, it also follows
from the general theory. We conclude that our previous definition of (M, g,H) being Einstein
with skew torsion is equivalent to Z∇ = 0, as it should; let us emphasize that this relies again
strongly on the property ∇H = 0.

Next, we want to clarify the relation between ∇-Einstein and Riemannian Einstein manifolds.
In a given dimension, the algebraic form of the difference tensor S(X,Y ) of the curvatures as
defined in equation 1.1 decides whether a Riemannian Einstein metric will yield a skew Einstein
structure or not.

Definition 2.11. On a Riemannian manifold (M, g), a 3-form H will be called ‘of Einstein type’
if the difference tensor S(X,Y ) :=

∑

i g(H(ei, X), H(ei, Y )) is proportional to the metric g.

Proposition 2.12. Let (M, g) be a Riemannian manifold, H a 3-form written in a local or-
thonormal frame e1, . . . , en of T ∗M , H =

∑

ijk Hijk e
i ∧ ej ∧ ek. Then H is of Einstein type if it

satisfies the following conditions:

(1) no term of the form Hijae
i ∧ ej ∧ ea +Hijbe

i ∧ ej ∧ eb with a 6= b occurs;

(2) if i and j are two indices in {1, . . . , n} then the number of occurrences of i and j in H
coincides;

(3) if {i, j, k} and {a, b, c} are two sets of indices then H2
ijk = H2

abc.
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e123

e3(e15 + e24)

e126 + e135 + e234

∗ e123 + e456

∗ e135 + e146 + e256 + e234

VI. e1(e23 + e45) + e267

VII. e123 + e456 + e7(e2 + e5)(e3 + e6)

VIII. e1(e23 + e45 + e67)

IX.∗∗ VIII + e246,

X. VII + e147

XI. VIII + e2(e46 − e57)

XII. e1(e45 + e67) + e2(e46 − e57) + e3(e47 + e56),

XIII.∗∗ XII −e123

Figure 1: Normal forms of 3-forms up to dimension 7 (see Example 2.14); the picture is taken
from the original article of J. Schouten from 1931 [Sch31] while for n = 7 we follow [Wes81]. Any
three numbers a, b, c linked by lines represent a summand ea ∧ eb ∧ ec.

Proof — It can be checked by direct calculation that, when writing S in matrix form for the
frame {ei}, condition (1) guarantees S to be diagonal, while conditions (2) and (3) ensure that
S is indeed a multiple of the identity matrix.

�

Remark 2.13. Proposition 2.12 yields an easy procedure for producing further examples of ∇-
Einstein metrics with non constant scalar curvature (beyond the one given in Example 2.4) for
all manifolds that are parallelizable and carry an Einstein metric (for example S7 or compact
semi-simple Lie groups).

Example 2.14. In 1931, J. Schouten described the normal forms of 3-forms up to dimension 7
[Sch31], i. e. representatives of the GL(n,R)-orbits for n 6 7, see Figure 1 (the complex classifi-
cation is different; see also [Wes81] for a modern account of the real classification). The normal
forms marked with one resp. two stars are the representatives of generic 3-forms, i. e. the ones
with dense GL(n,R) orbit for n = 6 resp. n = 7 (see for example [VW12]). One checks by a
direct computation that only the following 3-forms are of Einstein type in the given dimensions:

(1) Type I. in dimension 3,

(2) Types IV. and V. in dimension 6,

(3) Type XIII. in dimension 7.

In particular, Riemannian Einstein manifolds (M, g) will never be ∇-Einstein in dimensions
4 and 5. We will see later concrete examples where Proposition 2.12 can be applied to construct
∇-Einstein metrics.
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Example 2.15. Proposition 2.12 shows that there does not exist a three-form that will make the
Schwarzschild metric ∇-Einstein; in particular, the connection constructed in [OMBH97] has to
be of mixed torsion type.

2.3 Examples and construction of ∇-Einstein manifolds

2.3.1 The case n = 4

In dimension 4, an alternative notion of Einstein with skew torsion was investigated by the second
author in [Fer10, Fer11], based on the phenomenon of self-duality. The idea was to consider the
decomposition of the curvature operator R : Λ2 → Λ2 in terms of the splitting of the bundle
Λ2 = Λ+ ⊕ Λ− into self-dual and antiself-dual parts. By making the analogy with the standard
definition of Einstein metric, one can set the upper-right block in this decomposition to vanish,
that is, the following definition was taken. In order not to confuse it with the Einstein definition
used in this article, we will call it duality-Einstein with skew torsion, in the sense that it is the
Einstein characterisation based on (self-)duality.

Definition 2.16. A triple (M4, g,H) is said to be duality-Einstein with skew torsion if

Z∇ + S (∇∗H) +
∗dH

4
g = 0,

where S denotes the symmetrization of a tensor and Z∇ is the symmetric trace-free part of Ric∇.

This definition depends a priori on the choice of orientation, but it can be proved that for a
compact manifold, this choice is irrelevant, since the metric dual of ∗H is a Killing vector field.
Among other results, it was shown that the Hitchin-Thorpe inequality 2χ > 3|τ | holds again,
giving a severe topological obstruction. Since, in four dimensions, ∗H is a 1-form, it is not difficult
to establish that the notion of duality-Einstein manifold with skew torsion is equivalent to that
of Einstein-Weyl manifold, which has been a subject of intense study in the past [CP99]. Our
new definition of Einstein manifolds with parallel skew torsion breaks away from Einstein-Weyl
geometry for n 6= 4. This can be seen for example from the scalar curvature: while it has to be
constant in our situation by Proposition 2.7, it has only constant sign in Einstein-Weyl geometry
[PS93].

In general, the notions of ∇-Einstein and duality-Einstein differ. But with the additional
assumption that the torsion is parallel, they coincide: first, observe that in n = 4, condition
∇H = 0 is equivalent to dH = 0 by Proposition A.1 and the fact that σH = 0 in dimension four
for purely algebraic reasons. Also, ∇ ∗H = 0 as well, so the duality-Einstein equations reduces
to Z∇ = 0, and this is our definition of an Einstein structure with parallel skew torsion. In fact,
more holds: since ∗H is a parallel vector field, such a manifold will have to be ∇-Ricci-flat. A
result similar to the following (but under different assumptions) was proved in the second author’s
dissertation [Fer10].

Theorem 2.17. If (M, g, J) is a 4-dimensional compact Hermitian non-Kähler manifold equipped
with the Bismut connection such that it is Einstein with parallel skew torsion, then its universal
cover is isometric to R × S3 with the standard product metric.

Proof — The torsion of the Bismut connection ∇ is H = dcΩ (Ω is the Kähler form), its Lee
form θ is the 1-form satisfying θ = d∗Ω ◦ J . In four dimensions, θ has the remarkable property
that θ = ∗dcΩ. So, since ∇H = ∇g = 0, we can conclude that ∇θ = 0. It is easy to see that, in
four-dimensions, ∇θ = ∇gθ. Then if X is the metric dual of θ, we have that X is a ∇g-parallel
vector field. If X = 0 then dΩ = 0, in which case (M, g, J) would be Kähler and ∇ = ∇g, a case
we excluded by assumption. If X 6= 0 then we have a nowhere vanishing parallel vector field. By
the de Rham theorem, we have a reduction of TM under the holonomy group and that locally
M is isometric to R ×N , where N is a 3-dimensional manifold such that TN is the orthogonal
complement of {X}. Since Ric∇ = 0, then (for details on this formula see [Fer10, Fer11])

Ricg =
1

2
‖θ‖2g − 1

2
θ ⊗ θ.
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Then N is an Einstein manifold of positive Ricci curvature which implies that, since N is 3-
dimensional, it is of positive sectional curvature. Finally, we can conclude that M is locally
isometric to R × S3.

�

2.3.2 Lie groups

Classical examples of manifolds where skew torsion arises naturally are Lie groups G equipped
with a bi-invariant inner product g on the corresponding Lie algebra g (see [KN69], for example).
There is a one-to-one correspondence between the set of all bi-invariant connections and the space
of all bilinear functions α : g × g −→ g which are ad-invariant; in particular, ∇t

X(Y ) = t[X,Y ]
defines a one-parameter family of metric connections with parallel skew torsion (2t − 1)[X,Y ].
The value t = 1/2 corresponds to the Levi-Civita connection, while t = 0 and t = 1 are the flat
±-connections introduced by Schouten and Cartan. A routine calculation shows:

Lemma 2.18. Let G be a Lie group equipped with a bi-invariant metric. Consider the 1-
parameter family of connections with skew torsion ∇t

XY = t[X,Y ]. It has Ricci curvature

Ric∇
t

(X,Y ) = 4(t− t2) Ricg(X,Y ).

Hence, for t = 0, 1, the connection ∇t is ∇t-Einstein (it is in fact flat), and for t 6= 0, 1, ∇t is
Einstein if and only if ∇g is Einstein.

It is well known that for any semisimple Lie group, the Killing form K is negative definite
and therefore −K defines a bi-invariant metric. This metric is clearly always Einstein in the
usual sense. However, not all Lie groups admit Einstein metrics; this happens for example for
G = U(1)×SU(2). If (G, g) was Einstein, the Euler characteristic of G would be given by [Bes87]

χ(G) =
1

8π2

∫

G

(

s2

24
+ ‖W‖2

)

dvolg.

Since χ(G) = 0, this would mean that both the scalar and the Weyl curvature vanish and
therefore G would be flat with respect to the Levi-Civita connection, which cannot happen since
its universal cover is R × S3 and not R4.

2.3.3 Almost Hermitian manifolds

We will know take a look at almost Hermitian manifolds. By a result of Friedrich and Ivanov
[FI02], any almost Hermitian manifold of Gray-Hervella type W1 ⊕W3 ⊕W4 [GH80] admits a
unique Hermitian connection ∇ with skew-symmetric torsion (i. e. a connection satisfying ∇g =
∇J = 0, see [Gau97] for a survey). The connection is called the characteristic connection of the
almost Hermitian structure.

Example 2.19. By definition, a Calabi-Yau connection with torsion (CYT connection for short)
is a Hermitian 2n-dimensional manifold suich that the restricted holonomy of its characteristic
connection lies in SU(n). In [GGP08], the authors investigated such connections on principal
T 2k-bundles over compact Kähler manifolds. By [GGP08], Proposition 5 and equation (11), one
sees that the existence of a CYT connection implies that the bundle has to be Ric∇-flat (the
connection of interest corresponds to t = −1). By a sophisticated topological construction, the
authors construct several series of examples on (k − 1)(S2 × S4)#k(S3 × S3) for all k > 1.
Examples on S3 × S3 were shown to exist previously in [FPS04].

Example 2.20. An almost Hermitian (non-Kählerian) manifold is called nearly Kähler if it satisfies
(∇g

XJ)(X) = 0, these are precisely the manifolds of type W1. Nearly Kähler manifolds were
introduced and extensively studied by A. Gray [Gra70, Gra76]. The characteristic connection is
then called the Gray connection. It is a non-trivial result that its torsion is ∇-parallel, [Kir77,
AFS05]. Furthermore, A. Gray showed that any 6-dimensional nearly Kähler manifold is Einstein
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[Gra76]. A routine computation in the theory of nearly Kähler manifolds shows that S(X,Y ) =
4sg

30
g(X,Y ) and hence Ric∇ =

2sg

15
g: Any nearly Kähler manifold is Einstein with parallel skew

torsion with respect to the Gray connection. This has been implicitly known in the community
and was noted several times in the literature, for example, in [AFS05], [Agr06]. In [But05], it
was shown that a 6-dimensional locally homogeneous nearly Kähler manifold has to be one of the
following: S6, S3 × S3 or the twistor spaces for S4 and CP 2 (CP 3 and the flag manifold F (1, 2),
resp.).

N. Schoemann investigated in [Sch07] almost Hermitian 6-manifolds admitting a characteristic
connection with parallel torsion. He discovered that there is a class of manifolds whose curvature
tensor is the same as in the nearly Kähler case, and hence they will be Einstein with skew torsion.
Let us describe them in more detail.

Theorem 2.21 ([Sch07, Section 4.2]). Let (M6, g) be an almost Hermitian manifold admitting
a characteristic connection ∇ with parallel torsion H such that its reduced holonomy Hol0(∇)
lies inside SO(3). Then (M6, g) is of type W1 ⊕ W3, locally isomorphic to an isotropy irre-
ducible homogeneous space, and the curvature transformation is of the form R∇ : Λ2(R6) →
so(3), R∇(X,Y ) = λpr

so(3)(X ∧ Y ), λ ∈ R.

In particular, the nearly Kähler structure on S3×S3 is of this type, and thus we can conclude
without calculation that any almost Hermitian manifold with the same curvature transformation
is ∇-Einstein with parallel skew torsion. Examples are given in Section 4.5 of [Sch07] and in
[AFS05]: Besides a larger class of almost Hermitian structures on S3 × S3 that includes the
nearly Kähler case, examples can be constructed on SL(2,C) (viewed as a real 6-manifold, Ric∇ =

−1

3
‖H‖2g), SU(2) ⋉ R2, and a nilpotent group N6.

2.3.4 Almost contact metric manifolds

We shall now investigate contact manifolds in greater detail: We will be able to construct large
classes of new Einstein structures with torsion from them.

Definition 2.22. We say that (M, g) carries an almost contact metric structure if it admits a
(1,1)-tensor field ϕ and a vector field ξ with dual form η such that ϕ2 = −Id+ η ⊗ ξ and if g is
ϕ-compatible, i. e.

g(ϕ(X), ϕ(Y )) = g(X,Y ) − η(X)η(Y ).

Almost contact manifolds have two naturally associated tensors, the fundamental form F defined
by F (X,Y ) = g(X,ϕ(Y )) and the Nijenhuis tensor N given by

N(X,Y ) = [ϕ(X), ϕ(Y )] − ϕ([X,ϕ(Y )]) − ϕ([ϕ(X), Y ]) + ϕ2([X,Y ]) + dη(X,Y )ξ.

We say that the almost contact metric manifold M is normal if N = 0 and that it is contact
metric if 2F = dη. A contact metric manifold that is also normal is called a Sasaki manifold.

Again, Friedrich and Ivanov characterised the almost contact metric structures that admit
a metric connection with skew torsion satisfying ∇g = ∇η = ∇ϕ = 0: These are precisly the
manifolds for which N is a 3-form and ξ is a Killing field [FI02], the connection is unique and
again called the characteristic connection. A class of manifolds satisfying these conditions are
the Sasaki manifolds. In this particular case, the torsion tensor simplifies to H = η ∧ dη and also
we have that H is ∇-parallel.

Lemma 2.23. Let (M, g, ϕ, ξ, η) be an almost contact metric structure admitting a characteristic
connection. If M is ∇-Einstein, then it is ∇-Ricci flat.

Proof — This follows immediately from the fact that ∇ξ = 0 implies Ric∇(ξ, ξ) = 0.
�

We will now investigate the so-called Tanno deformation of a Sasaki metric. The following results
appears implicity in the articles of S. Tanno [Tan68] and of E. Kim and T. Friedrich [KF00], see
also J. Becker-Bender’s PhD thesis for a more explicit formulation and proof [BB12].
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Theorem 2.24 ([Tan68, KF00]). Let (M, g, ξ, ϕ, η) be a Sasaki manifold of dimension 2k + 1
and gt = tg + (t2 − t)η ⊗ η, t > 0, a deformation of the metric in the direction of ξ. Then
(M, gt, ξt, ϕ, ηt), were ξt = 1

t ξ and ηt = tη, is also a Sasakian manifold. The Levi-Civita connec-
tion for the metric gt is given by

∇gt = ∇g + (1 − t)(η ⊗ ϕ+ ϕ⊗ η).

For the Ricci tensor we have the following expression

Ricgt = Ricg + 2(1 − t)g − (1 − t)(2kt+ 2k − 1)η ⊗ η.

We will now show that if we start with an Einstein-Sasaki or an η-Einstein-Sasaki manifold, i. e. a
Sasaki manifold whose Riemannian Ricci tensor has the form Ricg = ag+ (b− a)η⊗ η (with one
extra condition), there is a parameter t in the Tanno deformation such that the characteristic
connection is Einstein with skew torsion. Recall that for n > 5, the coefficients a and b have to
be constant for an η-Einstein-Sasaki manifold [Bla10].

Theorem 2.25. Let (M2k+1, g, ξ, ϕ, η) be an Einstein-Sasaki manifold or an η-Einstein-Sasaki
manifold satisfying 2k + 1 > b − a. Then there exists a parameter t > 0 for which the Tanno
deformation (M, gt, ξt, ϕ, ηt) equipped with its characteristic connection

∇t = ∇gt +
1

2
ηt ∧ dηt

is ∇t-Ricci flat.

Proof — We start by observing that if Ht is the torsion of ∇t then

Ht = ηt ∧ dηt = t2dη ∧ η = t2H.

Also since M is Sasaki, dη = 2F where F is the fundamental 2-form, that is, F (X,Y ) =
g(X,ϕ(Y )). Notice that then we can write H , viewed as a (1,2)-tensor, as H(X,Y ) = 2F (X,Y )ξ.
Consider an adapted orthonormal basis for g, say, {a1, ϕ(a1), . . . , ak, ϕ(ak), ξ}. Then the set

{t−1/2a1, t
−1/2ϕ(a1), . . . , t−1/2ak, t

−1/2ϕ(ak), t−1ξ}

is an adapted orthonormal basis for the metric gt. For notational convenience we will relabel this
basis by {ei(t), i = 1, . . . , 2k + 1}. We need to analyze the tensor

St(X,Y ) = gt(H
t(ei(t), X), Ht(ei(t), Y )).

Expanding the expression for gt and Ht we have

St(X,Y ) = t5
2k+1
∑

i=1

g(H(ei(t), X), H(ei(t), Y ) + 4(1 − t)η(H(ei(t), X))η(H(ei(t), Y ))

and using the fact that H(X,Y ) = 2g(X,ϕ(Y ))ξ, this simplifies to

St(X,Y ) = 4t6
2k+1
∑

i=1

g(ei(t), ϕ(X))g(ei(t), ϕ(Y )).

Given the particular expression of our adapted basis, and recalling that ϕ(ξ) = 0, we can yet
write St as

St(X,Y ) = 4t5
2k
∑

i=1

g(ei, ϕ(X))g(ei, ϕ(Y )).

It is easy to check that St(ai, ai) = St(ϕ(ai), ϕ(ai)) = 4t5, for i = 1, . . . , k and that all other
terms vanish. Then St can be written in matrix form as St = 4t5diag(1, . . . , 1, 0). Observe also
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that η ⊗ η is given in this basis by diag(0, . . . , 0, 1). Hence, the Ricci tensor is given by the
expression

Ric∇
t

= Ricg + 2(1 − t)g − (1 − t)(2kt+ 2k + 1)η ⊗ η − 1

4
St.

If (M, g) is Einstein, then ∇t will be Einstein if and only if the matrix

−t5diag(1, . . . , 1, 0) − (1 − t)(2kt+ 2k + 1)diag(0, . . . , 0, 1)

is a multiple of the identity. This happens if an only if

f1(t) := t5 − (1 − t)(2kt+ 2k + 1) = 0.

Using the Cauchy-Bolzano theorem we can conclude that such a solution exists for some t > 0
(in fact, one checks numerically that for k = 2, . . . , 10, the unique positive solution lies in the
intervall [9/10, 1[). Thus ∇t is Einstein.

In case (M, g) is only η-Einstein, one deduces similarly that one needs to solve the equation

f2(t) := t5 − (1 − t)(2kt+ 2k + 1) + (b − a) = 0.

The assumption 2k + 1 > b− a then implies that f(0) < 0, hence the Cauchy-Bolzano theorem
garantees again the existence of a positive solution (for other values of b and a, a more detailed
investigation of the equation f(t) = 0 may still yield solutions t > 0, of course). In both cases,
the Ricci-flatness now follows from Proposition 2.23.

�

Remark 2.26. Notice that t = 1 never gives a solution of f1(t) = 0 that is, if (M, g, ϕ, ξ, η) is
Einstein then it is never ∇-Einstein with respect to its characteristic connection, in accordance
with Proposition 2.12 and the ensuing discussion of normal forms in dimensions 5 and 7.

Remark 2.27. Observe that Theorem 2.25 leads to many examples of homogeneous ∇-Ricci flat
manifolds which are not flat, as opposed to the Riemannian case (for the standard case refer, for
example, to [Bes87]).

We do not know of a similar general result for constructing explicitely Ric∇-flat manifolds in
even dimensions. Nevertheless, such manifolds exist, see Example 2.19.

2.3.5 G2 manifolds with torsion

We now consider the class of 7-dimensional Riemannian manifolds equipped with a G2 structure.
A G2 structure can be seen as a triple (M, g, ω) consisting of a 7-dimensional dimensional man-
ifold, a Riemannian metric, and a 3-form of general type at any point. A G2 T -manifold — G2

manifold with (skew) torsion — is a manifold equipped with a G2 structure such that there exists
a one-form θ such that d ∗ ω = θ ∧ ∗ω; equivalently, these are the manifolds of Fernandez-Gray
type X1⊕X3⊕X4, see [FG82]. It admits a unique connection with totally skew symmetric torsion
which preserves both the metric g and the 3-form ω, called again the characteristic connection
(of the G2 structure), see [FI02].

Example 2.28. A G2 manifold (M, g, ω) is called nearly parallel G2 if dω = λ ∗ ω, for some
0 6= λ ∈ R. They coincide with the G2 manifolds of type X1. It is a well known fact that nearly
parallel G2 manifolds are Einstein2. Furthermore, a nearly parallel G2 manifold is also Einstein

with parallel skew torsion, Ric∇ = λ2

3 g. This can be easily deduced from the formulas in [FI02,
p. 318] or from the spinorial argument in [Agr06], but it is also an immediate consequence of
Proposition 2.12.

2This can be found in [FKMS97]; the result is also implicitly contained in [BFGK91, Thm. 13, p.120], since one
checks that the assumptions of the theorem are exactly describing the existence of a nearly parallel G2 structure.
The result then follows from the fact that every spin manifold with a Killing spinor is Einstein, [Fri80]. In that
time, it was just not yet fashionable to call G2 structures by this name.
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Example 2.29. There are 7-dimensional cocalibrated G2 manifolds (M7, g, ω3) with characteristic
torsion T such that

∇T = 0, dT = 0, δT = 0, Ric∇ = 0, hol(∇) ⊂ u(2) ⊂ g2.

These G2 manifolds have been described in [Fri07, Thm 5.2] (the degenerate case where 2a+ c =
0). M7 is the product X4 × S3, where X4 is any Ricci-flat Kähler manifold and S3 the round
sphere. There is an underlying S1-fibration, but it does not induce a contact structure (the
1-form η ≃ e7 describing the fibre satisfies dη ∧ dη = 0, which cannot be); hence, the example is
not covered by the Tanno deformations described in Theorem 2.25.

3-Sasakian manifolds M are Riemannian Einstein spaces of positive scalar curvature carry-
ing three compatible orthogonal Sasakian structures (ξα, ηα, ϕα), α = 1, 2, 3 [IK73, BG08]. The
7-dimensional case is of particular interest because of its relation to spin geometry and G2 struc-
tures. The simply connected homogeneous 3-Sasakian 7-manifolds were classified up to isometry
in [BGM94] and turn out to be Sp(2)/Sp(1) ∼= S7 and SU(3)/S1; by [FK90], these are precisely the
compact simply connected 7-dimensional spin manifolds with regular 3-Sasaki structure. Many
non homogeneous examples are known [BG08].

Theorem 2.30. Every 7-dimensional 3-Sasakian manifold carries three different connections that
turn it into an Einstein manifold with parallel skew torsion; furthermore, it admits a deformation
of the metric that carries again an Einstein structure with parallel skew torsion.

Proof — It is well-known that every 7-dimensional 3-Sasakian manifold admits three linearly
independent Killing spinors ψ1, ψ2, ψ3 [FK90]; hence, each of these Killing spinors defines a nearly
parallel G2 structure ωi with a characteristic connection ∇i which is Einstein with parallel skew
torsion by the previous example. As described in [AF10a, Thm. 6.2], these three connections are
truly different, and have the same constant λ = −4, hence they satisfy Ric∇ = 16

3 g.
Furthermore, any 7-dimensional 3-Sasakian metric can be deformed into a G2-structure in the

following way (see [FKMS97, Fri07, AF10a] for more details). The vertical subbundle Tv ⊂ TM
is spanned by ξ1, ξ2, ξ3, its orthogonal complement is the horizontal subbundle Th. Fix a positive
parameter s > 0 and consider a new Riemannian metric gs defined by

gs(X,Y ) := g(X,Y ) if X,Y ∈ Th, gs(X,Y ) := s2 · g(X,Y ) if X,Y ∈ Tv.

We rescale the 3-forms

F1 = η1 ∧ η2 ∧ η3 and F2 =
1

2

(

η1 ∧ dη1 + η2 ∧ dη2 + η3 ∧ dη3
)

+ 3η1 ∧ η2 ∧ η3

to obtain the new forms

F s
1 := s3F1, F s

2 := sF2, ωs := F s
1 + F s

2 .

One shows that (M7, gs, ωs) is a Riemannian 7-manifold equipped with a cocalibrated G2-
structure ωs, hence it admits a characteristic connection ∇ with skew torsion

Hs =

[

2

s
− 10s

]

(sη1) ∧ (sη2) ∧ (sη3) + 2sωs.

The Ricci tensor of the characteristic connection of ∇ (written as an endomorphism) is given by
the formula [Fri07]

Ric∇ = 12 (1 − s2) IdTh ⊕ 16 (1 − 2 s2) IdTv .

If s = 1 (the 3-Sasakian case), then Ric∇ vanishes on the subbundle Th. For s = 1/
√

5, the Ricci
tensor is proportional to the metric, Ric∇ = (48/5) IdTM7 , so we obtain an Einstein structure
with skew torsion as claimed. As already observed in [FKMS97, Thm. 5.4], it is nearly parallel
G2, so it has parallel torsion. Finally, it was shown in [AF10a, Cor. 7.1] that its corresponding
Killing spinor is ψ0, the canonical spinor introduced in the same paper. Since it is related to the
Killing spinors of the underlying 3-Sasakian structure by ψi = ξi · ψ0 [AF10a, Thm. 6.1], we see
that we obtained yet another different nearly parallel G2 structure on the 3-Sasaki manifold we
started with.

�
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2.3.6 The Aloff-Wallach manifold N(1, 1)

This is a computer-aided systematic search for metric connections with skew torsion on the Aloff-
Wallach manifold SU(3)/S1. It was our goal to test how rare or common ∇-Einstein structures
are, apart from the ones that we can predict theoretically. The main result is that, indeed,
additional ∇-Einstein structures exist.

We use the computations available in [BFGK91, p.109 ff] and [AF04, p.733 ff], which we then
shall not reproduce here. The manifold N(1, 1) is the homogeneous space SU(3)/S1 where we
are taking the embedding S1 → SU(3) given by eiθ 7→ diag(eiθ, eiθ, e−2iθ). The Lie algebra su(3)
splits into su(3) = m + R, where R is the Lie algebra of S1 given by the considered embedding.
The space m splits into m0 ⊕ m1 ⊕ m2 ⊕ m3, where all mi are pairwise orthogonal with respect
to the (negative of the) Killing form B(X,Y ) := −Re(trXY )/2 of su(3). The subspace m0 is
spanned by the matrix L := diag(3i,−3i, 0). Let Eij (i < j) be the matrix with 1 at the place (i, j)

and zero elsewhere, and define Aij = Eij − Eji, Ãij = i(Eij + Eji). Then m1 := Lin{A12, Ã12},

m2 := Lin{A13, Ã13} and m3 := Lin{A23, Ã23}. We consider the two-parameter family of metrics
defined by the formula

gs,y :=
1

s2
B|m0

+B|m1
+

1

y
B|m2

+
1

y
B|m2

.

This is a subfamily of the family considered in [BFGK91, p.109 ff]. The isotropy representation
Ad (θ) leaves the vectors in m0 and m1 invariant, and acts as a rotation by 3θ in the m2-plane
and in the m3-plane. We use the standard realization of the 8-dimensional Spin(7)-representation
∆7 as given in [BFGK91, p.97], and denote by ψi, i = 1, . . . 8 its basis. One then checks that
ψ3, ψ4, ψ5 and ψ6 are fixed under the lift Ãd (θ) of the isotropy representation to Spin(7). Thus,
they define constant sections in the spinor bundle ΣN(1, 1) = SU(3)×Ãd ∆7. The metric defined
by s = 1, y = 2 is exactly the 3-Sasakian metric on N(1, 1) (see the comments in the previous
section); it has three Killing spinors with Killing number 1/2 (ψ3, ψ4, ψ6 in our notation). The
metric defined by s = 1, y = 2/5 is the Einstein metric with Killing spinor ψ5 and with Killing
number −3/10, the well-known nearly parallel G2 structure on N(1, 1) (see [BFGK91, Thm 12,
p.116]). It coincides with the nearly parallel G2 structure constructed by rescaling the underlying
3-Sasakian structure as described in Theorem 2.30.

In dimension 7, any connection ∇ with skew torsion H admitting a parallel spinor field
defines a G2 structure of Fernandez-Gray type X1 ⊕ X3 ⊕ X4 on this manifold, and vice versa.
This construction principle was used in [AF04] to define G2 structures on N(1, 1) via their parallel
spinors. In particular, torsion forms Ti depending on the metric parameters s, y were given in
Propositions 8.1–8.4 that admit ψi as parallel spinors, i = 3, . . . , 6. Let ∇i denote the connection
with skew torsion Ti. We can summarize our results as follows:

Theorem 2.31. On the Aloff-Wallach manifold N(1, 1) with the family of metrics gs,y, the
connection ∇i, i = 3, . . . , 6, defines a G2 structure that is Einstein with skew torsion precisely
for the values stated in the following table:

Connection Metric gs,y s∇/7 Comment Riemannian Einstein ?

∇3, ∇4 s = 1, y = 2 3-Sasakian yes

∇5 s = 1, y = 2
5 nearly parallel G2 yes

∇5 s = 1, y = 30
13

7245
1352

∼= 5.3587 new no

∇6 s = 1, y = 2 3-Sasakian yes

∇6 s ∼= 0.97833, ∼= 1.676989544 new no

y ∼= 0.34935
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Hence, we were able to construct two Einstein structures with skew torsion on N(1, 1) that
go beyond the metrics predicted for theoretic reasons. It will be an interesting topic for further
research to investigate their detailed geometrical properties.

Remark 2.32. In [AF04], one can also find a construction of 3-forms that make various linear
combinations of the spinors ψ3, . . . , ψ6 parallel. The algebraic systems of equations for the ∇-
Einstein condition are difficult to control, but tests with different parameters lead us to conjecture
that for arbitrary a, b (ab 6= 0) and a, b, c (abc 6= 0) we obtain no new solutions.

In a same vein, one can ask for ∇-Einstein structures for other embeddings of S1 into SU(3),
i. e. the general Aloff-Wallach manifold N(k, l), with k, l ∈ N coprime. For these, already the
Riemannian Einstein metrics cannot be described explicitly, but only as solutions of a complicated
system of equations depending on k, l, and the metric parameters s, y. Some tests for different
value of k and l showed that further ∇-Einstein structures do exist, but it seems hopeless to
discuss the resulting system of equations in a reasonably general way for arbitrary k and l.

A Appendix: Equivalent formulations of parallel torsion

Consider the one parameter family of connections with skew torsion given by

∇s
XY = ∇g

XY + 2sH(X,Y ), s ∈ R.

We will investigate the relation between parallel torsion and the vanishing of the first Bianchi
identity. For the connection ∇s the following curvature identity holds

Rs(X,Y, Z,W ) = Rg(X,Y, Z,W ) + 4s2g(H(X,Y ), H(Z,W )) + 4s2σH(X,Y, Z,W )

+2s∇s
XH(Y, Z,W ) − 2s∇s

YH(X,Z,W )

and using the fact that

∇s
XH(Y, Z,W ) = ∇g

XH(Y, Z,W ) − 2sσH(X,Y, Z,W )

it is easy to check that the first Bianchi identiy reads as

XY Z
σ Rs(X,Y, Z,W ) = −8s2σH(X,Y, Z,W ) + 4s(dH(X,Y, Z,W ) + ∇g

WH(X,Y, Z)).

Proposition A.1. For any real parameter s0 6= 0, the following conditions are equivalent:

(1) ∇s0H = 0 ;

(2)
XY Z
σ R3s0(X,Y, Z,W ) = 0;

(3) dH = 8s0σH .

Proof — Suppose (1) holds, i. e. there exists s0 6= 0 such that ∇s0H = 0. Then ∇gH = 2s0σH ,
which implies that dH = 8s0σH . The Bianchi identity then reduces to

XY Z
σ Rs(X,Y, Z,W ) = −8s(s− 3s0)σH(X,Y, Z,W ).

Hence, we have (2), the vanishing of the first Bianchi identity for s = 3s0.
Consider now condition (2). The vanishing of the first Bianchi identity for some s 6= 0 implies

that
∇g

WH(X,Y, Z) = 2sσH(X,Y, Z,W ) − dH(X,Y, Z,W )

and from this expression we see that ∇gH is a totally antisymmetric tensor, and is therefore
equal to 1

4dH . Then

dH(X,Y, Z,W ) +
1

4
dH(W,X, Y, Z) = 2sσH(X,Y, Z,W )
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and simplifying we conclude that dH = 8
3s σH ,, that is, (3) holds. But then the first equation

can be rewritten ∇gH = 2
3sσH , which is equivalent to ∇s/3H = 0, i. e. we proved (1).

It remains to deduce (1) from (3). For this, consider the general identity ([FI02], [Agr06, Cor.
A.1.])

dH(X,Y, Z,W ) =
XY Z
σ [∇s

XH(Y, Z,W )] −∇s
WH(X,Y, Z) + 8sσH(X,Y, Z,W ),

which holds under the assumption that s 6= 0. Under the assumption (3), it reduces to

XY Z
σ [∇s

XH(Y, Z,W )] = ∇s
WH(X,Y, Z).

Both sides are tensorial quantities, but the left hand side is symmetric in X,Y, and Z, while the
right hand side is antisymmetric in X,Y, and Z, hence they can only be equal if they vanish,
which implies condition (1).

�

Proposition A.1 is clearly wrong for the Levi-Civita connection (s0 = 0), showing the non-
triviality of the result. In dimension 4, the 4-form σH vanishes for purely algebraic reasons; the
theorem stays correct, indeed (1) and (2) hold then for any s0 ∈ R.
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