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Homogeneous non-degenerate 3-(α, δ)-Sasaki manifolds and

submersions over quaternionic Kähler spaces

Ilka Agricola, Giulia Dileo, and Leander Stecker

Abstract

We show that every 3-(α, δ)-Sasaki manifold of dimension 4n+ 3 admits a locally defined
Riemannian submersion over a quaternionic Kähler manifold of scalar curvature 16n(n+2)αδ.
In the non-degenerate case (δ 6= 0) we describe all homogeneous 3-(α, δ)-Sasaki manifolds
fibering over symmetric Wolf spaces (case αδ > 0) and over their the noncompact dual sym-
metric spaces (case αδ < 0). If αδ > 0, this yields a complete classification of homogeneous
3-(α, δ)-Sasaki manifolds; for αδ < 0, we provide a general construction of homogeneous 3-
(α, δ)-Sasaki manifolds fibering over nonsymmetric Alekseevsky spaces, the lowest possible
dimension of such a manifold being 19.
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1 Introduction and basic notions

1.1 Introduction

Sasaki manifolds have been studied since the 1970s as an odd dimensional counterpart to Kähler
geometry. Similarly, 3-Sasaki manifolds are considered the (4n + 3)-dimensional analogue to hy-
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1 INTRODUCTION AND BASIC NOTIONS 2

perKähler (hK) geometry. However, while these geometries are linked via the hK cone of a 3-Sasaki
manifold, 3-Sasaki geometry also connects to another 4n-dimensional geometry, namely quater-
nionic Kähler (qK) manifolds. Initially shown in the regular case by Ishihara and in full generality
by C. Boyer, K. Galicki and B. Mann in ’94, every 3-Sasaki manifold locally admits a fibration over
a qK orbifold [BGM94]. This led to the classification of all homogeneous 3-Sasaki manifolds. The
reverse construction is given by taking the Konishi bundle of a positive scalar curvature qK space,
i.e. the orthonormal frame bundle of the quaternionic structure [Ko75]. For qK manifolds with
negative scalar curvature one does not obtain a 3-Sasaki manifold but a so-called pseudo 3-Sasaki
structure [Ta96]. This notion, however, did not gather as much traction since it comes with a
metric of semi-Riemannian signature (4n, 3).

More recently the first two authors investigated Riemannian almost 3-contact metric manifolds
by the means of connections with torsion [AD20]. They found necessary and sufficient conditions
for the existence of compatible connections. Along their investigations, they discovered the more
specific class of 3-(α, δ)-Sasaki manifolds connecting many examples on which partial results were
known previously. In particular, they showed that pseudo 3-Sasaki structures can be turned into
negative 3-(α, δ)-Sasaki manifolds (i. e. with αδ < 0).

This paper aims to connect both worlds and presents 3-(α, δ)-Sasaki geometry as the go-to
structure above any qK space. We quickly review all necessary notions involving 3-(α, δ)-Sasaki
structures in Section 1. Using results by R. Cleyton, A. Moroianu and U. Semmelmann [CMS18]
we obtain a locally defined Riemannian submersion over a qK space establishing the canonical
connection as the link between both geometries. This is done in Section 2. In the 3-Sasaki case we
recover the result of Boyer, Galicki, Mann. We further show that the scalar curvature on the base
is a positive multiple of αδ. Thus, for negative and degenerate 3-(α, δ)-Sasaki manifolds we obtain
submersions onto qK spaces of negative scalar curvature, respectively hK spaces. This suggests to
investigate non-degenerate homogeneous 3-(α, δ)-Sasaki manifolds by looking at homogeneous qK
manifolds of non-vanishing scalar curvature. Section 3 is therefore devoted to a hands on construc-
tion of homogeneous 3-(α, δ)-Sasaki spaces over all known homogeneous qK manifolds. This yields
a construction over symmetric Wolf spaces, deforming the description given in [DOP18] (see also
[Bi96, Theorem 4]), and by similar means their non-compact duals. Additionally, homogeneous
3-(α, δ)-Sasaki manifolds over Alekseevsky spaces are constructed using a description of the latter
given by V. Cortés in [Co00]. We provide detailed descriptions of the 7-dimensional Aloff-Wallach
space, its negative counterpart fibering over the 4-dimensional Wolf space SU(3)/S(U(2)×U(1)),
respectively its non-compact dual, as well as of the homogeneous 3-(α, δ)-Sasaki space T̂ (1) in
dimension 19 sitting above the non-symmetric Alekseevsky space T (1). In Section 4 we compute
the Nomizu map associated to the canonical connection, the necessary tool for any further investi-
gation of these spaces. In the symmetric base case we conclude the Nomizu map of the Levi-Civita
connection as well.

1.2 Review of 3-(α, δ)-Sasaki manifolds and their basic properties

We review some basic definitions and properties on almost contact metric manifolds. This serves
mainly as a reference.

An almost contact metric structure on a (2n + 1)-dimensional differentiable manifold M is a
quadruple (ϕ, ξ, η, g), where ϕ is a (1, 1)-tensor field, ξ a vector field, η a 1-form, g a Riemannian
metric, such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0,

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ) ∀X,Y ∈ X(M).

It follows that ϕ has rank 2n and the tangent bundle of M splits as TM = H⊕〈ξ〉, where H is the
2n-dimensional distribution defined by H = Im(ϕ) = ker η = 〈ξ〉⊥. In particular, η = g(·, ξ). The
vector field ξ is called the characteristic or Reeb vector field. The almost contact metric structure
is said to be normal if Nϕ := [ϕ, ϕ] + dη ⊗ ξ vanishes, where [ϕ, ϕ] is the Nijenhuis torsion of ϕ
[Bl10].



1 INTRODUCTION AND BASIC NOTIONS 3

An α-Sasaki manifold is defined as a normal almost contact metric manifold such that dη =
2αΦ, α ∈ R∗, where Φ is the fundamental 2-form defined by Φ(X,Y ) = g(X,ϕY ); for α = 1, this
is a Sasaki manifold. The 1-form η of an α-Sasaki structure is a contact form, in the sense that
η ∧ (dη)n 6= 0 everywhere on M . The Reeb vector field is always Killing.

An almost 3-contact metric manifold is a differentiable manifoldM of dimension 4n+3 endowed
with three almost contact metric structures (ϕi, ξi, ηi, g), i = 1, 2, 3, sharing the same Riemannian
metric g, and satisfying the following compatibility relations

ϕk = ϕiϕj − ηj ⊗ ξi = −ϕjϕi + ηi ⊗ ξj , ξk = ϕiξj = −ϕjξi, ηk = ηi ◦ ϕj = −ηj ◦ ϕi

for any even permutation (ijk) of (123) [Bl10]. The tangent bundle of M splits into the orthogonal
sum TM = H ⊕ V , where H and V are respectively the horizontal and the vertical distribution,
defined by

H :=

3
⋂

i=1

ker ηi, V := 〈ξ1, ξ2, ξ3〉.

In particular H has rank 4n and the three Reeb vector fields ξ1, ξ2, ξ3 are orthonormal. The
manifold is said to be hypernormal if each almost contact metric structure (ϕi, ξi, ηi, g) is normal.
We denote an almost 3-contact metric manifold by (M,ϕi, ξi, ηi, g), understanding that the index
is running from 1 to 3.

One of the most interesting classes of almost 3-contact metric manifolds is given by 3-α-Sasaki
manifolds, for which each of the three structures is α-Sasaki. For α = 1, this is just the definition
of a 3-Sasaki manifold. As a comprehensive introduction to Sasaki and 3-Sasaki geometry, we refer
to [BG08]. In the recent paper [AD20] the new class of 3-(α, δ)-Sasaki manifolds was introduced,
generalizing 3-α-Sasaki manifolds.

Definition 1.2.1. An almost 3-contact metric manifold (M,ϕi, ξi, ηi, g) is called a 3-(α, δ)-Sasaki
manifold if it satisfies

dηi = 2αΦi + 2(α− δ)ηj ∧ ηk (1.1)

for every even permutation (ijk) of (123), where α 6= 0 and δ are real constants. A 3-(α, δ)-Sasaki
manifold is called degenerate if δ = 0 and non-degenerate otherwise. Non-degenerate 3-(α, δ)-Sasaki
manifolds will be distinguished into positive and negative ones, depending on whether αδ > 0 or
αδ < 0.

Remark 1.2.1. Recall that the distinction into degenerate, positive, and negative 3-(α, δ)-Sasaki
manifolds stems from their behaviour under H-homothetic deformations [AD20, Section 2.3]:

η′i = cηi, ξ′i =
1

c
ξi, ϕ′

i = ϕi, g′ = ag + b

3
∑

i=1

ηi ⊗ ηi with a > 0 and c2 = a+ b > 0.

The deformed structure (ϕ′, ξ′i, η
′, g′) turns out to be 3-(α′, δ′)-Sasaki with α′ = αc/a, δ′ = δ/c. In

particular, H-homothetic deformations preserve the class of degenerate 3-(α, δ)-Sasaki manifolds.
In the non-degenerate case the sign of the product αδ is also preserved, which justifies the distinc-
tion between the positive and negative case stated in the definition above. In fact a 3-(α, δ)-Sasaki
manifold is positive if and only if it is H-homothetic to a 3-Sasaki manifold, and negative if and
only if it is H-homothetic to a 3-(α̃, δ̃)-Sasaki manifold with α̃ = −δ̃ = 1.

We recall some basic properties of 3-(α, δ)-Sasaki manifolds whose proofs can be found in
[AD20]. Any 3-(α, δ)-Sasaki manifold is shown to be hypernormal, thus generalizing Kashiwada’s
theorem [Ka01]. Hence, for α = δ one has a 3-α-Sasaki manifold. Each Reeb vector field ξi is
Killing and it is an infinitesimal automorphism of the horizontal distribution H, i.e. dηi(X, ξj) = 0
for every X ∈ H and i, j = 1, 2, 3. The vertical distribution V is integrable with totally geodesic
leaves. In particular, the commutators of the Reeb vector fields are purely vertical and for every
even permutation (ijk) of (123) they are given by

[ξi, ξj ] = 2δξk.



1 INTRODUCTION AND BASIC NOTIONS 4

Meanwhile, the vertical part of commutators of horizontal vector fields is encoded by the funda-
mental form, as is shown in the following useful lemma:

Lemma 1.2.1. For two horizontal vectors X,Y ∈ H we have

[X,Y ]V = −2α
3
∑

i=1

Φi(X,Y )ξi.

Proof. Since the vertical distribution is spanned by the Reeb vector fields, we have

[X,Y ]V =

3
∑

i=1

ηi([X,Y ])ξi = −
3
∑

i=1

dηi(X,Y )ξi = −2α

3
∑

i=1

Φi(X,Y )ξi.

By the same argument [X,Y ]V = 0 if X ∈ H and Y = ξj , j = 1, 2, 3, which is equivalent to the
fact that dηi(X, ξj) = 0, i = 1, 2, 3.

A remarkable property of 3-(α, δ)-Sasaki manifolds is that they are canonical almost 3-contact
metric manifolds, in the sense of [AD20], which is equivalent to the existence of a canonical con-
nection.

We recall here some basic facts about connections with totally skew-symmetric torsion—we refer
to [Ag06] for further details. A metric connection ∇ with torsion T on a Riemannian manifold
(M, g) is said to have totally skew-symmetric torsion, or skew torsion for short, if the (0, 3)-tensor
field T defined by

T (X,Y, Z) = g(T (X,Y ), Z)

is a 3-form. The relation between ∇ and the Levi-Civita connection ∇g is then given by

∇XY = ∇g
XY +

1

2
T (X,Y ).

It is well-known that any Sasaki manifold (M,ϕ, ξ, η, g) admits a characteristic connection, i. e. a
unique metric connection ∇ with skew torsion such that ∇η = ∇ϕ = 0. Its torsion is given
by T = η ∧ dη [FI02]. As a consequence, a 3-Sasaki manifold (M,ϕi, ξi, ηi, g) cannot admit any
metric connection with skew torsion such that ∇ηi = ∇ϕi = 0 for every i = 1, 2, 3. By relaxing the
requirement on the parallelism of the structure tensor fields in a suitable way, one can define a large
class of almost 3-contact metric manifolds, called canonical, including 3-(α, δ)-Sasaki manifolds,
and thus 3-Sasaki manifolds.

Any 3-(α, δ)-Sasaki manifold (M,ϕi, ξi, ηi, g) is canonical, in the sense that it admits a unique
metric connection ∇ with skew torsion such that

∇Xϕi = β(ηk(X)ϕj − ηj(X)ϕk) ∀X ∈ X(M) (1.2)

for every even permutation (ijk) of (123), where β = 2(δ − 2α). The covariant derivatives of the
other structure tensor fields are given by

∇Xξi = β(ηk(X)ξj − ηj(X)ξk), ∇Xηi = β(ηk(X)ηj − ηj(X)ηk).

If δ = 2α, then β = 0 and the canonical connection parallelizes all the structure tensor fields. Any
3-(α, δ)-Sasaki manifold with δ = 2α is called parallel. Notice that this is a positive 3-(α, δ)-Sasaki
manifold.

The torsion T of the canonical connection is given by

T = 2α

3
∑

i=1

ηi ∧ Φi − 2(α− δ)η123 = 2α

3
∑

i=1

ηi ∧ ΦH
i + 2(δ − 4α) η123, (1.3)

where ΦH
i = Φi + ηjk ∈ Λ2(H) is the horizontal part of the fundamental 2-form Φi. Here we put

ηjk := ηj ∧ ηk and η123 := η1 ∧ η2 ∧ η3. In particular, for every X,Y ∈ X(M),

T (X,Y ) = 2α

3
∑

i=1

{ηi(Y )ϕiX − ηi(X)ϕiY +Φi(X,Y )ξi} − 2(α− δ)
i,j,k

S ηij(X,Y )ξk. (1.4)
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The symbol
i,j,k

S means the sum over all even permutations of (123). The torsion of the canonical
connection satisfies∇T = 0. The curvature properties of 3-(α, δ)-Sasaki manifolds will be discussed
in detail in a separate publication [ADS21]. We cite from there without proof the following special
result that will be needed in the following section. It is a side result of a lengthy and non-trivial,
but otherwise straightforward computation.

Proposition 1.2.1 ([ADS21]). The curvature tensor R of the canonical connection of a 3-(α, δ)-
Sasaki manifold satisfies for any X,Y, Z ∈ H and i, j, k, l = 1, 2, 3 the identities

R(X, ξi, Y, ξj) = R(X,Y, Z, ξi) = R(ξi, ξj , ξk, X) = 0, (1.5)

R(ξi, ξj , ξk, ξl) = −4αβ(δikδjl − δilδjk), (1.6)

R(ξi, ξj , X, Y ) = ±2αβΦk(X,Y ), (1.7)

R(X,Y, Z, ϕiZ) +R(X,Y, ϕjZ,ϕkZ) = ∓2αβΦi(X,Y )‖Z‖2, (1.8)

where ± refers to an even, respectively odd, permutation (ijk) of (123).

2 The Riemannian submersion over a quaternionic Kähler

base

2.1 The canonical submersion

In [CMS18] the authors discuss the geometry of Riemannian manifolds admitting metric connec-
tions ∇τ with parallel skew torsion τ and reducible holonomy. This applies, in particular, to the
canonical connection of 3-(α, δ)-Sasaki manifolds. We shortly recall their notation.

Suppose the tangent space TM decomposes under the action of the holonomy group Hol of
∇τ into a sum of irreducible representations v1, . . . , vr, h1, . . . , hs. Here an irreducible submodule
is called vertical, adequately denoted by vj , if the subspace of hol acting purely on vj is trivial.
Conversely, a subspace ha is called horizontal if the subspace ka = so(ha) ∩ hol 6= {0} of hol acting
purely on ha is non-trivial.

We need a slight generalization of the results obtained in [CMS18]. Suppose the tangent space
decomposes into TM = v1⊕· · ·⊕vr⊕h1⊕· · ·⊕hs as before. Let TM = VΓ⊕HΓ be a decomposition
such that

HΓ :=

s
⊕

a=1

ha ⊕
⊕

j∈Γ0\Γ

vj , VΓ :=
⊕

j∈Γ

vj , (2.1)

for some subset Γ ⊂ Γ0 = {1, . . . , r}. Suppose further that for this decomposition the projection
of τ onto the space VΓ ⊗ Λ2HΓ satisfies

0 = prVΓ⊗Λ2HΓ
τ ∈ VΓ ⊗ Λ2HΓ ⊂ Λ3(VΓ ⊕HΓ). (2.2)

This condition turns out to be sufficient to prove Lemma 3.7-3.10 and Remark 3.11 from [CMS18].
We obtain

Corollary 2.1.1. Suppose the decomposition TM = VΓ ⊕ HΓ from (2.1) fulfills condition (2.2).
Then

a) the distribution VΓ is the vertical distribution of a locally defined Riemannian submersion

(M, g)
π−→ (N, gN ) with totally geodesic leaves,

b) there exists a 3-form σ ∈ Λ3N satisfying π∗σ = prΛ3HΓ
τ ,

c) ∇σ := ∇gN

+ 1
2σ defines a connection with parallel skew-torsion σ on N . In particular, we have

∇σ
XY = π∗(∇τ

X
Y ), (2.3)

for the horizontal lifts X,Y ∈ TM of the vectors fields X,Y ∈ TN .
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Equation 2.3 is not stated explicitely in [CMS18] but follows directly from ∇gN
X Y = π∗(∇g

X
Y )

for Riemannian submersions [Pe06, Prop. 13]. To a Riemannian submersion one assigns the O’Neill
tensors

AXY = (∇g
XH

YH)V + (∇g
XH

YV)H, TXY = (∇g
XV

YH)V + (∇g
XV

YV)H.

Here the subscripts denote projection on the respective subspaces. For the submersion above A
and T simplify:

Lemma 2.1.1. The O’Neill tensors A and T associated to the submersion defined by TM =
VΓ ⊕HΓ are given by

g(AXY, Z) = −1

2
(τ(XHΓ

, YHΓ
, ZVΓ

) + τ(XHΓ
, YVΓ

, ZHΓ
)), T = 0.

Proof. Since HΓ and VΓ are ∇τ -holonomy invariant (∇τ
XYHΓ

)VΓ
= (∇τ

XYVΓ
)HΓ

= 0. Thus,
g(∇g

XYHΓ
, ZVΓ

) = − 1
2τ(X,YHΓ

, ZVΓ
) and g(∇g

XYVΓ
, ZHΓ

) = − 1
2τ(X,YVΓ

, ZHΓ
). The first ex-

pression follows directly. The identity T = 0 is then an immediate consequence of condition
(2.2).

The vanishing of T does not come as a surprise since it is equivalent to the fibers being totally
geodesic.

We now discuss the situation for 3-(α, δ)-Sasaki manifolds. By (1.2) the holonomy represen-
tation of the canonical connection ∇ of a 3-(α, δ)-Sasaki manifold splits into the horizontal and
vertical subspaces H and V . In the non-parallel case V is irreducible, in the parallel case it decom-
poses into 3 trivial 1-dimensional representations. In either case the curvature properties stated in
Proposition 1.2.1 allow us to prove:

Lemma 2.1.1. The vertical distribution V of a 3-(α, δ)-Sasaki manifold is vertical with respect to
the above notation.

Proof. By the Ambrose-Singer Theorem the holonomy algebra hol of the holonomy group Hol(p)
at a point p is given by

hol = {P−1
γ ◦R(PγX,PγY ) ◦ Pγ | γ some path from p to q, X,Y ∈ TpM} ⊂ so(TpM)

where Pγ denotes parallel transport along γ and R(X,Y ) ∈ so(TqM) the curvature operator.
The horizontal and vertical distribution are invariant under parallel transport with respect to the
canonical connection. Thus, we may assume γ to be trivial when investigating the holonomy
action on these distributions. By (1.5) we know that the holonomy is only non-trivial if X,Y ∈ V
or X,Y ∈ H. In the first case (1.6) and (1.7) show that every element of hol acting non-trivially
on V must also act non-trivially on H. The action of an element R(X,Y ), X,Y ∈ H, on V is again
given by (1.7). Any such element of hol acts non-trivially on V if β 6= 0 and Φi(X,Y ) 6= 0 for some
i = 1, 2, 3. In this case R(X,Y ) is also a non-trivial operator on H by (1.8).

Proposition 2.1.1. The decomposition TM = H⊕V of a 3-(α, δ)-Sasaki manifold M satisfies the
conditions in Corollary 2.1.1. In particular, there exists a locally defined Riemannian submersion
π : M → N such that

∇gN
X Y = π∗(∇XY ). (2.4)

Definition 2.1.1. We will call π : M → N the canonical submersion of a 3-(α, δ)-Sasaki manifold.

Proof (of Proposition 2.1.1). By (1.2) and Lemma 2.1.1 the decomposition TM = V ⊕ H is of
type (2.1) with respect to the canonical connection ∇. By (1.3) the projection of the torsion
onto V ⊗ Λ2H vanishes, satisfying (2.2). Therefore the conditions of Corollary 2.1.1 are satisfied.
Moreover, (1.3) shows that the projection of τ onto Λ3H vanishes so the connection ∇σ in (2.3)

for the canonical submersion is the Levi-Civita connection ∇gN

on N .

We observe that the canonical submersion is, indeed, an almost contact metric 3-submersion in
the sense of [Wa84], although we never make explicity use of this property (our formulas are much
more detailed than the general results obtained therein).



2 THE RIEMANNIAN SUBMERSION OVER A QUATERNIONIC KÄHLER BASE 7

2.2 The quaternionic Kähler structure on the base

We give a preliminary lemma needed to prove that the base of the canonical submersion admits a
qK structure. Recall that a basic vector field on M is a horizontal vector field which is projectable,
that is π-related to some vector field defined on N . If X ∈ TN , the horizontal lift of X is the
unique basic vector field X ∈ TM such that π∗X = X .

Lemma 2.2.1. For any vertical vector field X ∈ V and for any basic vector field Y ∈ H we have

(∇XY )H = −2α

3
∑

i=1

ηi(X)ϕiY.

Proof. We first use the identity g(∇g
XY, Z) = − 1

2g([Y, Z], X) for any vector fields X ∈ V , Y, Z ∈ H,
with Y and Z projectable, of a Riemannian submersion [Pe06, Proposition 13]. Note that the
horizontal and vertical distributions of the Riemannian submersion agree with the same notion in
the 3-(α, δ)-Sasaki setting. Further, we make use of Lemma 1.2.1 to obtain

g(∇g
ξi
Y, Z) = −1

2
g([Y, Z], ξi) = αΦi(Y, Z).

Therefore

g(∇XY, Z) = g(∇g
XY, Z) +

1

2
T (X,Y, Z) =

3
∑

i=1

ηi(X)(αΦi(Y, Z) + αΦi(Y, Z))

= −2α

3
∑

i=1

ηi(X)g(ϕiY, Z).

Theorem 2.2.1. The base N of the canonical submersion π : M → N of any 3-(α, δ)-Sasaki
manifold M carries a quaternionic Kähler structure given by

ϕ̌i = π∗ ◦ ϕi ◦ s∗, i = 1, 2, 3,

where s : U → M is any local smooth section of π. The covariant derivatives of the almost complex
structures ϕ̌i are given by

∇gN
X ϕ̌i = 2δ(η̌k(X)ϕ̌j − η̌j(X)ϕ̌k),

where η̌i(X) = ηi(s∗X) for i = 1, 2, 3.

Proof. Let s be a local section of the canonical submersion π : M → N , hence π∗ ◦ s∗ = id and
Im(s∗ ◦ π∗ − id) ⊂ V on the image s(N) ⊂ M . Define

ϕ̌i = π∗ ◦ ϕi ◦ s∗

for i = 1, 2, 3. The horizontal and vertical distributions, H and V , are invariant under ϕi. Thus,
π∗ ◦ ϕi = ϕ̌i ◦ π∗ on s(N). This yields

ϕ̌iϕ̌j = ϕ̌i ◦ (π∗ ◦ ϕj ◦ s∗) = π∗ ◦ (ϕiϕj) ◦ s∗.

Now use that (ϕi|H)2 = −id|H and (ϕi|H)(ϕj |H) = ±ϕk|H with sign ± depending on whether
(ijk) is an even or odd permutation of (123). This shows ϕ̌2

i = −id and ϕ̌iϕ̌j = ±ϕ̌k.
Finally, by means of (2.4) and (1.2), we show that the quaternionic structure is parallel. First

(∇gN
X ϕ̌i)Y = (∇gN

X (ϕ̌iY ))− (ϕ̌i(∇gN
X Y )) = π∗∇X(ϕ̌iY )− ϕ̌i

(

π∗(∇XY )
)

= π∗∇X(π∗ (ϕi(s∗Y )))− π∗

(

ϕi

(

s∗
(

π∗

(

∇XY
))))

.

By the properties of any Riemannian submersion we have that (π∗ (ϕi(s∗Y ))) = (ϕi(s∗Y ))H wher-
ever the right side is defined, that is on the image s(N) ⊂ M . Thus, we take the covariant
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derivatives in the direction of s∗X resulting in a vertical correction term X̂ = X − s∗X ∈ V .
Recall that ∇ and ϕi preserve the horizontal and the vertical distribution. Using Lemma 2.2.1, we
obtain

∇X(π∗ (ϕi(s∗Y ))) = ∇X(ϕi(s∗Y ))H

= ∇s∗X(ϕi(s∗Y ))H +∇X̂(ϕi(s∗Y ))H

= (∇s∗X (ϕi(s∗Y )))H − 2α

3
∑

l=1

ηl(X̂)ϕl (ϕi(s∗Y ))H .

For the second summand, the horizontal projection is given by
(

ϕi

(

s∗
(

π∗

(

∇XY
))))

H
= ϕi

(

s∗
(

π∗

(

∇XY
)))

H
= ϕi

(

∇X(s∗Y + Ŷ )
)

H

= ϕi (∇s∗X(s∗Y ))H + ϕi∇X̂(s∗Y )H

= (ϕi (∇s∗X(s∗Y )))H − 2α

3
∑

l=1

ηl(X̂)ϕi(ϕl(s∗Y ))H.

Recombining both identities we obtain

(∇gN
X ϕ̌i)Y = π∗

(

∇s∗X (ϕi(s∗Y ))− ϕi (∇s∗X(s∗Y )) + 2α

3
∑

l=1

ηl(X̂)(ϕiϕl(s∗Y )H − ϕlϕi(s∗Y )H)
)

= π∗

(

(∇s∗Xϕi)s∗Y − 2α

3
∑

l=1

ηl(s∗X)(ϕiϕl(s∗Y )H − ϕlϕi(s∗Y )H)
)

= (β + 4α)
(

(ηk(s∗X) ◦ s)π∗(ϕj(s∗Y ))− (ηj(s∗X) ◦ s)π∗(ϕk(s∗Y ))
)

= 2δ(η̌k(X)ϕ̌j − η̌j(X)ϕ̌k)Y.

Here we used the defining identity (1.2) of the canonical connection for any even permutation (ijk)
of (123). Therefore, the quaternionic structure is parallel and N is quaternionic Kähler.

Remark 2.2.1. A priori the quaternionic structure may depend on the chosen section s. Indeed, the
individual almost complex structures ϕ̌i vary with s. However, following the work of P. Piccinni
and I. Vaismann [PV01], one can see that the quaternionic structure is preserved under the Bott
connection D̊ : V ×H → H defined by D̊V X = [V,X ]H, since

(D̊ξiϕj)X = [ξi, ϕjX ]H − ϕj [ξi, X ]H = ((Lξiϕj)X)H = 2δǫijkϕkX.

This implies that the quaternionic structure is projectable and, thus, independent of choices.

Corollary 2.2.1. A 3-(α, δ)-Sasaki manifold fibers locally over a hyperkähler manifold if it is
degenerate.

Remark 2.2.2. Apart from the degenerate case the induced quaternionic Kähler structure is hy-
perkähler if and only if s∗X ∈ H for all X ∈ TN . Such a section exists if and only if the horizontal
distribution is tangent to s(N) and, thus, integrable. This is in contrast to Lemma 1.2.1 for any
3-(α, δ)-Sasaki manifold.

We can now relate the curvature of N with that of M .

Theorem 2.2.2. Let π : M → N be the canonical submersion of a 3-(α, δ)-Sasaki manifold. Then

scalgN = 16n(n+ 2)αδ.

Proof. By Lemma 2.1.1 and (1.3) for X,Y ∈ H

AXY = −1

2
T (X,Y )V = −α

3
∑

i=1

Φi(X,Y )ξi.
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Let e1, . . . , e4n be a local adapted frame for H, i.e. an orthonormal frame such that ϕ1e4p+1 =
e4p+2, ϕ2e4p+1 = e4p+3 and ϕ3e4p+1 = e4p+4, 0 ≤ p ≤ n− 1. Then

4n
∑

i,j=1

g(Aeiej, Aeiej) = α2
4n
∑

i,j=1

3
∑

k=1

Φ2
k(ei, ej) = α2 · 3 · 4n = 12nα2.

From the O’Neill identities one obtains for submersions with T = 0 the Ricci curvature identity
[Be87, Proposition 9.36]

Ricg(X,Y ) = π∗RicgN (X,Y )− 2

4n
∑

j=1

g(AXej, AY ej).

The Ricci curvature of M is Ricg = 2α(2δ(n+ 2)− 3α)g + 2(α− δ)((2n + 3)α− δ)g|V by [AD20,
Proposition 2.3.3]. Combining both identities we have

scalgN =

4n
∑

i=1

RicgN (π∗ei, π∗ei) =

4n
∑

i=1

Ricg(ei, ei) + 2

4n
∑

i,j=1

g(Aeiej , Aeiej)

= 4n · 2α(2δ(n+ 2)− 3α) + 24nα2 = 16n(n+ 2)αδ.

Remark 2.2.3. In particular, we recover the scalar curvature result gN = 16n(n+ 2) known in the
3-Sasaki case [BG08, Theorem 13.3.13].

3 Construction of non-degenerate homogeneous 3-(α, δ)-Sa-
saki manifolds

For homogeneous 3-(α, δ)-Sasaki manifolds the canonical submersion is invariant. Hence, the base
N is a homogeneous qK space. In the non-degenerate case Theorem 2.2.2 shows that N is a ho-
mogeneous quaternionic Kähler space of non-vanishing scalar curvature. There are two families of
such spaces known: Compact qK symmetric spaces, named Wolf spaces, their non-compact duals
and Alekseevsky spaces. The latter are homogeneous qK spaces admitting a solvable transitive
group action. D. Alekseevsky conjectured that all homogeneous qK spaces with negative scalar
curvature are Alekseevsky spaces [Ale75]. In particular, the class of non-compact qK symmetric
spaces is included in the class of Alekseevsky. We will give independent constructions of homo-
geneous 3-(α, δ)-Sasaki manifolds over the symmetric spaces and afterwards such fibering over
Alekseevsky spaces.

3.1 Homogeneous 3-(α, δ)-Sasaki manifolds over symmetric quaternionic

Kähler spaces

Let G/G0 be a real symmetric space, i.e. g = g0 ⊕ g1 with [gi, gj ] ⊂ gi+j on the level of Lie
algebras. Suppose there exists a subgroup H ⊂ G0 such that g0 splits into a direct sum of
Lie algebras g0 = h ⊕ sp(1). Finally, assume that gC1 = C

2 ⊗C W , for some hC-module W of
dimC W = 2n, and the adjoint action of gC0 is given by

hC ⊕ sp(1)C ∋ (A,B) · ((z1, z2)⊗ w) = B(z1, z2)⊗ w + (z1, z2)⊗Aw,

where sp(1)C = su(2)C = sl(2,C) acts by multiplication on C
2. We will call (G,G0, H) generalized

3-Sasaki data.

Remark 3.1.1. a) For compact G this is called 3-Sasaki data in [DOP18, Definition 12, p. 12].
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b) Consider the homogeneous space M = G/H . The assumptions above imply that g = h ⊕ m

with m = sp(1) ⊕ g1 is a reductive decomposition. We rename the spaces V = sp(1) and
H = g1 to express their role as vertical and horizontal subspaces of a 3-(α, δ)-Sasaki manifold
via TpM ∼= m. For clarity we restate the bracket relations between all these spaces. We have
g = h⊕V⊕H, where h and V are commuting subalgebras. Thus they form the joint subalgebra
h⊕ V = g0 ⊂ g. The full set of commutator relations is

[h, h] ⊂ h [V ,V ] ⊂ V [h,V ] = 0

[h,H] ⊂ H [V ,H] ⊂ H [H,H] ⊂ V ⊕ h.

In particular, both V and H are h-invariant.

c) Since G/G0 is a symmetric space there exists a dual symmetric space G∗/G0 for every gener-
alized 3-Sasaki data (G,G0, H). The Lie algebras can then be identified as

g∗ = h⊕ V ⊕ iH ⊂ gC. (3.1)

It is then clear that (G∗, G0, H) is generalized 3-Sasaki data as well. This yields pairs of
compact and non-compact generalized 3-Sasaki data. For clarity we will denote the compact
top Lie group by G and the non-compact one by G∗.

d) By [DOP18] any 3-Sasaki data gives rise to a homogeneous 3-Sasaki manifold. They were
completely determined in [BGM94] by the fact that they are fiber-bundles over the quaternionic
Kähler base space G/G0. The non-compact G∗ are thus given as the isometry group of the
non-compact quaternionic Kähler symmetric spaces [Be87, p. 409]. Alltogether, we obtain
Table 3.1.

G G
∗

H G0 dim

Sp(n+ 1) Sp(n, 1) Sp(n) Sp(n)Sp(1) 4n+ 3 n ≥ 0

SU(n+ 2) SU(n, 2) S(U(n)×U(1)) S(U(n)×U(2)) 4n+ 3 n ≥ 1

SO(n+ 4) SO(n, 4) SO(n)× Sp(1) SO(n)SO(4) 4n+ 3 n ≥ 3

G2 G2
2 Sp(1) SO(4) 11

F4 F−20
4 Sp(3) Sp(3)Sp(1) 31

E6 E2
6 SU(6) SU(6)Sp(1) 43

E7 E−5
7 Spin(12) Spin(12)Sp(1) 67

E8 E−24
8 E7 E7Sp(1) 115

Table 3.1: Complete table of generalized 3-Sasaki data

Theorem 3.1.1. Consider some generalized 3-Sasaki data (G,G0, H) and 0 6= α, δ ∈ R. Addi-
tionally suppose αδ > 0 if G is compact and αδ < 0 if G is non-compact.

Let κ(X,Y ) = tr(ad(X) ◦ ad(Y )) denote the Killing form on g. Then define the inner product
g on the tangent space TpM = Tp(G/H) ∼= m by

g|V =
−κ

4δ2(n+ 2)
, g|H =

−κ

8αδ(n+ 2)
, V ⊥ H.
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Let ξi = δσi ∈ V = sp(1), where the σi are the elements of sp(1) = su(2) given by

σ1 =

(

i 0
0 −i

)

, σ2 =

(

0 −1
1 0

)

, σ3 =

(

0 −i
−i 0

)

.

Define endomorphisms ϕi ∈ Endh(m) for i = 1, 2, 3 by

ϕi|V =
1

2δ
ad ξi, ϕi|H =

1

δ
ad ξi.

Together with ηi = g(ξi, ·) the collection (G/H,ϕi, ξi, ηi, g) defines a homogeneous 3-(α, δ)-Sasaki
structure.

Before we proceed with the proof, we collect some observations.

Remark 3.1.2. a) In case αδ > 0 the given 3-(α, δ)-Sasaki structure is obtained via aH-homothetic
deformation with parameters a = 1

αδ
, b = 1

δ2
− 1

αδ
, c = 1

δ
from the 3-Sasaki structure given in

[DOP18].

b) Consider a homogeneous 3-(α, δ)-Sasaki manifold (G/H,ϕi, ξi, ηi, g) with αδ > 0 such that
the isotropy group H is connected, i.e. G/H 6= RP

4n+3. Then a H-homothetic deformation
with a = αδ and c = δ induces a homogeneous 3-Sasaki manifold with G/H 6= RP

4n+3 and
thus is given by the model in [DOP18]. By definition of H-homothetic deformations the above
inverse deformation will restore the original objects. Thus, (G/H,ϕi, ξi, ηi, g) is given by the
construction in the theorem.

c) Usually the real representation g1 of h will be irreducible and will only become reducible when
complexified, thus we cannot describe the action of V = sp(1) on H easily, but from the
complexified action we still find that the relations ad ξ2i = −δ2id and ad ξi ◦ ad ξj = ±δad ξk
when (ijk) is an even, resp. odd permutation of (123) hold on H.

d) The Riemannian metric on H is a fixed multiple of the Killing form on g and thus the projection
onto the symmetric orbit space

G/H → G/G0

is a Riemannian submersion. Indeed, this is the canonical submersion obtained in Theorem 2.2.1.

e) The real projective space RP 4n+3 = Sp(n+1)
Sp(n)×Z2

and its non compact dual Sp(n,1)
Sp(n)×Z2

also admit

3-(α, δ)-Sasaki structures. They are obtained as the quotient of S4n+3 = Sp(n+1)
Sp(n) , resp. Sp(n,1)

Sp(n)

by the action of Z2 inside the fiber. Since the action is discrete these spaces cannot be discerned
in the Lie algebra picture. Note that all relevant tensors are invariant under the Z2 action and

thus local results obtained for S4n+3 = Sp(n+1)
Sp(n) , resp. Sp(n,1)

Sp(n) , remain true on RP 4n+3 and its

non compact dual.

f) Since the metric is a multiple of the Killing form and the Killing form is ad-invariant [X, · ] will
be metric if it preserves H and V . This is precisely the case if X ∈ V . For X ∈ H, we compute
with Y ∈ V , Z ∈ H

g([X,Y ], Z) =
−1

8αδ(n+ 2)
κ([X,Y ], Z) =

1

8αδ(n+ 2)
κ(Y, [X,Z]) = − δ

2α
g(Y, [X,Z]).

Thus [X, · ] ∈ so(m) if and only if δ = 2α, i.e. we are in the parallel case. This is exactly the
condition that our homogeneous space is naturally reductive. This can only occur if αδ > 0,
i.e. we are in the positive case.

Proof (of Theorem 3.1.1). If G is compact, κ < 0. If G is of non-compact type, we have κ|V < 0
while κ|H > 0 by (3.1) . Thus, in both cases the given metric g is indeed positive definite.
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Remark 3.1.2 shows tr(ad2ξi|H) = tr(−δ2id|H) = −4nδ2. On V we have

[ξi, [ξi, ξj ]] = ±2δ[ξi, ξk] = −4δ2ξj ,

whenever (ijk) is an even, respectively odd, permutation of (123). Thus, tr(ad2ξi|V) = −8δ2 and
therefore

g(ξi, ξi) =
−tr(ad2ξi)

4δ2(n+ 2)
=

−tr(ad2ξi|H)− tr(ad2ξi|V)
4δ2(n+ 2)

=
8δ2 + 4δ2n

4δ2(n+ 2)
= 1.

On the contrary we have tr(ad ξi ◦ ad ξj |H) = tr(±ad ξk|H) = 0 as its trace on the complexification
vanishes. And similar [ξi, [ξj , ξk]] = 0 if (ijk) is any permutation of (123) or [ξi, [ξj , ξk]] = 4δ2ξj if
i = k 6= j. In any case tr(ad ξi ◦ ad ξj) = 0 and, hence, g(ξi, ξj) = 0 if i 6= j.

Next we check that the endomorphisms ϕi are metric almost complex structures on the com-
plement to ξi. Note that they vanish on their corresponding ξi. Furthermore,

ϕ2
i (ξj) =

1

4δ2
[ξi, [ξi, ξj ]] = −ξj ,

ϕ2
i |H =

1

δ2
ad2ξi|H =

−δ2

δ2
id = −id.

Since H and V are invariant under ϕi we check orthogonality on each component individually. On
H use the associativity of κ to find

κ(ϕiX,ϕiY ) = −κ(X,
1

δ2
ad2ξiY ) = κ(X,Y )

and thus g(ϕiX,ϕiY ) = −κ(ϕiX,ϕiY )
8αδ(n+2) = −κ(X,Y )

8αδ2(n+2) = g(X,Y ). On V we have

g(ϕiξj , ϕiξj′ ) = g(
1

2δ
ad ξi(ξj),

1

2δ
ad ξi(ξj′ )) = g(±ξk,±ξk′) = g(ξj , ξj′ )

if (ijk), (ij′k′) are according permutations of (123) and it vanishes whenever one of them equals i.
Next we check the compatibility conditions of the 3 almost contact metric structures. Suppose

(ijk) is an even permutation of (123) then ϕiξj = ξk and together with the invariance of H under
ϕi we conclude ηi ◦ ϕj = ηk. Further, ϕiϕj |H = 1

δ2
ad ξi ◦ ad ξj |H = 1

δ
ad ξk|H = ϕk|H and on V we

have

ϕiϕjξi =
1

4δ2
[ξi, [ξj , ξi]] = ξj = ϕkξi = ϕkξi + ηj(ξi)ξi,

ϕiϕjξj = 0 = ξi − ξi = ϕkξj − ηj(ξj)ξi,

ϕiϕjξk =
1

4δ2
[ξi, [ξj , ξk]] =

1

2δ
[ξi, ξi] = 0 = ϕkξk + ηj(ξk)ξi.

We have thus shown that the given structure is a homogeneous almost 3-contact metric structure.
It remains to show the 3-(α, δ)-Sasaki condition dηi = 2αΦi + 2(α − δ)ηj ∧ ηk, for any even
permutation (ijk) of (123). We show this case by case. Note that the last summand vanishes
whenever either entry is in H. Let X ∈ H. Then, since ad ξjX ∈ H,

dηi(ξj , X) = ξj(ηi(X))−X(ηi(ξj))− ηi(ad ξjX) = −ηi(ad ξjX) = 0,

2αΦi(ξj , X) = 2αg(ξj , ϕiX) =
2α

δ
g(ξj , ad ξiX) = 0.

For X,Y ∈ H we use associativity of κ

dηi(X,Y ) = X(ηi(Y ))− Y (ηi(X))− ηi([X,Y ]) = −g(ξi, [X,Y ])

=
1

4δ2(n+ 2)
κ(ξi, [X,Y ]) =

−1

4δ2(n+ 2)
κ(ad ξiY,X),

2αΦi(X,Y ) = 2αg(X,ϕiY ) =
2α

δ
g(X, ad ξiY ) =

−2α

8αδ2(n+ 2)
κ(X, ad ξiY )

=
−1

4δ2(n+ 2)
κ(X, ad ξiY ).
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Finally, we have

dηi(ξj , ξk) = ξj(ηi(ξk))− ξk(ηi(ξj))− ηi([ξj , ξk]) = −ηi(2δξi) = −2δ,

2αΦi(ξj , ξk) = 2αg(ξj , ϕiξk) = −2αg(ξj, ξj) = −2α,

2(α− δ)ηi+1 ∧ ηi+2(ξj , ξk) = 2(α− δ) = 2α− 2δ.

(3.2)

3.2 Negative homogeneous 3-(α, δ)-Sasaki manifolds over Alekseevsky

spaces

In order to construct homogeneous 3-(α, δ)-Sasaki manifolds we recall the setup in the unified
construction of Alekseevsky spaces due to V. Cortés [Co00]. Let q ∈ N. Set V = R3,q the real
vector space with signature (3, q). Let Cℓ0(V ) denote the even Clifford algebra over V . Depending
on q mod 4 there exist exactly one or two inequivalent irreducible Cℓ0(V )-modules. Accordingly,
let l ∈ N, if q 6≡ 3 mod 4, or l+, l− ∈ N, if q ≡ 3 mod 4. Then set

g = so(V )⊕ V ⊕ RD ⊕W,

where W is the sum of l equivalent irreducible Cℓ0(V )-modules (or the sum of l+, l− irreducible
Cℓ0(V )-modules if there are two inequivalent ones) and D a derivation with eigenvalue decompo-
sition so(V )⊕ V ⊕W and respective eigenvalues (0, 1, 1/2). The action of so(V ) on V is given by
the standard representation and so(V ) acts on W via the isomorphism so(V ) ∼= spin(V ) ⊂ Cℓ0(V )
e ∧ e′ 7→ − 1

2ee
′ if e, e′ are orthogonal. V commutes with itself and W . Finally the commutators

[W,W ] are given by some non-degenerate so(V )-equivariant map Π: Λ2W → V where so(V ) acts
on W as spin(V ).

Remark 3.2.1. Note that Π is unique up to rescaling along the irreducible summands of W [Co00,
Theorem 5]. This rescaling leads to an isomorphism of the Lie algebras g(Π) and g(Π′) correspond-
ing to two such maps Π and Π′. The isomorphism extends to an isomorphism of the 3-(α, δ)-Sasaki
structures defined later on. Thus, we will ignore the ambiguity in Π from here on.

Notation. On V = R3,q fix an ONB ê1, ê2, ê3, e1, . . . , eq with signature (+,+,+,−, . . . ,−). Then
with the identification so(V ) ∼= Λ2V we also obtain a standard basis of so(V ) given as {êi∧ êj , êi∧
ek, ek ∧ el}i,j=1,2,3

k,l=1,...,3

.

Denote σi = 2êk∧êj for any even permutation (ijk) of (123). Using the identification End(V ) =
V ⊗ V ∗ this implies [σi, êj] = 2êk and [σi, σj ] = 2σk where again (ijk) is an even permutation of
(123).

We further set V = so(3) ⊂ so(3, q), H0 the subspace generated by the elements D and êi + σi

and H1 the subspace generated by e1, . . . , eq ∈ V and ei ∧ êj ∈ so(3, q).

The 4-dimensional spaces H0 and 〈el, el ∧ êj〉 ⊂ H1 will form the quaternionic subspaces inside
so(V )⊕V ⊕RD ⊂ g. Accordingly, we show that they have the only commutators with non-trivial
V-part.

Lemma 3.2.1. The only non-trivial projections on V of commutators are

πV([σi, σj ]) = ±2σk, πV([D, êi + σi]) = −σi, πV([êi + σi, êj + σj ]) = ∓2σk,

πV ([el, êi ∧ el]) = −σi, πV([êi ∧ el, êj ∧ el]) = ±1

2
σk, πV([w1, w2]) = πV(Π(w1, w2))

for all permutations (ijk) of (123) with ± indicating the sign of the permutation, l = 1, . . . , q and
w1, w2 ∈ W .
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Proof. The full list of commutators of basis vectors is

[σi, σj ] = ±2σk, [σi, D] = 0, [êi + σi, êi ∧ el] = el, [σi, êj + σj ] = ±2(êk + σk),

[σi, el] = 0, [σi, êi ∧ el] = 0, [êi ∧ el,W ] = W, [σi, êj ∧ el] = ±2êk ∧ el,

[D, el] = el, [D, êi ∧ el] = 0, [êi ∧ el, êj ∧ em] = 0, [D, êi + σi] = êi = (êi + σi)− σi,

[D,W ] = W, [σi, êi + σi] = 0, [êi + σi,W ] = W, [êi + σi, êj ∧ el] = ±2êk ∧ el,

[σi,W ] = W, [êi + σi, el] = 0, [êi ∧ el, êi ∧ em] = −el ∧ em, [êi ∧ el, êj ∧ el] = −êi ∧ êj = ±1

2
σk

[el, em] = 0, [el,W ] = W, [el, êi ∧ em] = 0, [el, êi ∧ el] = êi = (êi + σi)− σi

and finally

[êi + σi, êj + σj ] = [σi, êj]− [σj , êi] + [σi, σj ] = ±4êk ± 2σk = ±4(êk + σk)∓ 2σk,

where (ijk) is a permutation of (123) with ± indicating the sign of the permutation and l,m =
1, . . . , q with l 6= m. For the commutator [W,W ] we have [w1, w2] = Π(w1, w2) ∈ V ⊂ H0 ⊕H1 ⊕
V .

By [Co00, Proposition 3] the adjoint action g y r = RD ⊕ V ⊕ W ⊂ g is faithful. Thus,
g is a subalgebra g ⊂ der(r). Set G the subgroup G ⊂ Aut(r) with Lie Algebra g. Let h =
so(q) ⊂ so(V ) ⊂ g and H ⊂ G the corresponding connected subgroup. Then both G and H are
closed subgroups of Aut(r). This follows from [Co00, Corollary 3] and the fact that H is closed in
Spin0(V ) ⊂ G. In particular, G/H is a homogeneous space. We now define the desired negative
3-(α, δ)-Sasaki structure on M = G/H .

Theorem 3.2.1. Let α, δ ∈ R with αδ < 0. Let G,H with Lie algebras g, h as above. Then
m = V ⊕H0 ⊕H1 ⊕W is a reductive complement to h in g. Set

ξ1 = δσ1, ξ2 = δσ2, ξ3 = δσ3.

Define the almost complex structures ϕi : m → m on V, H0, H1 and W individually. For any
permutation (ijk) of (123) with signature ± we set

ϕi(σj) = ±σk, ϕi(σi) = 0, (V)
ϕi(2D) = êi + σi, ϕi(êi + σi) = −2D, ϕi(êj + σj) = ±(êk + σk), (H0)

ϕi(el) = 2êi ∧ el, ϕi(2êi ∧ el) = −el, ϕi(êj ∧ el) = ±êk ∧ el, (H1)

ϕi|W = ρ(σi), (W )

where ρ is the Clifford-multiplication on W .
Define a scalar product g[e] by declaring the following vectors to be an orthonormal basis of

V ⊕H0 ⊕H1:

δσi,
√
−4αδD,

√
−αδ(êi + σi),

√
−4αδ êi ∧ el,

√
−αδ el.

On W we set the scalar product

g[e]|W×W (s, t) = (−2αδ)−1b(s, t) := (−2αδ)−1〈êi,Π(ρ(êj êk)s, t)〉,

where 〈, 〉 is the scalar product on V and (ijk) is any even permutation of (123). We set W
orthogonal to V ⊕H0 ⊕H1. Set ηi = g(ξi, · ) the dual to ξi.

Then (G/H, g, ξi, ηi, ϕi) defines a homogeneous 3-(α, δ)-Sasaki manifold.

Proof. We first note that the defined scalar product is positive definite and Spin(q)-invariant. This
is clear on V ⊕H0 ⊕H1 and it is shown for b in [Co00, Theorem 1 and Proposition 9]. Thus, the
scalar product extends to an invariant Riemannian metric on G/H . The invariance under H of
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the ξi is obvious. For an invariant 3-a.c.m. structure, it remains to check that the ϕi are invariant
as well. Spin(q) acts trivial on V ⊕ H0 and on H1 by its adjoint action on el ∈ Rq ⊂ V . On
W it acts by Clifford multiplication with vectors in Rq twice, thus commuting with the Clifford
multiplication defining the almost complex structures on W .

The endomorphisms ϕi are compatible with the metric by definition on V ⊕ H0 ⊕H1 and by
Spin(q) · Spin(3)-invariance of b on W . Next we check the compatibility conditions of the 3 almost
contact structures. Again on V ⊕H0 ⊕H1 this is a direct consequence of the definition and on W
we have

ρ(σi)ρ(σj)w = êk · êj · êi · êk · w = (−1)2êj · êk · êk · êi · w = −êj · êi · w = ρ(σk)w.

Finally we need to check the defining condition dηi = 2αΦi +2(α− δ)ηj ∧ ηk. By bilinearity it
suffices to check it for any pair of two basis vectors individually. On V ×V this is exactly the same
computation as in the 3-(α, δ)-Sasaki structure over symmetric bases (compare (3.2)). Apart from
V × V the equation reduces to dηi = 2αΦi. Note that the left hand side reduces to checking the
commutators. From 3.2.1 and the definition of the ϕi we see that both sides vanish for all mixed
terms regarding the decomposition V ⊕H0 ⊕H1 ⊕W of the tangent space. Similarly on H1 if the
index l of êi ∧ el, respectively el, is not the same both sides vanish. On H0 ×H0 we compute

dηi(D, êi + σi) = −ηi([D, êi + σi]) = −ηi(−σi) =
1

δ
g(δσi, δσi) =

1

δ
,

2αΦi(D, êi + σi) = 2αg(D,ϕi(êi + σi)) =
2α

−2αδ
g(
√
−4αδ D,−

√
−αδ 2D) =

1

δ
.

In similar fashion for the remaining pairs in H0 ×H0 and on H1 ×H1 we have

2

δ
= −ηk(2σk) = dηk(êi + σi, êj + σj) = 2αΦk(êi + σi, êj + σj) =

2

δ
,

1

δ
= −ηi(−σi) = dηi(el, êi ∧ el) = 2αΦi(el, êi ∧ el) =

1

δ
,

1

2δ
= −ηk(−

1

2
σk) = dηk(êi ∧ el, êj ∧ el) = 2αΦk(êi ∧ el, êj ∧ el) =

1

2δ

for any even permutation (ijk) of (123). Finally, we look at W ×W . Let w1, w2 ∈ W and suppose

Π(w1, w2) =
∑q

r=1 arer +
∑3

s=1 âsês. Then

dηi([w1, w2]) = −ηi(Π(w1, w2)) = −ηi

(

q
∑

r=1

arer +

3
∑

s=1

âsês

)

= −ηi

(

3
∑

s=1

âs((ês + σs)− σs)

)

=
âi
δ

and

2αΦi(w1, w2) = 2αg(w1, ϕiw2) =
2α

−2αδ
〈êi,Π(w1, êj êkêj êkw2)〉 =

(−1)32α

−2αδ
〈êi,Π(w1, w2)〉

=
1

δ

〈

êi,

q
∑

r=1

arer +

3
∑

s=1

âsês

〉

=
âi
δ
.

This concludes the proof.

Remark. We try to motivate the definition. Recall that in [Co00] Cortés shows that so(V )⊕V ⊕RD
is isomorphic to a subalgebra of so(4, q + 1) = Λ2(V ⊕ 〈e+, e−〉), e+, e− unit length vectors of
corresponding signature, given by the inclusion

so(V ) 7→ Λ2V, V 7→ V ∧ (e+ − e−), D 7→ e+ ∧ e−.

Now ϕi is modeled on so(V )⊕ V ⊕ RD after the adjoint action with êj ∧ êk + êi ∧ e+ ∈ so(3)+ ⊂
so(3)+ ⊕ so(3)− = so(4) in the known SO(4, q + 1)/SO(q + 1)SO(3) setting. However, this does
not exist as an inner derivative in g unlike int the (semi-) simple case.
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3.3 Examples

We begin with an example of the construction over a symmetric Wolf space.

Example 3.3.1. Our first example is the Aloff-Wallach space W 1,1 = SU(3)/S1 = G/H . In this
case the isotropy algebra h inside g = su(3) is the 1-dimensional space generated by

h =





−i 0 0
0 −i 0
0 0 2i



 .

We locate the space sp(1) = su(2) ⊂ su(3) as the upper left 2-by-2 block. One checks that this is
a splitting of su(3) as necessary. Then for α, δ > 0 the Reeb vector fields are given by

ξ1 = δ





i 0 0
0 −i 0
0 0 0



 , ξ2 = δ





0 −1 0
1 0 0
0 0 0



 , ξ3 = δ





0 −i 0
−i 0 0
0 0 0



 .

On the horizontal subspace we choose a basis vector

ẽ1 =





0 0 1
0 0 0
−1 0 0



 .

Then we normalize it g(ẽ1, ẽ1) =
−6tr(ẽ1·ẽ1)

24αδ = 1
2αδ , i.e. e1 =

√
2αδ · ẽ1 and generate an adapted

basis:

e2 =
√
2αδ





0 0 i
0 0 0
i 0 0



 , e3 =
√
2αδ





0 0 0
0 0 1
0 −1 0



 , e4 =
√
2αδ





0 0 0
0 0 −i
0 −i 0



 .

Example 3.3.2. Next consider the dual negative 3-(α, δ)-Sasaki space SU(2, 1)/S1. We realize
the Lie algebra

su(2, 1) = g∗ = h⊕ sp(1)⊕ iH ⊂ su(3)C

as described in (3.1). Then as for the Aloff-Wallach space we identify the 1-dimensional isotropy
h generated by

h =





−i 0 0
0 −i 0
0 0 2i



 .

Analogously the Reeb vector fields are given by

ξ1 = δ





i 0 0
0 −i 0
0 0 0



 , ξ2 = δ





0 −1 0
1 0 0
0 0 0



 , ξ3 = δ





0 −i 0
−i 0 0
0 0 0



 .

On the horizontal subspace we choose

ẽ∗1 = iẽ1 =





0 0 i
0 0 0
−i 0 0



 ⊂ iH.

We have

g(ẽ∗1, ẽ
∗
1) =

−i2

24αδ
κ(ẽ1, ẽ1) = − 1

2αδ
.

Thus we find an adapted base of SU(2, 1)/S1 by e∗1 = i
√
−2αδẽ1 and

e∗2 =
√
−2αδ





0 0 −1
0 0 0
−1 0 0



 , e∗3 =
√
−2αδ





0 0 0
0 0 i
0 −i 0



 , e∗4 =
√
−2αδ





0 0 0
0 0 1
0 1 0



 .
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We now discuss the lowest dimensional example T̂ (1) of a negative homogeneous 3-(α, δ)-Sasaki
manifold fibering over Alekseevsky space T (1) not obtained by the construction over symmetric
spaces.

Dimension parameters g h alternative description

7 q = 0, l = 0 so(3)⊕ R3 ⊕ RD 0 Sp(1, 1)/Sp(1)

11
q = 0, l = 1 so(3)⊕ R3 ⊕ RD ⊕W0 0 Sp(2, 1)/Sp(2)

q = 1, l = 0 so(3, 1)⊕ R
3,1 ⊕ RD 0 SU(2, 2)/S(U(2)×U(1))

15

q = 0, l = 2 so(3)⊕ R3 ⊕ RD ⊕ 2W0 0 Sp(3, 1)/Sp(3)

q = 1, l = 1 so(3, 1)⊕ R3,1 ⊕ RD ⊕W1 0 SU(3, 2)/S(U(3)×U(1))

q = 2, l = 0 so(3, 2)⊕ R3,2 ⊕ RD so(2) SO0(3, 4)/SO(3)× SO(3)

19

q = 0, l = 3 so(3)⊕ R3 ⊕ RD ⊕ 3W0 0 Sp(4, 1)/Sp(4)

q = 1, l = 2 so(3, 1)⊕ R
3,1 ⊕ RD ⊕ 2W1 0 SU(4, 2)/S(U(4)×U(1))

q = 2, l = 1 so(3, 2)⊕ R3,2 ⊕ RD ⊕W2 so(2) T̂ (1) non symmetric base

q = 3, l = 0 so(3, 3)⊕ R
3,3 ⊕ RD so(3) SO0(4, 4)/SO(4)× SO(3)

Table 3.2: 3-(α, δ)-Sasaki manifolds over Alekseevsky spaces of dim ≤ 19, see Remark 3.3.1.

Remark 3.3.1. The first new example arising from the construction over Alekseevsky spaces ap-
pears only in dimension 19. Table 3.2 lists all homogeneous 3-(α, δ)-Sasaki manifolds obtained by
Theorem 3.2.1 up to dimension 19 and, if existing, the isomorphic ones appearing in Table 3.1, i.e.
obtained by Theorem 3.1.1 over non-compact symmetric spaces. The list gets more intricate with
higher dimension, in particular, there appear two inequivalent even Clifford modules for q = 3
beginning in dim 27 and for q ≥ 4 we have dimWq > 4. Further, observe that the symmetric base

cases SU(2, 1)/U(1), G
(2)
2 /SO(3) are not obtained by this construction.

We now give more concrete descriptions of the Cℓ0(3, q)-modules Wq for q = 0, 1, 2. Note that
there are choices to be made though these lead to isomorphisms of the modules since all these
modules are unique. Let R3,q = 〈e1̂, e2̂, e3̂, e1, . . . , eq〉, where eî have signature +1 while ei have
signature −1. Then we have Cℓ0(3, 0) = H, Cℓ0(3, 1) = M2(C), Cℓ

0(3, 2) = M4(R) realized as
follows. Table 3.3 lists the cases q = 0 and q = 1, while Table 3.4 is devoted to the case q = 2.

q = 0 deg 0 : [ 1 ] +1

deg 2 : e1̂2̂ = [ i ], e2̂3̂ = [ j ], e3̂1̂ = [ k ] −1

q = 1 deg 0 : [ 1 1 ] +1

deg 2 : e1̂2̂ =
[

i
−i

]

, e2̂3̂ = [ i
i ], e3̂1̂ =

[

−1
1

]

−1

e3̂1 =
[

1
−1

]

, e1̂1 = [ 1
1 ], e2̂1 =

[

i
−i

]

+1

deg 4 : e1̂2̂3̂1 = [ i i ] −1

Table 3.3: Choice of Cℓ0(3, q)-representations for q = 0 and q = 1
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The notation is as follow: We denote elements eij = eiej ∈ Cℓ0(V ) and analogous for the
action of elements in Cℓ0(V ) of higher degree. The last line denotes the square of elements in the
respective row, which are invariant of choices unlike the matrices itself .

deg 0 :

[

1
1
1
1

]

+1

deg 2 : e1̂2̂ =

[

−1
1

1
−1

]

, e2̂3̂ =

[

−1
1

−1
1

]

, e3̂1̂ =

[

−1
−1

1
1

]

, e12 =

[

1
−1

−1
1

]

−1

e3̂1 =

[

1
1
−1

−1

]

, e1̂1 =

[

1
1

1
1

]

, e2̂1 =

[

−1
1

1
−1

]

, e3̂2 =

[

1
−1

1
−1

]

+1

e1̂2 =

[

−1
1
1
−1

]

, e2̂2 =

[ −1
−1

−1
−1

]

deg 4 : e1̂2̂3̂1 =

[

−1
1

−1
1

]

, e1̂2̂3̂2 =

[

1
1

−1
−1

]

−1

e1̂2̂12 =

[

1
1

1
1

]

, e2̂3̂12 =

[

−1
−1

1
1

]

, e3̂1̂12 =

[

1
−1

1
−1

]

+1

Table 3.4: Choice of Cℓ0(3, q)-representations for q = 2

With this we can find the map Π: Λ2W2 → R3,2.

Theorem 3.3.1. Setting W2
∼= R4 = 〈E1, E2, E3, E4〉 with the spin(3, 2)-module structure above

the map Π: Λ2W2 → R3,2 given by

Π(E1 ∧ E2) = −ê3 − e1, Π(E1 ∧E3) = −ê2, Π(E1 ∧E4) = −ê1 + e2,

Π(E2 ∧ E3) = ê1 + e2, Π(E4 ∧ E2) = ê2, Π(E3 ∧ E4) = ê3 − e1

is spin(3, 2)-invariant and non-degenerate.

Recall that the action of so(3, q) on the Cℓ0(3, q)-module W , and thereby W ∧W , is given by the
isomorphism ad−1 : so(3, q) → spin(3, q) = Cℓ0(3, q), ei∧ej 7→ − 1

2eij , where i, j ∈ {1̂, 2̂, 3̂, 1, . . . , q}.

Proof. Non-degeneracy is clear. It suffices to check the invariance on a generating set of Cℓ0(3, 2).
One such set is given by e1̂2̂, e2̂3̂, e1̂1, e12. Each of these map certain subspaces of W2 onto one
another, hence their action on the exterior product of these subspaces vanishes. This yields the
identities

−2ê1 ∧ ê2(ê3 ± e1) = 0 = Π(e1̂2̂(E1 ∧ E2)) = Π(e1̂2̂(E3 ∧ E4)),

−2ê2 ∧ ê3(ê1 ± e2) = 0 = Π(e2̂3̂(E1 ∧ E4)) = Π(e2̂3̂(E2 ∧ E3)),

−2ê1 ∧ e1(ê2) = 0 = Π(e1̂1(E1 ∧ E3)) = Π(e1̂1(E4 ∧ E2)),

−2e1 ∧ e2(ê2) = 0 = Π(e12(E1 ∧ E3)) = Π(e12(E4 ∧ E2)).
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The rest is just more computations. We start with e1̂2̂:

Π(e1̂2̂(E1 ∧E3)) = Π(E2 ∧ E3) + Π(E1 ∧ −E4) = ê1 + e2 + ê1 − e2 = 2ê1

= −2ê1 ∧ ê2(−ê2) = −2ê1 ∧ ê2(Π(E1 ∧ E3)),

Π(e1̂2̂(E1 ∧E4)) = Π(E2 ∧ E4) + Π(E1 ∧ E3) = −ê2 − ê2 = −2ê2

= −2ê1 ∧ ê2(−ê1 + e2) = −2ê1 ∧ ê2(Π(E1 ∧ E4)),

Π(e1̂2̂(E2 ∧E3)) = Π(−E1 ∧ E3) + Π(E2 ∧ −E4) = ê2 + ê2 = 2ê2

= −2ê1 ∧ ê2(ê1 + e2) = −2ê1 ∧ ê2(Π(E2 ∧ E3)),

Π(e1̂2̂(E4 ∧E2)) = Π(E3 ∧ E2) + Π(E4 ∧ −E1) = −ê1 − e2 − ê1 + e2 = −2ê1

= −2ê1 ∧ ê2(ê2) = −2ê1 ∧ ê2(Π(E4 ∧ E2)).

For e2̂3̂:

Π(e2̂3̂(E1 ∧ E2)) = Π(E4 ∧ E2) + Π(E1 ∧−E3) = ê2 + ê2 = 2ê2

= −2ê2 ∧ ê3(−ê3 − e1) = −2ê2 ∧ ê3(Π(E1 ∧ E2)),

Π(e2̂3̂(E1 ∧ E3)) = Π(E4 ∧ E3) + Π(E1 ∧E2) = −ê3 + e1 − ê3 − e1 = −2ê3

= −2ê2 ∧ ê3(−ê2) = −2ê2 ∧ ê3(Π(E1 ∧ E3)),

Π(e2̂3̂(E4 ∧ E2)) = Π(−E1 ∧E2) + Π(E4 ∧ −E3) = ê3 + e1 + ê3 − e1 = 2ê3

= −2ê2 ∧ ê3(ê2) = −2ê2 ∧ ê3(Π(E4 ∧ E2)),

Π(e2̂3̂(E2 ∧ E4)) = Π(E3 ∧ E2) + Π(E3 ∧−E1) = −ê2 − ê2 = −2ê2

= −2ê2 ∧ ê3(ê3 − e1) = −2ê2 ∧ ê3(Π(E3 ∧ E4)).

For e1̂1:

Π(e1̂1(E1 ∧ E2)) = Π(E3 ∧ E2) + Π(E1 ∧E4) = −ê1 − e2 − ê1 + e2 = −2ê1

= −2ê1 ∧ e1(−ê3 − e1) = −2ê1 ∧ e1(Π(E1 ∧ E2)),

Π(e1̂1(E1 ∧ E4)) = Π(E3 ∧ E4) + Π(E1 ∧E2) = ê3 − e1 − ê3 − e1 = −2e1

= −2ê1 ∧ e1(−ê1 + e2) = −2ê1 ∧ e1(Π(E1 ∧ E4)),

Π(e1̂1(E2 ∧ E3)) = Π(E4 ∧ E3) + Π(E2 ∧E1) = −ê3 + e1 + ê3 + e1 = 2e1

= −2ê1 ∧ e1(ê1 + e2) = −2ê1 ∧ e1(Π(E2 ∧ E3)),

Π(e1̂1(E3 ∧ E4)) = Π(E1 ∧ E4) + Π(E3 ∧E2) = −ê1 + e2 − ê1 − e2 = −2ê1

= −2ê1 ∧ e1(ê3 − e1) = −2ê1 ∧ e1(Π(E3 ∧ E4)).

And finally for e12:

Π(e12(E1 ∧E2)) = Π(−E3 ∧ E2) + Π(E1 ∧ E4) = ê1 + e2 − ê1 + e2 = 2e2

= −2e1 ∧ e2(−ê3 − e1) = −2e1 ∧ e2(Π(E1 ∧ E2)),

Π(e12(E1 ∧E4)) = Π(−E3 ∧ E4) + Π(E1 ∧ −E2) = −ê3 + e1 + ê3 + e1 = 2e1

= −2e1 ∧ e2(−ê1 + e2) = −2e1 ∧ e2(Π(E1 ∧ E4)),

Π(e12(E2 ∧E3)) = Π(E4 ∧ E3) + Π(E2 ∧ E1) = −ê3 + e1 + ê3 + e1 = 2e1

= −2e1 ∧ e2(ê1 + e2) = −2e1 ∧ e2(Π(E2 ∧ E3)),

Π(e12(E3 ∧E4)) = Π(E1 ∧ E4) + Π(E3 ∧ −E2) = −ê1 + e2 + ê1 + e2 = 2e2

= −2e1 ∧ e2(ê3 − e1) = −2e1 ∧ e2(Π(E3 ∧ E4)).

To display the algebra g with q = 2, l = 1 corresponding to T̂ (1) = G/H we use the inclusion
g ⊂ der(r) ⊂ gl(R3,2 ⊕ RD ⊕ W2). We give these elements as matrices with respect to the basis
ê1, ê2, ê3, e1, e2, D,E1, E2, E3, E4 of r.

Recall g = so(3, 2)⊕ R3,2 ⊕ RD ⊕W2. We begin with so(3, 2):
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2ê1 ∧ ê2 =













0 2 0
−2 0 0

0 0
0 0
0 0

0 0 0 0 0 0 0 0 0 0
0 0 1
0 −1 0
0 0 1
0 −1 0













, 2ê3 ∧ ê1 =













0 −2 0
0 0

2 0 0
0 0
0 0

0 0 0 0 0 0 0 0 0 0
0 1 0
0 0 1
0 −1 0
0 0 −1













,

2ê2 ∧ ê3 =













0 0
0 2 0
−2 0 0

0 0
0 0

0 0 0 0 0 0 0 0 0 0
0 0 1
0 −1 0
0 0 1
0 −1 0













,

2ê1 ∧ e1 =













0 −2 0
0 0
0 0

−2 0 0
0 0

0 0 0 0 0 0 0 0 0 0
0 −1 0
0 0 −1
0 −1 0
0 0 −1













, 2ê1 ∧ e2 =













0 −2 0
0 0
0 0
0 0

−2 0 0
0 0 0 0 0 0 0 0 0 0

0 1 0
0 0 −1
0 −1 0
0 0 1













,

2ê2 ∧ e1 =













0 0
0 −2 0

0 0
−2 0 0

0 0
0 0 0 0 0 0 0 0 0 0

0 0 1
0 −1 0
0 0 −1
0 1 0













, 2ê2 ∧ e2 =













0 0
0 −2 0

0 0
0 0

−2 0 0
0 0 0 0 0 0 0 0 0 0

0 0 1
0 1 0
0 0 1
0 1 0













,

2ê3 ∧ e1 =













0 0
0 0

0 −2 0
−2 0 0

0 0
0 0 0 0 0 0 0 0 0 0

0 −1 0
0 0 −1
0 1 0
0 0 1













, 2ê3 ∧ e2 =













0 0
0 0

0 −2 0
0 0

−2 0 0
0 0 0 0 0 0 0 0 0 0

0 −1 0
0 0 1
0 −1 0
0 0 1













,

2e1 ∧ e2 =













0 0
0 0
0 0
0 −2 0
2 0 0

0 0 0 0 0 0 0 0 0 0
0 −1 0
0 0 1
0 1 0
0 0 −1













.

Recall that 2e1 ∧ e2 generates the isotropy algebra h.
Next we describe the element 2D:

2D =











2 0
2 0
2 0
2 0
2 0

0 0 0 0 0 0 0 0 0 0
0 1
0 1
0 1
0 1











.

The generators of V = R3,2 are:

ê1 =













−1
0
0
0
0

0 0 0 0 0 0 0 0 0 0
0
0
0
0













, ê2 =













0
−1
0
0
0

0 0 0 0 0 0 0 0 0 0
0
0
0
0













, ê3 =













0
0
−1
0
0

0 0 0 0 0 0 0 0 0 0
0
0
0
0













,

e1 =













0
0
0
−1
0

0 0 0 0 0 0 0 0 0 0
0
0
0
0













, e2 =













0
0
0
0
−1

0 0 0 0 0 0 0 0 0 0
0
0
0
0













.
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Finally we have the 4 basis elements of W2:

2E1 =













0 −2
0 −2
0 −2
0 2
0 2

0 0 0 0 0 0 0 0 0 0
−1
0
0
0













, 2E2 =













0 2
0 −2
0 2
0 2
0 2

0 0 0 0 0 0 0 0 0 0
0
−1
0













2E3 =













0 −2
0 2
0 2
0 −2
0 −2

0 0 0 0 0 0 0 0 0 0
0
0
−1
0













, 2E4 =













0 2
0 2
0 −2
0 2
0 −2

0 0 0 0 0 0 0 0 0 0
0
0
0
−1













4 Nomizu maps of homogeneous 3-(α, δ)-Sasaki manifolds

4.1 Nomizu map of the canonical connection

By the Nomizu theorem invariant connections on reductive homogeneous spaces M = G/H are in
bijective correspondence with isotropy equivariant maps Λ: m × m → m, where m is a reductive
complement to the isotropy algebra h ⊂ g. For fundamental vector fields X,Y considered as
elements in m this correspondence is given by Λ∇

XY = ∇X0
Y − [X,Y ]0, compare [KN69, Corollary

2.2, p.191]. By [KN69, Proposition X.2.3, p. 191] the torsion T∇ of the connection corresponding
to Λ∇ is given by

T∇(X,Y ) = Λ∇
XY − Λ∇

Y X − [X,Y ]m. (4.1)

Theorem 4.1.1. The Nomizu map for the canonical connection Λ∇ : m×m → m of a homogeneous
3-(α, δ)-Sasaki manifold with m = V ⊕H is given by

Λ∇
XY =



















ΛgN
X Y X, Y ∈ H

β
2δ [X,Y ] X,Y ∈ V
[X,Y ]− 2α

∑3
i=1 ηi(X)ϕiY X ∈ V , Y ∈ H

0 X ∈ H, Y ∈ V ,

where ΛgN : H×H → H is the Nomizu map of the Levi-Civita connection on the homogeneous base
of the canonical submersion.

Proof. We first prove that the torsion of Λ∇ given by (4.1) agrees with the canonical torsion

T∇ = 2α
3
∑

i=1

ηi ∧ ΦH
i + 2(δ − 4α)η123.

We begin with the case X,Y ∈ H. Then by Lemma 1.2.1 we find

Λ∇
XY − Λ∇

Y X − [X,Y ] = ΛgN
X Y − ΛgN

Y X − [X,Y ]H − [X,Y ]V

= T gN (X,Y ) + 2α

3
∑

i=1

Φi(X,Y )ξi = 0+ 2α

3
∑

i=1

Φi(X,Y )ξi = T∇(X,Y )

as the torsion T gN = 0 of the Levi-Civita connection on the base vanishes. Suppose now that
X = ξi and Y ∈ H. Then

Λ∇
XY − Λ∇

Y X − [X,Y ] = [X,Y ]− 2αϕiY − [X,Y ] = −2αϕiY = T∇(X,Y ).
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Finally if both X = ξi, Y = ξj ∈ V and (ijk) an even permutation of (123) we have

Λ∇
XY − Λ∇

Y X − [X,Y ] =
β

2δ
[X,Y ]− β

2δ
[Y,X ]− [X,Y ] = (2− 4α

δ
− 1)[ξi, ξj ]

= (1− 4α

δ
)2δξk = T∇(X,Y ).

We further need to verify that Λ∇
X ∈ so(m) for all X ∈ m, that is g(λ∇

XY, Z) + g(Y,Λ∇
XZ) = 0 for

all Y, Z ∈ m. Suppose X ∈ H and Y, Z ∈ H. Then Λ∇
X = ΛgN

X and g|H = gN thus Λ∇
X is metric as

ΛgN
X is. If Y ∈ V and Z ∈ H we find that Λ∇

XY = 0 by definition while Λ∇
XZ ∈ H is orthogonal

to Y . Analogously, if Y, Z ∈ V the Nomizu map Λ∇
X acts trivially on both sides. Now suppose

X ∈ V . Then by [AD20, Corollary 2.3.1] X is Killing as a linear combination of the ξi and thus
the Lie derivative LX ∈ so(m). In particular, if Y, Z ∈ V then Λ∇

XY = β
2δLXY is metric. If Y ∈ H

we have

g(Λ∇
XY, Z) = g(LXY − 2α

∑

ηi(X)ϕiY, Z) = −g(Y, LXZ − 2α
∑

ηi(X)ϕiZ).

If Z ∈ H the right hand side is just −g(Y,Λ∇
XZ) by definition while for Z ∈ V

LXZ − 2α
∑

ηi(X)ϕiZ ∈ V

is perpendicular to Y . Hence, g(Λ∇
XY, Z) = 0 = −g(Y,Λ∇

XZ).

Remark 4.1.1. For symmetric spaces the Levi-Civita connection corresponds to the trivial Nomizu
map ΛgN = 0. The Nomizu map of the Alekseevsky base is given in [Co00, Lemma 5, p. 35].

4.2 Nomizu maps in the symmetric base case

In the case of a positive homogeneous 3-(α, δ)-Sasaki manifold or its non-compact sibling the
Nomizu map Λ∇ simplifies drastically.

Proposition 4.2.1. The canonical connection ∇ of a homogeneous 3-(α, δ)-Sasaki manifold over
a Wolf space or its non-compact dual corresponds to the map

Λ∇
X =

{

0, X ∈ H
β
2δadX, X ∈ V .

Proof. In the case of a Riemannian symmetric space the Levi–Civita connection agrees with the
Ambrose–Singer connection. Thus, ΛgN ≡ 0. Now let X ∈ V and Y ∈ H. Then

2α

3
∑

i=1

ηi(X)ϕi|H =
2α

δ

3
∑

i=1

ηi(X)ad ξi =
2α

δ
adX.

It follows Λ∇
XY = (1− 2α

δ
)[X,Y ] = β

2δ [X,Y ].

Remark 4.2.1. As noted in Remark 3.1.2 the homogeneous 3-(α, δ)-Sasaki space is naturally re-
ductive if and only if β = 0. In this case the Ambrose-Singer connection is metric. In fact,
Proposition 4.2.1 shows that in this case the canonical and Ambrose-Singer connections agree.

Proposition 4.2.2. The Levi–Civita connection corresponds to the map

Λg
XY =











1
2 [X,Y ]m X,Y ∈ V or X,Y ∈ H
(1− α

δ
)[X,Y ] X ∈ V , Y ∈ H

α
δ
[X,Y ] X ∈ H, Y ∈ V .
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Proof. Note that the correspondance is Λ∇
XY = ∇XY − [X,Y ], for X,Y ∈ m, and the canonical

connection is given by ∇ = ∇g + 1
2T where the canonical torsion is given by (1.3), or equivalently

(1.4). Thus we have Λg
XY = ∇g

XY − [X,Y ] = ∇XY − [X,Y ] − 1
2T (X,Y ) = Λ∇

XY − 1
2T (X,Y ).

Again we look at each case individually. Let X,Y ∈ H. Then

1

2
T (X,Y ) = α

3
∑

i=1

Φi(X,Y )ξi = α

3
∑

i=1

g(X,ϕiY )ξi

=
α

δ

3
∑

i=1

g(X, [ξi, Y ])ξi =
α

8αδ2(n+ 2)

3
∑

i=1

κ(X, [Y, ξi])ξi

=
1

8δ2(n+ 2)

3
∑

i=1

κ([X,Y ], ξi)ξi

= −1

2

3
∑

i=1

g([X,Y ]m, ξi)ξi = −1

2
[X,Y ]m,

where we have used that κ(h,V) = 0 and [X,Y ]m ∈ V = span{ξ1, ξ2, ξ3}. Thus

Λg
XY = Λ∇

XY − 1

2
T (X,Y ) =

1

2
[X,Y ]m

For vertical vectors X = ξi, Y = ξj , (ijk) an even permutation of (123), we find

Λg
ξi
ξj = Λ∇

ξi
ξj − (δ − 4α)η123(ξi, ξj , ·) =

β

2δ
[ξi, ξj ]− (δ − 4α)ξk

= βξk + (δ − 4α)ξk = δξk = [ξi, ξj ]

and by linearity for arbitrary X,Y ∈ V . Let X ∈ V , Y ∈ H then

T (X,Y ) = 2α

3
∑

i=1

ηi ∧ ΦH
i (X,Y, · ) = 2α

3
∑

i=1

ηi(X)ΦH
i (Y, · )

= −2α

3
∑

i=1

ηi(X)ϕiY = −2α

δ

[

3
∑

i=1

ηi(X)ξi, Y

]

= −2α

δ
[X,Y ]

and thus

Λg
XY = Λ∇

XY − 1

2
T (X,Y ) = (1− 2α

δ
)[X,Y ] +

α

δ
[X,Y ] = (1 − α

δ
)[X,Y ].

For the final expression X ∈ H, Y ∈ V use the above identity for T with X ↔ Y . Then

Λg
XY = Λ∇

XY − 1

2
T (X,Y ) =

1

2
T (Y,X) =

α

δ
[X,Y ].

The Nomizu maps allow for a detailed investigation of homogeneous 3-(α, δ)-Sasaki manifolds.
A thorough discussion of curvature operators and properties will be carried out in an upcoming
publication [ADS21].
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