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Abstract. It is well-known that 7-dimensional 3-Sasakian manifolds carry a one-
parametric family of compatible G2-structures and that they do not admit a charac-
teristic connection. In this note, we show that there is nevertheless a distinguished
cocalibrated G2-structure in this family whose characteristic connection ∇

c along
with its parallel spinor field Ψ0 can be used for a thorough investigation of the geo-
metric properties of 7-dimensional 3-Sasakian manifolds. Many known and some new
properties can be easily derived from the properties of ∇

c and of Ψ0, yielding thus
an appropriate substitute for the missing characteristic connection.

1. Introduction

3-Sasakian manifolds have been studied by the Japanese school in Differential Geom-
etry decades ago [14]. They are Einstein spaces of positive scalar curvature carry-
ing three compatible orthogonal Sasakian structures. In the middle of the 80-ties, a
relation between 3-Sasakian manifolds and the spectrum of the Dirac operator was
discovered [10], [11]. Indeed, they admit three Riemannian Killing spinors, which real-
ize the lower bound for the eigenvalues of the Dirac operator [6]. Seven-dimensional,
regular 3-Sasakian manifolds are classified in [10]. In the 90-ties, many new fami-
lies of non-regular 3-Sasakian manifolds have been constructed specially in dimension
seven [4]. This dimension is important because the exceptional Lie group G2 admits
a 7-dimensional representation and any 3-Sasakian-structure on a Riemannian mani-
fold induces a family of adapted, non-integrable G2-structures. A deformation of one
of these G2-structures—we call it the canonical G2-structure—yields examples of 7-
dimensional Riemannian manifolds with precisely one Killing spinor [12]. The whole
family of underlying G2-structures has been investigated from the viewpoint of spin
geometry in [2], section 8. In particular, they are solutions of type II string theory with
4-fluxes (see [1] for more background and motivation).

We will show that the canonical G2-structure of a 3-Sasakian manifold is cocalibrated.
Consequently, there exists a unique connection with totally skew-symmetric torsion
preserving it, see [8], [9]. The aim of this note is to study this characteristic connection
∇c as well as the corresponding ∇c-parallel spinor field Ψ0. This point of view allows
us to prove many properties of 3-Sasakian manifolds in a unified way. For example,
the Riemannian Killing spinors are the Clifford products of the canonical spinor Ψ0 by
the three unit vectors defining the 3-Sasakian structure: in this sense, the ∇c-parallel
spinor field Ψ0 is more fundamental than the Killing spinors. Finally we study the
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spinorial field equations and the deformations of the canonical G2-structure in more
detail.

2. 3-Sasakian manifolds in dimension seven

A 7-dimensional Sasakian manifold is a Riemannian manifold (M7, g) equipped with a
contact form η, its dual vector field ξ as well as with an endomorphism ϕ : TM7 → TM7

such that the following conditions are satisfied:

η ∧ (dη)3 6= 0, η(ξ) = 1, g(ξ, ξ) = 1,

g(ϕX,ϕY ) = g(X,Y ) − η(X) · η(Y ), ϕ2 = −Id + η ⊗ ξ,

∇g
Xξ = −ϕX, (∇g

Xϕ)(Y ) = g(X,Y ) · ξ − η(Y ) · X.

These conditions imply several further relations, for example

ϕξ = 0, η ◦ ϕ = 0, dη(X,Y ) = 2 · g(X,ϕY ).

A 7-dimensional 3-Sasakian manifold is a Riemannian manifold (M7, g) equipped with
three Sasakian structures (ξα, ηα, ϕα), α = 1, 2, 3, such that

[ξ1 , ξ2] = 2 ξ3, [ξ2 , ξ3] = 2 ξ1, [ξ3 , ξ1] = 2 ξ2

and

ϕ3 ◦ ϕ2 = −ϕ1 + η2 ⊗ ξ3, ϕ2 ◦ ϕ3 = ϕ1 + η3 ⊗ ξ2,

ϕ1 ◦ ϕ3 = −ϕ2 + η3 ⊗ ξ1, ϕ3 ◦ ϕ1 = ϕ2 + η1 ⊗ ξ3,

ϕ2 ◦ ϕ1 = −ϕ3 + η1 ⊗ ξ2, ϕ1 ◦ ϕ2 = ϕ3 + η2 ⊗ ξ1.

The vertical subbundle Tv ⊂ TM7 is spanned by ξ1, ξ2, ξ3, its orthogonal complement
is the horizontal subbundle Th. Both subbundles are invariant under ϕ1, ϕ2, ϕ3.

The properties as well as examples of Sasakian and 3-Sasakian manifolds are the topic
of the book [4]. 3-Sasakian manifolds are always Einstein with scalar curvature R = 42.
If they are complete, they are compact with finite fundamental group. Therefore we
shall always assume that M7 is compact and simply-connected. The frame bundle
has a topological reduction to the subgroup SU(2) ⊂ SO(7). In particular, M7 is a
spin manifold. Moreover, there exists locally an orthonormal frame e1, . . . , e7 such that
e1 = ξ1, e2 = ξ2, e3 = ξ3 and the endomorphisms ϕα acting on the horizontal part
Th := Lin(e4, e5, e6, e7) of the tangent bundle are given by the following matrices

ϕ1 :=









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0









, ϕ2 :=









0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0









, ϕ3 :=









0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0









.

We will identify vector fields with 1-forms via the Riemannian metric, thus obtaining a
coframe η1, η2, . . . , η7, and shall use throughout the abbreviation ηij... := ηi ∧ ηj ∧ . . ..
In this frame, we compute the differentials dηα,

dη1 = − 2 (η23 + η45 + η67),

dη2 = 2 (η13 − η46 + η57),

dη3 = − 2 (η12 + η47 + η56).

Each of the three Sasaki structures on M7 admits a characteristic connection, i. e. a
metric connection with antisymmetric torsion; however, this torsion is well-known to
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be ηi ∧ dηi [8, Thm 8.2], and these do not coincide for i = 1, 2, 3. Thus, a 3-Sasakian
manifold has no characteristic connection [1, §2.6].

3. The canonical G2-structure of a 3-Sasakian manifold

Consider the following 3-forms,

F1 := η1 ∧ η2 ∧ η3 , F2 :=
1

2

(

η1 ∧ dη1 + η2 ∧ dη2 + η3 ∧ dη3

)

+ 3η1 ∧ η2 ∧ η3.

Then

ω := F1 + F2 = η123 − η145 − η167 − η246 + η257 − η347 − η356

is a generic 3-form defined globally on M7. It induces a G2-structure on M7.

Definition 3.1. The 3-form ω = F1 + F2 is called the canonical G2-structure of the
7-dimensional 3-Sasakian manifold.

We investigate now the type of this canonical G2-structure from the point of view of
G2-geometry [5], [8]. It is basically described by the differential of the G2-structure ω.
We compute directly [12]

dF1 = 2 · (∗F2), dF2 = 12 · (∗F1) + 2 · (∗F2) , d ∗ F1 = d ∗ F2 = 0.

In particular, the canonical G2-structure is cocalibrated. Equivalently, it is of type
W1 ⊕W3 = Λ3

1 ⊕ Λ3
27 in the Fernandez/Gray notation, see [5], [8], [9],

d ∗ ω = 0, ∗dω = 4 (3F1 + F2).

There exists a unique connection ∇c preserving the G2-structure with totally skew-
symmetric torsion Tc [8], [9]. For a cocalibrated G2-structure ω this characteristic

torsion form Tc is given by the formula

Tc = − ∗ dω +
1

6
(dω, ∗ω) · ω.

We express the characteristic torsion by the data of the 3-Sasakian structure,

Tc = −6F1 + 2F2 = η1 ∧ dη1 + η2 ∧ dη2 + η3 ∧ dη3 = 2ω − 8F1.

Thus, we see that Tc is the sum of the three characteristic torsion forms of the Sasakian
structures ηi.

Let us decompose the characteristic torsion Tc = Tc
1 + Tc

27 into the W1 = Λ3
1- and the

W3 = Λ3
27 -part , respectively. Then we obtain

Tc
1 =

6

7
(F1 + F2) =

6

7
ω, Tc

27 =
8

7
(F2 − 6F1).

In particular, the canonical G2-structure of a 3-Sasakian manifold is never of pure type
W1 or W3.

We will now prove that the canonical G2-structure has parallel characteristic torsion,
∇cTc = 0, and realizes one type of cocalibrated G2-structures with characteristic ho-
lonomy contained in the maximal, six-dimensional subalgebra su(2) ⊕ suc(2) of g2 [7].
Later, we shall see that its holonomy algebra coincides with su(2) ⊕ suc(2).
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Theorem 3.1. The canonical G2-structure ω of a 7-dimensional 3-Sasakian manifold

is cocalibrated, d ∗ ω = 0. Its characteristic torsion is given by the formula

Tc = − ∗ dω + 6ω.

Moreover, we have (dω, ∗ω) = 36, |Tc|2 = 60 and

d ∗ Tc = 0, dTc = − 4 ∗ Tc, dω =
1

2
d ∗ dω − 12 ∗ ω.

The characteristic connection preserves the splitting TM7 = Tv ⊕ Th and the charac-

teristic torsion is ∇c-parallel, ∇cTc = 0.

Proof. Since ξ1 is a Killing vector field, we have

∇g
Xη1 =

1

2
X dη1.

Then we obtain

∇c
Xη1 = ∇g

Xη1 +
1

2
Tc(X, η1,−) =

1

2
X dη1 − 1

2
X (η1 Tc) .

The formula Tc = η1 ∧ dη1 + η2 ∧ dη2 + η3 ∧ dη3 yields directly

η1 Tc = dη1 + (η1 dη2) ∧ η2 + (η1 dη3) ∧ η3.

Moreover, the formulas for the differential dηα imply that

η1 dη2 = 2 η3, η1 dη3 = − 2 η2

holds. Thus we obtain

∇c
Xη1 = 2X (η2 ∧ η3),

i. e. ∇c preserves the subbundle Tv. Finally we have

(∇c
Xη1) ∧ η2 ∧ η3 = 0

and then ∇c(η1 ∧η2∧η3) = 0. Since Tc = 2ω−8 η1∧η2∧η3 and ∇cω = 0 we conclude
that ∇cTc = 0 holds, too. �

4. The canonical spinor of a 3-Sasakian manifold

Since the spin representation of Spin(7) is real, let us consider the real spinor bundle
Σ. Any G2-structure ω acts via the Clifford multiplication on Σ as a symmetric en-
domorphism with eigenvalue (−7) of multiplicity one and eigenvalue 1 of multiplicity
seven. Consequently, any G2-structure on a simply-connected manifold M7 defines a
canonical spinor field Ψ0 such that (see [12], [8])

ω · Ψ0 = − 7Ψ0 , |Ψ0| = 1 .

If (M7, ω) is cocalibrated and ∇c is its characteristic connection , we obtain [8], [3]

∇cΨ0 = 0 , Tc · Ψ0 = − 1

6
(dω, ∗ω) · Ψ0 , Scalg =

1

18
(dω, ∗ω)2 − 1

2
|Tc|2 ,

We apply the general formulas to the canonical spinor of a 3-Sasakian manifold M7.
Then we obtain a spinor field such that

ω · Ψ0 = − 7Ψ0 , Tc · Ψ0 = − 6Ψ0 , ∇g
XΨ0 +

1

4
(X Tc) · Ψ0 = 0 .

Using the explicit formulas for ω and Tc, a direct algebraic computation in the real
spin representation yields the following
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Lemma 4.1.

Tc · X · Ψ0 = −5

3
X · Tc · Ψ0 = 10X · Ψ0 if X ∈ Tv,

Tc · X · Ψ0 = X · Tc · Ψ0 = − 6X · Ψ0 if X ∈ Th,

The equation ∇cΨ0 = 0 can be written as

∇g
XΨ0 − 1

8
(X · Tc + Tc · X) · Ψ0 = 0 .

We apply now the algebraic Lemma and obtain a differential equation involving the
canonical spinor of a 3-Sasakian manifold.

Theorem 4.1. The canonical spinor field Ψ0 of a 7-dimensional 3-Sasakian manifold

satisfies the following differential equation:

∇g
XΨ0 =

1

2
X · Ψ0 if X ∈ Tv , ∇g

XΨ0 = − 3

2
X · Ψ0 if X ∈ Th .

In particular, Ψ0 is an eigenspinor for the Riemannian Dirac operator, DgΨ0 = 9

2
Ψ0.

Remark 4.1. This equation has already been discussed in [7], section 10. It follows
essentially from the formula Tc = 2ω − 8F1.

5. ∇c-parallel vectors and spinors of the canonical G2-structure

The spinor bundle splits into three subbundles, Σ = Σ1 ⊕ Σ3 ⊕ Σ4, where

Σ1 := R · Ψ0, Σ3 :=
{

X · Ψ0 : X ∈ Tv
}

, Σ4 :=
{

X · Ψ0 : X ∈ Th
}

.

The characteristic connection preserves this splitting. Obviously, the 3-form ω acts as
the identity on Σ3 ⊕ Σ4, while the torsion form satisfies

Lemma 5.1. The torsion form Tc acts on Σ3 as a multiplication by 10 and it acts on

Σ1 ⊕ Σ4 as a multiplication by (−6).

Given the definition of Σ4, it is now a crucial observation that ∇c-parallel vector fields
cannot be horizontal:

Proposition 5.1. Horizontal, ∇c-parallel vector fields

∇cX = 0, 0 6= X ∈ Γ(Tc)

do not exist.

Proof. Let 0 6= X be the vector field. Then Ψ := X · Ψ0 is a ∇c-parallel spinor, too.
Moreover, the torsion form acts on Ψ0 and on Ψ by the same eigenvalue,

Tc · Ψ0 = − 6Ψ0 , Tc · Ψ = − 6Ψ .

The holonomy algebra hol(∇c) is contained in su(2) ⊕ suc(2) ⊂ g2 ⊂ so(7) and the
linear holonomy representation splits into R

7 = R
4 ⊕ R

3. The vector field X is an
element of R

4 such that hol(∇c) · X = 0. In [7] we explicitely realized the Lie algebra
su(2) ⊕ suc(2) inside so(7). Using these formulas, an easy computation yields that
the holonomy algebra is contained in so(3) ⊂ su(3) ⊂ g2 and the linear holonomy
representation splits into R

7 = R
3 ⊕ R

3 ⊕ R
1. Consequently, the G2-manifold (M7, ω)

is cocalibrated, its characteristic holonomy is contained in so(3) and the characteristic
torsion Tc acts on both ∇c-parallel spinors with the same eigenvalue. It turns out that
M7 cannot be an Einstein manifold with positive scalar curvature by [7, Thm 7.1], a
contradiction. �
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In general, the Casimir operator of a metric connection with parallel characteristic
torsion is given by the following formulas [3]

Ω = (D1/3)2 − 1

16
(2 Scalg + |Tc|2) = ∆Tc +

1

16
(2 Scalg + |Tc|2) − 1

4
(Tc)2.

Its kernel contains the space of all ∇c-parallel spinor fields. In particular, any ∇c-
parallel spinor field Ψ satisfies the algebraic condition [8], [3]

4 (Tc)2 · Ψ = (2Scalg + |Tc|2) · Ψ.

For the canonical G2-structure of a 3-Sasakian manifold we have 2 Scalg + |Tc|2 = 144.
Consequently, any ∇c-parallel spinor field is a section in the subbundle Σ1⊕Σ4, i. e. of
the form Ψ = a ·Ψ0+X ·Ψ0, where a is constant and X ∈ Γ(Th) is a horizontal, parallel
vector field. But horizontal, ∇c-parallel vector fields do not exist. This argument
proves:

Theorem 5.1. Any ∇c-parallel spinor field is proportional to Ψ0. Moreover, the ho-

lonomy algebra is the six-dimensional maximal subalgebra hol(∇c) = su(2) ⊕ suc(2) of

g2.

The latter argument proves that vertical, ∇c-parallel vector fields do not exist. Indeed,
if ∇cX = 0, then X ·Ψ0 ∈ Γ(Σ3) is a parallel spinor in Σ3. We conclude that X ·Ψ0 = 0
and X = 0. Together with Proposition 5.1 and the splitting of the tangent bundle, one
concludes:

Theorem 5.2. There are no non-trivial ∇c-parallel vector fields.

6. Riemannian Killing spinors on 3-Sasakian manifolds

Consider the spinor fields Ψ1 := ξ1 ·Ψ0, Ψ2 := ξ2 ·Ψ0, Ψ3 := ξ3 ·Ψ0. These spinors are
sections in the bundle Σ3.

Theorem 6.1. The spinor fields Ψα are Riemannian Killing spinors, i. e.

∇g
XΨα =

1

2
X · Ψα , α = 1, 2, 3.

Corollary 6.1 ([10], [11]). Any simply-connected 3-Sasakian manifold admits at least

three Riemannian Killing spinors.

Proof. We use the differential equation

∇g
XΨ0 =

1

8
(X · Tc + Tc · X) · Ψ0

as well as the properties of Sasakian structures. Then we obtain

∇g
X(ξ1 · Ψ0) =

(

∇g
Xξ1

)

· Ψ0 + ξ1 · ∇g
XΨ0

= −ϕ1(X) · Ψ0 +
1

8
ξ1 · (X · Tc + Tc · X) · Ψ0

=
1

2

(

X dη1

)

· Ψ0 +
1

8
ξ1 · (X · Tc + Tc · X) · Ψ0

= −1

4

(

X · dη1 − dη1 · X
)

· Ψ0 +
1

8
ξ1 · (X · Tc + Tc · X) · Ψ0.

A direct algebraic computation yields now that

−1

4

(

X · dη1 − dη1 · X
)

· Ψ0 +
1

8
ξ1 · (X · Tc + Tc · X) · Ψ0 =

1

2
X · ξ1 · Ψ0
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holds specially for the spinor Ψ0. This proves the statement of the Theorem. �

In general, any real spinor field Φ of length one defined on a 7-dimensional Riemannian
manifold induces a G2-structure ωΦ (see [12]). Moreover, if two spinor fields Φ2 = ξ ·Φ1

are related via Clifford multiplication by some vector field ξ, then

ωΦ2
= −ωΦ1

+ 2(ξ ωΦ1
) ∧ ξ

holds [12, Remark 2.3]. Denote by ωα the nearly parallel G2-structure induced by the
Riemannian Killing spinor Ψα = ξα · Ψ0 (α = 1, 2, 3). Then we obtain

ωα = −1

2
(η1 ∧ dη1 + η2 ∧ dη2 + η3 ∧ dη3) − 4 η1 ∧ η2 ∧ η3 + 2(ξα ω) ∧ ηα.

Consider, for example, the case α = 1. Then

ξ1 ω =
1

2
dη1 +

1

2
(ξ1 dη2) ∧ η2 +

1

2
(ξ1 dη3) ∧ η3 + 4 η23 =

1

2
dη1 + 2 η23.

Inserting the latter formula, we obtain

ω1 =
1

2
η1 ∧ dη1 −

1

2
η2 ∧ dη2 −

1

2
η3 ∧ dη3

= η123 − η145 − η167 + η246 − η257 + η347 + η356.

Theorem 6.2. The nearly parallel G2-structures ω1, ω2, ω3 induced by the Killing

spinors of a 3-Sasakian manifold are given by the formulas

ω1 =
1

2
η1 ∧ dη1 − 1

2
η2 ∧ dη2 − 1

2
η3 ∧ dη3

ω2 = − 1

2
η1 ∧ dη1 +

1

2
η2 ∧ dη2 − 1

2
η3 ∧ dη3

ω3 = − 1

2
η1 ∧ dη1 − 1

2
η2 ∧ dη2 +

1

2
η3 ∧ dη3 .

All three nearly parallel G2-structures satisfy the equation dωα = − 4 (∗ωα).

Remark 6.1. The nearly parallel structures ωα admit characteristic connections, too.
Their characteristic torsions Tc

α are proportional to ωα [8]. Moreover, the existence
of a nearly parallel G2-structure or—equivalently—of a Riemannian Killing spinor im-
plies that M7 is Einstein [6]. Consequently, our construction explains why 3-Sasakian
manifolds are Einstein manifolds.

7. Deformations of the canonical G2-structure

Deformations of 3-Sasakian metrics from the viewpoint of G2-geometry have been stud-
ied in [12] and [7]. We once again describe the construction of these particular G2-
structures and their properties in a unified way, and add some more. Fix a positive
parameter s > 0 and consider a new Riemannian metric gs defined by

gs(X,Y ) := g(X,Y ) if X,Y ∈ Th, gs(X,Y ) := s2 · g(X,Y ) if X,Y ∈ Tv.

Then sη1, sη2, sη3, η4, . . . , η7 is an orthonormal coframe and we replace the 3-forms

F1 = η1 ∧ η2 ∧ η3 ,

F2 =
1

2

(

η1 ∧ dη1 + η2 ∧ dη2 + η3 ∧ dη3

)

+ 3η1 ∧ η2 ∧ η3

= −η145 − η167 − η246 + η257 − η347 − η356
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by the new forms

F s
1 := s3F1, F s

2 := sF2, ωs := F s
1 + F s

2 .

(M7, gs, ωs) is a Riemannian 7-manifold equipped with a G2-structure ωs. Denote by
∗s the corresponding Hodge operator acting on forms. We summarize some well-known
properties of these G2-structures that follow from a straightforward computation.

Theorem 7.1 ([12], Theorem 5.4 and [7], §10).
(1) The G2-manifold (M7, gs, ωs) is cocalibrated, d ∗s ωs = 0.
(2) The differential of the G2-structure is given by the formula

dωs = 12 s (∗sF
s
1 ) +

(

2s +
2

s

)

(∗sF
s
2 ).

(3) The characteristic torsion Tc
s is given by the formula

Tc
s =

(2

s
− 10s)(sη1) ∧ (sη2) ∧ (sη3) + 2sωs.

(4) The Riemannian Ricci tensor is given by the formula

Ricgs
= 6 (2 − s2) IdTh ⊕ 2 + 4s4

s2
IdTv .

In particular, the scalar curvature equals

Scalg
s

= 6 (8 +
1

s2
− 2s2).

(5) The canonical spinor field Ψ0 satisfies the differential equation

∇gs

X Ψ0 = −3

2
s X · Ψ0 if X ∈ Th,

∇gs

X Ψ0 =
(

− 1

2s
+ s

)

X · Ψ0 if X ∈ Tv.

Corollary 7.1 ([12], Theorem 5.4). For s = 1/
√

5 the G2-structure is nearly parallel

and Ψ0 is a Riemannian Killing spinor,

dωs =
12√

5
(∗sω

s), Ricgs
=

54

5
Id, ∇gs

X Ψ0 = − 3

2
√

5
X · Ψ0.

Ψ0 is the unique Riemannian Killing spinor of the metric.

Remark 7.1. The Ricci tensor of the characteristic connection of (M7, gs, ωs) is given
by the formula [7]

Ric∇
c,s

= 12 (1 − s2) IdTh ⊕ 16 (1 − 2 s2) IdTv .

If s = 1 (the 3-Sasakian case), then Ric∇
c

vanishes on the subbundle Th. For s =

1/
√

5, the Ricci tensor is proportional to the metric, Ric∇
c,1/

√

5

= (48/5) IdTM7 . From
this point of view there is a third interesting parameter, namly s2 = 1/2. Then the
∇c-Ricci tensor vanishes on the subbundle Tv and the canonical spinor field Ψ0 is
parallel in vertical directions. It is a transversal Killing spinor with respect to the
three-dimensional foliation and

(

Dgs)2
Ψ0 = 18Ψ0 =

1

4

4

4 − 1
Scalg

s
Ψ0.

In particular, Ψ0 is the first known example to realize the lower bound for the basic
Dirac operator of the foliation, see the recent work by Habib and Richardson [13].
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