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Abstract

In the first part, we define and investigate new classes of almost 3-contact metric manifolds,
with two guiding ideas in mind: first, what geometric objects are best suited for capturing
the key properties of almost 3-contact metric manifolds, and second, the newly defined classes
should admit ‘good’ metric connections with skew torsion. In particular, we introduce the Reeb
commutator function and the Reeb Killing function, we define the new classes of canonical
almost 3-contact metric manifolds and of 3-(α, δ)-Sasaki manifolds (including as special cases
3-Sasaki manifolds, quaternionic Heisenberg groups, and many others) and prove that the
latter are hypernormal, thus generalizing a seminal result by Kashiwada. We study their
behaviour under a new class of deformations, called H-homothetic deformations, and prove
that they admit an underlying quaternionic contact structure, from which we deduce the Ricci
curvature. For example, a 3-(α, δ)-Sasaki manifold is Einstein either if α = δ (the 3-α-Sasaki
case) or if δ = (2n+ 3)α, where dimM = 4n+ 3.

The second part is actually devoted to finding these adapted connections. We start with a
very general notion of ϕ-compatible connections, where ϕ denotes any element of the associated
sphere of almost contact structures, and make them unique by a certain extra condition, thus
yielding the notion of canonical connection (they exist exactly on canonical manifolds, hence
the name). For 3-(α, δ)-Sasaki manifolds, we compute the torsion of this connection explicitly
and we prove that it is parallel, we describe the holonomy, the ∇-Ricci curvature, and we
show that the metric cone is a HKT-manifold. In dimension 7, we construct a cocalibrated
G2-structure inducing the canonical connection and we prove the existence of four generalized
Killing spinors.

MSC (2010): primary 53B05, 53C15, 53C25, 53D10; secondary 53C27, 32V05, 22E25.

Keywords and phrases: Almost 3-contact metric manifold; 3-Sasakian manifold; 3-(α, δ)-Sasaki manifold;

canonical almost 3-contact metric manifold; metric connection with skew torsion; Kashiwada’s theorem;

canonical connection; metric cone; cocalibrated G2-manifold; generalized Killing spinor.
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1 Introduction and basic notions

1.1 Introduction and summary

Since their first definition by Kuo in 1970, almost 3-contact metric manifolds have been a steady,
but difficult topic of research. They are a very natural objects to consider — they have three almost
contact metric structures with orthonormal Reeb vector fields and compatibility relations modelled
on the multiplication rules of the quaternions. Unfortunately, they turn out to be rather difficult
to handle. Computations become quickly lengthy and complicated. Compared to other geometries
(like almost hermitian manifolds or symplectic manifolds), their definition is not equivalent to
the reduction of the frame bundle to a certain subgroup G ⊂ O(n), hence they do not admit a
‘good’ classification scheme into different classes. A deeper reason for most of the encountered
problems seems to be that, together with almost contact metric structures, they do not possess an
integrable Riemannian counterpart, in the sense that contact geometry does not appear in Berger’s
theorem on irreducible Riemannian holonomies. As a consequence, the Levi-Civita connection is
not well-adapted to their geometric structure, and the quest for other connections (like hermitian
connections for almost hermitian manifolds) turns out to be a challenging task, with many open
questions.

The current paper has the goal to address two of the sketched problems. In the first part, we
define and investigate new classes of almost 3-contact metric manifolds, with two guiding ideas
in mind: first, what geometric objects are best suited for capturing the key properties of almost
3-contact metric manifolds, and second, the newly defined classes should admit good invariant
connections. The second part is actually devoted to finding these adapted connections, with
attention restricted to connections that are metric and with skew torsion. Such connections are by
now a widely established tool for the successful investigation of most non-integrable geometries.
As a side condition, the classes defined in the first part should include 3-Sasaki manifolds and
quaternionic Heisenberg groups, and the results proved in the second part should reproduce some
known partial results on these.

Part one (Sections 1–2)

Consider an almost 3-contact metric manifold (M,ϕi, ξi, ηi, g), i = 1, 2, 3. If there exists a function
δ ∈ C∞(M) such that ηk([ξi, ξj ]) = 2δǫijk for any i, j, k = 1, 2, 3, we call it the Reeb commutator
function of M . Of course, not any M will admit a Reeb commutator function; but if it does, this
function δ encodes in a very succinct way the relative ‘positions’ of the Reeb vector fields ξi. If the
Reeb vector fields are Killing (like for 3-α-Sasakian structures and many other almost 3-contact
structures), we prove in Corollary 2.1.1 that the existence of the Reeb commutator function δ
follows. This function will play a special role in our study. As a first class of manifolds admitting
a Reeb commutator function, we introduce 3-δ-cosymplectic manifolds : they will be defined by the
conditions dηi = −2δηj ∧ ηk and dΦi = 0, for every even permutation (i, j, k) of (1, 2, 3), where δ
is a real constant, and Φi denotes the fundamental 2-form given by Φi(X,Y ) = g(X,ϕiY ). For
δ = 0 we get in fact a 3-cosymplectic manifold.

Any 3-Sasakian structure has constant Reeb commutator function δ = 1, while for a quater-
nionic Heisenberg group the Reeb vector fields commute, hence δ = 0. Actually, we place both
3-α-Sasakian manifolds and the quaternionic Heisenberg groups in the more general class of almost
3-contact metric manifolds (M,ϕi, ξi, ηi, g) satisfying the following condition:

dηi = 2αΦi + 2(α− δ)ηj ∧ ηk (1.1)

for every even permutation (i, j, k) of (1, 2, 3), where α and δ are real constants, and α 6= 0.
We call these manifolds 3-(α, δ)-Sasaki manifolds ; they include 3-α-Sasaki manifolds as a special
case (α = δ). As we shall see many geometric features are captured by equation (1.1). First we
show that 3-(α, δ)-Sasaki manifolds are hypernormal, that is the Nijenhuis tensor fields Nϕi

:=
[ϕi, ϕi] + dηi ⊗ ξi are all vanishing (Theorem 2.2.1): this is a generalization of a seminal result of
Kashiwada stating that every 3-contact metric manifold (corresponding to α = δ = 1) is 3-Sasakian
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[Ka01]. Furthermore, every 3-(α, δ)-Sasaki manifold has Killing Reeb vector fields, with constant
Reeb commutator function δ (Corollary 2.3.1). We also study the behavior of these structures
under a new type of deformations, called H-homothetic deformations (Section 2.3). We show that
these deformations preserve the class of 3-(α, δ)-Sasaki structures with δ = 0, called degenerate. In
the non-degenerate case, the sign of the product αδ is preserved. In particular all 3-(α, δ)-Sasaki
structures with αδ > 0 can be deformed into a 3-Sasakian structure. Examples of 3-(α, δ)-Sasaki
structures with αδ < 0 do exist as well: they can be defined on the canonical principal SO(3)-bundle
of a quaternionic Kähler (not hyperKähler) manifold with negative scalar curvature [Ko75, Ta96].
It is also worth observing that 3-(α, δ)-Sasaki manifolds admit an underlying quaternionic contact
structure which is quaternionic contact Einstein in the sense of the definition given in [IMV14];
this allows us to determine the Ricci tensor of the Riemannian metric g (Proposition 2.3.3). In
particular, a 3-(α, δ)-Sasaki manifold is Einstein either if α = δ (the well-known 3-α-Sasaki case)
or if δ = (2n+ 3)α, where dimM = 4n+ 3.

A second reason why we are interested in 3-(α, δ)-Sasaki manifolds is that they provide a large
class of canonical almost 3-contact metric manifolds. The defining conditions of what we call a
canonical structure will be justified by Theorem 4.1.1, where we prove that these are exactly the
manifolds admitting a unique canonical connection. To define them, we need to introduce the
auxiliary tensor fields Aij (i, j = 1, 2, 3)

Aij(X,Y ) := g((Lξjϕi)X,Y ) + dηj(X,ϕiY ) + dηj(ϕiX,Y ) ∀X,Y ∈ Γ(H), H :=

3
⋂

i=1

ker ηi.

Here Lξj denotes the Lie derivative with respect to ξj . We also put Ai := Aii. We say that an
almost 3-contact metric manifold (M,ϕi, ξi, ηi, g) admits a Reeb Killing function if there exists a
smooth function β ∈ C∞(M) such that for every X,Y ∈ Γ(H) and every even permutation (i, j, k)
of (1, 2, 3),

Ai(X,Y ) = 0, Aij(X,Y ) = −Aji(X,Y ) = βΦk(X,Y ).

The intrinsic meaning of β is subtler than that of δ; one key property is that the Reeb Killing
function controls the derivatives of the structure tensors ϕi, ξi, and ηi with respect to the canonical
connection (see Remark 4.1.2). We call (M,ϕi, ξi, ηi, g) a canonical almost 3-contact metric mani-
fold if it admits a Reeb Killing function β, all ξi are Killing vector fields, the Nijenhuis tensors Nϕi

are skew-symmetric on H, and Nϕi
− ϕi ◦ dΦi = Nϕj

− ϕj ◦ dΦj on Γ(H) for all i, j = 1, 2, 3. As a
special case, a canonical almost 3-contact metric manifold will be called parallel if its Reeb Killing
function β vanishes; why this case is of interest will again be explained in the second part. We
prove that 3-(α, δ)-Sasaki manifolds are always canonical with Reeb Killing function β = 2(δ−2α)
in Corollary 2.3.3, and that 3-δ-cosymplectic manifolds are always hypernormal, canonical and
parallel (but not 3-(α, δ)-Sasakian by definition) in Corollary 2.1.2.

We end this summary with a figure reviewing the different almost 3-contact metric structures
that we shall discuss, trying to catch their most relevant features (Figure 1). The very interesting
isolated point S7 shall be treated in Example 4.1.3.

Part two (Sections 3–5)

Given a G-structure on a Riemannian manifold (M, g), a characteristic connection denotes a met-
ric connection with totally skew-symmetric torsion (briefly, with skew torsion) preserving the
G-structure. For instance, an almost hermitian manifold (M,J, g) admits a (unique) hermitian
connection with skew torsion if and only if the Nijenhuis tensor is totally skew-symmetric. Similar
results hold for other geometries, for example hyperKähler manifolds with torsion, also known as
HKT-manifolds [GP00].

In the context of almost contact geometry Friedrich and Ivanov [FI02] provided necessary and
sufficient conditions for an almost contact metric manifold (M,ϕ, ξ, η, g) to admit a characteristic
connection (which then turns out to be unique): the Reeb vector field ξ has to be Killing and
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Figure 1: The different classes of almost 3-contact metric manifolds

the tensor field Nϕ has to be skew-symmetric (see Theorem 1.2.1 for details). For example the
characteristic connection of a Sasakian manifold has torsion T = η ∧ dη.

It is well-known, however, that a unique characteristic connection cannot be defined in any
naive way for almost 3-contact metric manifolds. This is easiest seen by looking at the 3-Sasaki
situation: In this case each of the three Sasakian structures (ϕi, ξi, ηi, g), i = 1, 2, 3, admits a
unique characteristic connection with torsion Ti = ηi ∧ dηi. However, these three connections
do not coincide, hence there does not exist a metric connection with skew torsion preserving
all three Sasaki structures. To overcome this difficulty, a notion of canonical connection was
proposed for a 7-dimensional 3-Sasakian manifold in [AF10a] by making a detour to the canonical
(cocalibrated) G2-structure associated to the 3-Sasakian structure. This canonical connection has

torsion T =
∑3

i=1
ηi ∧ dηi and preserves the vertical and horizontal distributions, denoted by

V and H respectively, where V is the distribution spanned by the Reeb vector fields ξ1, ξ2, ξ3.
Furthermore, this connection has parallel torsion and admits a parallel spinor field that induces
the three Riemannian Killing spinor fields of the 3-Sasaki manifold.

A second remarkable example of almost 3-contact metric manifolds admitting a canonical con-
nection is given by quaternionic Heisenberg groups. In [AFS15] the authors study the geometry
of these nilpotent Lie groups, describing natural left invariant almost 3-contact metric structures
(ϕi, ξi, ηi, gλ), λ > 0, which can be defined in all dimensions 4n + 3. It is shown that the metric

connection with skew torsion T =
∑3

i=1
ηi ∧ dηi − 4λη1 ∧ η2 ∧ η3 preserves the horizontal and

vertical distributions and equips the group with a naturally reductive homogeneous structure, thus
highlighting again its importance. In the 7-dimensional case this connection can also be obtained
by means of a cocalibrated G2-structure.

The main objective of our study is to find good connections on almost 3-contact metric manifolds
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that generalize the canonical connections of the described examples. We begin with the observation
that the choice of the Reeb vector fields ξi in the vertical distribution is somewhat arbitrary. Rather,
any almost 3-contact metric manifold (M,ϕi, ξi, ηi, g) carries a sphere ΣM of almost contact metric
structures (ϕa, ξa, ηa, g), with ϕa = a1ϕ1 + a2ϕ2 + a3ϕ3 for every a = (a1, a2, a3) ∈ S2. The
horizontal and the vertical distributions are ϕ-invariant for every ϕ ∈ ΣM . Now, if (ϕ, ξ, η, g) is
a structure in ΣM , a metric connection ∇ with skew torsion on M will be called a ϕ-compatible
connection if it preserves the splitting TM = H ⊕ V of the tangent bundle and (∇Xϕ)Y = 0 for
all horizontal vector fields X,Y . In Theorem 3.1.1 we provide necessary and sufficient conditions
for the existence of ϕ-compatible connections, one of which being the total skew-symmetry of the
tensor field Nϕ on H; the other ones involve the Lie derivatives of the Riemannian metric g, and
they are satisfied in the special case where the three Reeb vector fields are Killing. We also show
that if M admits ϕi-compatible connections for every i = 1, 2, 3, then M admits ϕ-compatible
connections for every structure ϕ ∈ ΣM .

Despite the good behavior of ϕ-compatibility with respect to the associated sphere ΣM , this
notion is still too weak, since ϕ-compatible connections are not uniquely determined. They are
parametrized by smooth functions T (ξ1, ξ2, ξ3) =: γ ∈ C∞(M), where T is the torsion of the
connection. We call γ the parameter function of the connection.

A suggestion for requiring some further conditions on the connection comes from the case when
the Reeb vector fields are Killing. In this case, given a ϕ-compatible connection ∇ with parameter
function γ, the ∇-derivative of each ξi is completely determined by γ and the Reeb commutator
function δ through

∇Xξi =
2δ+γ

2
(ηk(X)ξj − ηj(X)ξk)

for every vector field X , and (i, j, k) even permutation of (1, 2, 3) (Proposition 3.2.2). This suggests
the idea that one can require the covariant derivatives of the structure tensors ϕi to behave in a
similar way. Therefore, we look for metric connections ∇ with skew torsion such that

∇Xϕi = β(ηk(X)ϕj − ηj(X)ϕk) (1.2)

for some smooth function β and for every even permutation (i, j, k) of (1, 2, 3). In fact, in Theorem
4.1.1 we prove that an almost 3-contact metric manifold (M,ϕi, ξi, ηi, g) admits a metric connection
∇ with skew torsion satisfying (1.2) if and only if it is canonical with Reeb Killing function β.
If such a connection ∇ exists, it is unique and it is ϕ-compatible for every structure ϕ in the
associated sphere ΣM . The parameter function of ∇ is γ = 2(β− δ), δ being the Reeb commutator
function. We call ∇ the canonical connection of M , and show that the covariant derivatives of the
other structure tensors are given by

∇Xξi = β(ηk(X)ξj − ηj(X)ξk), ∇Xηi = β(ηk(X)ηj − ηj(X)ηk).

One can notice the analogy of (1.2) with the equation satisfied by the Levi-Civita connection of a
quaternion-Kähler manifold (see Remark 4.1.1). There are various remarkable properties of canon-
ical almost 3-contact metric manifolds and their canonical connection deserving special attention.
First, for a canonical manifold (M,ϕi, ξi, η, g), each structure (ϕ, ξ, η, g) in the sphere ΣM admits
a characteristic connection (Theorem 2.1.1). In particular, if ∇ is the canonical connection and ∇i

the characteristic connection of the structure (ϕi, ξi, ηi, g), their torsions T and Ti are related by
(Theorem 4.2.1)

T − Ti = −β(ηj ∧ Φj + ηk ∧Φk)

where (i, j, k) is an even permutation of (1, 2, 3). A surprising situation occurs for parallel canonical
manifolds (β = 0): for them, the three characteristic connections∇i are identical, and they coincide
with the canonical connection. Hence, all structure tensors ϕi, ξi, ηi are ∇-parallel. It is surprising
that this fact was not discovered before.

Focusing on the canonical connection of a 3-(α, δ)-Sasaki manifold, for 3-Sasakian manifolds our
canonical connection coincides, as desired, with the connection defined in the 7-dimensional case
in [AF10a]. Similarly, on quaternionic Heisenberg groups our canonical connection coincides with
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the connection defined in [AFS15]. We also show that the canonical connection ∇ of a 3-(α, δ)-
Sasaki manifold has parallel torsion (Theorem 4.4.1), we determine its Ricci tensor, and discuss
the ∇-Einstein condition (Theorem 4.4.2).

A ‘good’ connection on M should induce a good connection on the cone. Recall that the metric
cone of a 3-Sasaki manifold is hyper-Kähler. If the Reeb Killing function is constant and strictly
negative, the canonical connection ∇ allows us to define a metric connection with skew torsion ∇̄
on the cone (M̄, ḡ) = (M × R+, a2r2g + dr2), a = −β/2 > 0, such that ∇̄J1 = ∇̄J2 = ∇̄J3 =
0, where J1, J2, J3 are almost hermitian structures naturally defined on (M̄, ḡ), and such that
J1J2 = J3 = −J2J1: hence, we obtain a hyperhermitian structure. If furthermore, (M,ϕi, ξi, ηi, g)
is a 3-(α, δ)-Sasaki manifold, the cone is an HKT-manifold, a class of manifolds that is much larger
than the class of hyper-Kähler manifolds (see Section 4.3).

Finally, we consider 7-dimensional 3-(α, δ)-Sasaki manifolds (Section 4.5) in order to investigate
their relationship to G2-geometry, which only exists in this dimension. We prove that the canonical
connection coincides with the characteristic connection of a cocalibrated G2-structure; as such, it
admits a parallel spinor field ψ0. We show that ψ0 and the three Clifford products ψi := ξi · ψ0

are generalized Killing spinor fields, and we compute their generalized Killing numbers (for α = δ,
they coincide with the three Riemannian Killing spinors of a 3-α-Sasaki manifold).

The appendix is devoted to the discussion of further examples. We describe left invariant
almost 3-contact metric structures on various nilpotent Lie groups, providing examples of canonical
structures which are not 3-(α, δ)-Sasaki, and non-canonical structures admitting ϕi-compatible
connections.

Notation. Throughout this text, δ denotes the Reeb commutator function (Definition 2.1.1), which
can be a real constant, and sometimes, it appears as factor in front of a differential form. It
shouldn’t be confused with a codifferential (we don’t need any in this paper). For further ease of
notation, we will often set ηij := ηi ∧ ηj etc., in particular when formulas tend to become heavy.

Acknowledgements. G. Dileo acknowledges the financial support of DAAD for a research stay at
Philipps-Universität Marburg in the period April-June 2016, under the Programme Research Stays
for University Academics and Scientists. She thanks Philipps-Universität for its kind hospitality.

1.2 Review of almost contact and 3-contact metric manifolds

We review some basic definitions and properties on almost contact metric manifolds. This serves
mainly as a reference, but it is assorted by comments relevant to our work as we move on.

Definition 1.2.1. An almost contact manifold is a (2n + 1)-dimensional smooth manifold M
endowed with a structure (ϕ, ξ, η), where ϕ is a (1, 1)-tensor field, ξ a vector field, and η a 1-form,
such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1,

implying that ϕξ = 0, η ◦ ϕ = 0, and ϕ has rank 2n. The tangent bundle of M splits as TM =
H⊕ 〈ξ〉, where H is the 2n-dimensional distribution defined by H = Im(ϕ) = ker η.

The vector field ξ is called the characteristic or Reeb vector field. The almost contact structure
is said to be normal if Nϕ := [ϕ, ϕ] + dη ⊗ ξ vanishes, where [ϕ, ϕ] is the Nijenhuis torsion of ϕ
[Bl10]. More precisely, for any vector fields X and Y , Nϕ is given by

Nϕ(X,Y ) = [ϕX,ϕY ] + ϕ2[X,Y ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ] + dη(X,Y )ξ.

It is known that any almost contact manifold admits a compatible metric, that is a Riemannian
metric g such that, for every X,Y ∈ X(M), g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ). Then η = g(·, ξ)
and H = 〈ξ〉⊥. The manifold (M,ϕ, ξ, η, g) is called an almost contact metric manifold.

An α-contact metric manifold is defined as an almost contact metric manifold such that

dη = 2αΦ, α ∈ R∗, (1.3)
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where Φ is the fundamental 2-form defined by Φ(X,Y ) = g(X,ϕY ); a 1-contact metric manifold is
just called a contact metric manifold for short1; the 1-form η turns then out to be a contact form,
in the sense that η ∧ (dη)n 6= 0 everywhere on M . An α-Sasakian manifold is defined as a normal
α-contact metric manifold, and again such a manifold with α = 1 is called a Sasakian manifold. A
more general class of α-Sasakian manifolds is given by quasi-Sasakian manifolds, defined as normal
almost contact metric manifolds with closed 2-form Φ. We recall that the Reeb vector field of a
(quasi)-Sasakian or α-Sasakian manifold is always Killing. As a comprehensive introduction to
Sasakian geometry, we recommend the monography [BG08]. For some recent results, we refer to
[CNY15].

We recall now some basic facts about connections with totally skew-symmetric torsion—we
refer to [Ag06] for further details. If (M, g) is a Riemannian manifold, a metric connection ∇
with torsion T is said to have totally skew-symmetric torsion, or skew torsion for short, if the
(0, 3)-tensor field T defined by

T (X,Y, Z) = g(T (X,Y ), Z)

is a 3-form. The relation between ∇ and the Levi-Civita connection ∇g is then given by

∇XY = ∇g
XY +

1

2
T (X,Y ). (1.4)

In [FI02] T. Friedrich ad S. Ivanov proved the following theorem concerning characteristic connec-
tions on almost contact metric manifolds, i. e. metric connections with skew torsion parallelizing
all structure tensors.

Theorem 1.2.1. Let (M,ϕ, ξ, η, g) be an almost contact metric manifold. It admits a metric
connection ∇ with skew torsion and ∇η = ∇ϕ = 0 if and only if Nϕ is totally skew-symmetric and
if ξ is a Killing vector field. The connection ∇ is then uniquely determined and its torsion is given
by

T = η ∧ dη +Nϕ + dϕΦ− η ∧ (ξyNϕ),

where dϕΦ is defined as dϕΦ(X,Y, Z) := −dΦ(ϕX,ϕY, ϕZ).

For example, quasi-Sasakian manifolds admit a unique characteristic connection whose torsion
is given by T = η ∧ dη. For later, let us observe that ∇η = ∇ϕ = 0 implies that the characteristic
connection preserves the distributions H and V – a property we shall like to have later on for
almost 3-contact manifolds as well. Further results on the characteristic connection of almost
contact metric manifolds may be found in [Pu12, Pu13]; in particular, one finds there a detailed
investigation for special classes of manifolds. The special situation of normal almost contact metric
manifolds with Killing Reeb vector field was investigated in [CM14, HTY13], leading to a notion
of Sasaki manifolds with torsion.

Definition 1.2.2. An almost 3-contact manifold is a differentiable manifold M of dimension
4n+3 endowed with three almost contact structures (ϕi, ξi, ηi), i = 1, 2, 3, satisfying the following
relations,

ϕk = ϕiϕj − ηj ⊗ ξi = −ϕjϕi + ηi ⊗ ξj ,

ξk = ϕiξj = −ϕjξi, ηk = ηi ◦ ϕj = −ηj ◦ ϕi,
(1.5)

for any even permutation (i, j, k) of (1, 2, 3) [Bl10]. The tangent bundle ofM splits as TM = H⊕V ,
where

H :=

3
⋂

i=1

ker ηi, V := 〈ξ1, ξ2, ξ3〉.

In particular H has rank 4n. We call any vector belonging to the distribution H horizontal and
any vector belonging to the distribution V vertical. The manifold is said to be hypernormal if each
almost contact structure (φi, ξi, ηi) is normal. In [YIK73] it was proved that if two of the almost
contact structures are normal, then so is the third.

1The alternative name almost α-Sasakian manifold can be found in the literature for what we call an α-contact
metric manifold, see for example [JV81]; however, we find this notion less suggestive.
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Any almost 3-contact manifold admits a Riemannian metric g which is compatible with each
of the three structures. Then M is said to be an almost 3-contact metric manifold with structure
(ϕi, ξi, ηi, g), i = 1, 2, 3. For ease of notation, we will just say that (M,ϕi, ξi, ηi, g) is an almost
3-contact metric manifold, and it is self-understood that the index is running from 1 to 3. The
subbundles H and V are orthogonal with respect to g and the three Reeb vector fields ξ1, ξ2, ξ3 are
orthonormal—the structure group of the tangent bundle is in fact reducible to Sp(n)×{1} [Ku70];
this implies in particular that each almost 3-contact manifold is spin. The following remarkable
subclasses of almost 3-contact metric manifolds will be of particular importance to our work:

1) A 3-(quasi)-Sasakian resp. 3-α-Sasakian manifold is an almost 3-contact metric manifold for
which each of the three structures is (quasi)-Sasakian resp.α-Sasakian [CND08, CND09]. A
remarkable result due to T. Kashiwada states that if the three structures are contact metric
structures, then the manifold is 3-Sasakian [Ka01]. Many results on the topology of 3-Sasakian
manifolds are available, see for example [GS96].

2) A 3-cosymplectic manifold is an almost 3-contact metric manifold satisfying dηi = 0, dΦi = 0.
It is known that such a structure is hypernormal (see [FIP04, Theorem 4.13]), so that each
of the three structures is cosymplectic. It is also known that any 3-cosymplectic manifold is
locally isometric to the Riemannian product of a hyper-Kähler manifold and a 3-dimensional
flat abelian Lie group [CN07].

Later on, we shall see that the new classes of 3-(α, δ)-Sasaki manifolds (Definition 2.2.1) and
3-δ-cosymplectic manifolds (Definition 2.1.4) generalize 3-α-Sasaki and 3-cosymplectic manifolds,
respectively, by using a vertical extra term.

1.3 The sphere of associated almost contact structures

Given an almost 3-contact metric manifold, one can define a sphere of almost contact structures
containing ±ϕi (i = 1, 2, 3) as antipodal points [CNY16]. This sphere is a canonical object to
consider, since the choice of the elements ϕi is somewhat arbitrary.

Definition 1.3.1. For any almost 3-contact metric manifold (M,ϕi, ξi, ηi, g) we define its associ-
ated sphere ΣM of almost contact structures

ΣM := {ϕa := a1ϕ1 + a2ϕ2 + a3ϕ3 | a = (a1, a2, a3) ∈ S2}

as well as the associated bundle of endomorphisms

ΥM := {ϕa := a1ϕ1 + a2ϕ2 + a3ϕ3 | a = (a1, a2, a3) ∈ R3}.

For any ϕa ∈ ΣM , its Reeb vector field and dual 1-form are defined respectively as

ξa := a1ξ1 + a2ξ2 + a3ξ3, ηa := a1η1 + a2η2 + a3η3.

The Riemannian metric g is compatible with all the structures (ϕa, ξa, ηa) (see [CNY16] for more
details). When it has no importance, the index a will be omitted.

Observe that for any ϕ ∈ ΣM , the distributions H and V are ϕ-invariant. Thus, ϕ encodes
more geometric information than just the choice of an almost contact structure on M .

As seen in Theorem 1.2.1, a crucial property is whether the Nijenhuis tensor is skew-symmetric.
Although it is not, for an almost contact metric structure ϕ in the associated sphere ΣM , just the
sum of the Nijenhuis tensors of the ϕi’s, we shall prove next that it is skew-symmetric if this
property holds for each Nϕi

. So, consider ϕ ∈ ΣM , and define tensor fields Ni,j

Ni,j := [ϕi, ϕj ] + dηi ⊗ ξj + dηj ⊗ ξi,

11



where

[ϕi, ϕj ](X,Y ) := [ϕiX,ϕjY ]− ϕi[ϕjX,Y ]− ϕj [X,ϕiY ] + [ϕjX,ϕiY ]

− ϕj [ϕiX,Y ]− ϕi[X,ϕjY ] + (ϕiϕj + ϕjϕi)[X,Y ].

In particular, Ni,i = 2Nϕi
. Notice that, using (1.5), one has ∀X,Y ∈ Γ(H)

Ni,j(X,Y ) = [ϕiX,ϕjY ]− ϕi[ϕjX,Y ]− ϕj [X,ϕiY ]

+ [ϕjX,ϕiY ]− ϕj [ϕiX,Y ]− ϕi[X,ϕjY ].
(1.6)

The following crucial equation was proved in [CNY16]:

Nϕ = Nϕ1
+Nϕ2

+Nϕ3
+ a1a2N1,2 + a1a3N1,3 + a2a3N2,3. (1.7)

If the almost 3-contact metric structure is hypernormal, the tensor fields Ni,j are all vanishing
[CNY16], and thus Nϕ = 0. We say that Nϕ is skew-symmetric on H if the (0, 3)-tensor field
defined by

Nϕ(X,Y, Z) = g(Nϕ(X,Y ), Z) ∀X,Y, Z ∈ Γ(H)

is a 3-form on H. We collect a few equivalent conditions for Nϕ to be skew-symmetric on H which
we will prove to be useful.

Lemma 1.3.1. Let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold, ϕ ∈ ΣM . The follow-
ing conditions are equivalent:

1) Nϕ is skew-symmetric on H;

2) For any X,Y ∈ Γ(H): g((∇g
Xϕ)X,Y ) = g((∇g

ϕXϕ)ϕX, Y );

3) For any X,Y, Z ∈ Γ(H):

g((∇g
Xϕ)Y + (∇g

Y ϕ)X,Z) = g((∇g
ϕXϕ)ϕY + (∇g

ϕY ϕ)ϕX,Z);

4) For any Y, Z ∈ Γ(H): g((∇g
ϕZϕ)Z, Y ) + g((∇g

Zϕ)ϕZ, Y ) = 0.

Proof. For the equivalence of 1), 2), and 3), see [DL14, Proposition 3.1]. If 2) holds, we get 4) by
applying it to X = Z + ϕZ. Conversely, applying 4) for Z = X + ϕX , we obtain 2).

We shall now prove that if each Nϕi
is skew-symmetric on H, then the tensor fields Ni,j are

skew-symmetric on H as well. We proceed in two steps.

Lemma 1.3.2. Let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold. Let i, j = 1, 2, 3, with
i 6= j. The tensor field Ni,j is skew-symmetric on H if and only if

g((∇g
ϕjY

ϕi)Y + (∇g
Y ϕi)ϕjY,X) + g((∇g

ϕiY
ϕj)Y + (∇g

Y ϕj)ϕiY,X) = 0

for every X,Y ∈ Γ(H).

Proof. Since Ni,j = Nj,i we can fix an even permutation (i, j, k) of (1, 2, 3). By (1.6), one can
check that

Ni,j(X,Y ) = (∇g
ϕiX

ϕj)Y − (∇g
ϕiY

ϕj)X + (∇g
ϕjX

ϕi)Y − (∇g
ϕjY

ϕi)X

+ ϕi(∇
g
Y (ϕjX))− ϕi(∇

g
X(ϕjY )) + ϕj(∇

g
Y (ϕiX))− ϕj(∇

g
X(ϕiY ))

for every X,Y ∈ Γ(H), and thus

g(Ni,j(X,Y ), Y ) = − g((∇g
ϕiY

ϕj)X,Y )− g((∇g
ϕjY

ϕi)X,Y ) + g(ϕi∇
g
Y (ϕjX), Y )

+ g(∇g
X(ϕjY ), ϕiY ) + g(ϕj∇

g
Y (ϕiX), Y ) + g(∇g

X(ϕiY ), ϕjY ).
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Now, g(ϕiY, ϕjY ) = −g(Y, ϕiϕjY ) = −g(Y, ϕkY ) = 0. Then,

g(∇g
X(ϕjY ), ϕiY ) + g(∇g

X(ϕiY ), ϕjY ) = X(g(ϕiY, ϕjY )) = 0.

Furthermore,

g(ϕi∇
g
Y (ϕjX), Y ) + g(ϕj∇

g
Y (ϕiX), Y )

= g(ϕi(∇
g
Y ϕj)X + ϕiϕj(∇

g
YX), Y ) + g(ϕj(∇

g
Y ϕi)X + ϕjϕi(∇

g
YX), Y )

= −g((∇g
Y ϕj)X,ϕiY )− g((∇g

Y ϕi)X,ϕjY ),

where we took into account that (ϕiϕj + ϕjϕi)Y = 0. We deduce that

g(Ni,j(X,Y ), Y ) =

= g((∇g
ϕiY

ϕj)Y,X) + g((∇g
ϕjY

ϕi)Y,X) + g((∇g
Y ϕj)ϕiY,X) + g((∇g

Y ϕi)ϕjY,X),

which gives the result.

Proposition 1.3.1. Let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold such that Nϕ1
,

Nϕ2
, and Nϕ3

are skew-symmetric on H. Then Ni,j is skew-symmetric on H for every i, j = 1, 2, 3.
In particular, Nϕ is skew-symmetric on H for any ϕ in the associated sphere ΣM .

Proof. We first prove some auxiliary formulas. In the following we always consider vector fields
X,Y, Z ∈ Γ(H). Let (i, j, k) be an even permutation of (1, 2, 3). Since ϕiX = ϕjϕkX and
ϕ2
iX = −X , one easily checks that

g((∇g
Xϕi)Y, Z) = g((∇g

Xϕj)ϕkY + ϕj(∇
g
Xϕk)Y, Z), (1.8)

g((∇g
Xϕi)ϕiY + ϕi(∇

g
Xϕi)Y, Z) = 0. (1.9)

Nϕi
being skew-symmetric on H, we have by Lemma 1.3.1 4),

g((∇g
ϕiY

ϕi)Y,X) + g((∇g
Y ϕi)ϕiY,X) = 0. (1.10)

Applying the above formula for Y = ϕjZ we obtain

g((∇g
ϕkZ

ϕi)ϕjZ,X) + g((∇g
ϕjZ

ϕi)ϕkZ,X) = 0. (1.11)

From (1.10) and (1.8) it follows that

0 = g((∇g
ϕiY

ϕj)ϕkY + ϕj(∇
g
ϕiY

ϕk)Y,X) + g((∇g
Y ϕj)ϕkϕiY + ϕj(∇

g
Y ϕk)ϕiY,X),

and thus

0 = g((∇g
ϕiY

ϕj)ϕkY,X)+ g((∇g
Y ϕj)ϕjY,X)− g((∇g

ϕiY
ϕk)Y, ϕjX)− g((∇g

Y ϕk)ϕiY, ϕjX). (1.12)

At this point, using formulas (1.8), (1.9), (1.10), (1.11), we have

g((∇g
ϕiY

ϕj)ϕkY,X) = −g((∇g
ϕkY

ϕj)ϕiY,X) =

= − g((∇g
ϕkY

ϕk)ϕ
2
i Y,X)− g(ϕk(∇

g
ϕkY

ϕi)ϕiY,X)

= + g((∇g
ϕkY

ϕk)Y,X) + g((∇g
ϕkY

ϕi)ϕiY, ϕkX)

= − g((∇g
Y ϕk)ϕkY,X)− g(ϕi(∇

g
ϕkY

ϕi)Y, ϕkX)

= − g(ϕj(∇
g
Y ϕk)ϕkY, ϕjX)− g((∇g

ϕkY
ϕi)Y, ϕjX)

= −g((∇g
Y ϕi)ϕkY, ϕjX) + g((∇g

Y ϕj)ϕ
2
kY, ϕjX)− g((∇g

ϕkY
ϕi)Y, ϕjX)

= − g((∇g
Y ϕi)ϕkY, ϕjX)− g((∇g

ϕkY
ϕi)Y, ϕjX) + g(ϕj(∇

g
Y ϕj)Y,X).

Substituting the obtained expression for g((∇g
ϕiY

ϕj)ϕkY,X) in (1.12), we have

0 = g((∇g
Y ϕi)ϕkY, ϕjX) + g((∇g

ϕkY
ϕi)Y, ϕjX) + g((∇g

ϕiY
ϕk)Y, ϕjX) + g((∇g

Y ϕk)ϕiY, ϕjX),

and thus Nk,i is skew-symmetric on H, owing to Lemma 1.3.2. The last claim about the skew-
symmetry of Nϕ now follows from identity (1.7), proved in [CNY16].
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We end this section with a lemma that will subsequently be used several times. Although the
formula does not look very neat, its qualitative claim is important: it states that the tensor fields
Nϕi

of an almost 3-contact metric structure can be expressed in terms of the 1-forms ηi and the
fundamental 2-forms Φi.

Lemma 1.3.3. Let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold. Then the following
formula holds ∀X,Y, Z ∈ X(M):

Nϕi
(X,Y, Z) = (1.13)

= −dΦj(X,Y, ϕjZ) + dΦj(ϕiX,ϕiY, ϕjZ) + dΦk(X,ϕiY, ϕjZ) + dΦk(ϕiX,Y, ϕjZ)

− ηi(X)[dηj(ϕiY, ϕjZ) + dηk(Y, ϕjZ)] + ηi(Y )[dηj(ϕiX,ϕjZ) + dηk(X,ϕjZ)]

+ ηj(Z)[dηj(X,Y )− dηj(ϕiX,ϕiY )]− ηj(Z)[dηk(X,ϕiY ) + dηk(ϕiX,Y )]

where (i, j, k) is an even permutation of (1, 2, 3).

Proof. As it is known, one can define three almost hermitian structures (Ji, G) on the product
manifold M × R as

Ji

(

X, f
d

dt

)

=
(

ϕiX − fξi, ηi(X)
d

dt

)

, G = g + dt2,

where X ∈ X(M) and f is a differentiable function on M × R. These almost hermitian structures
satisfy J1J2 = J3 = −J2J1. Denoting by Ωi the associated Kähler forms, one has

Ωi

((

X, f
d

dt

)

,
(

Y, f ′
d

dt

))

= G
((

X, f
d

dt

)

, Ji

(

Y, f ′
d

dt

))

= g(X,ϕiY − f ′ξi) + fηi(Y )

= Φi(X,Y )− ηi(X)f ′ + fηi(Y ).

Using the same notations Φi and ηi for differential forms on M × R such that d
dt
yΦi = 0 and

ηi(
d
dt
) = 0, we have Ωi = Φi − ηi ∧ dt, and thus

dΩi = dΦi − dηi ∧ dt. (1.14)

Now, the Nijenhuis tensors of the tensor fields Ji satisfy

G([Ji, Ji](X,Y ), Z) = − dΩj(X,Y, JjZ) + dΩj(JiX, JiY, JjZ)

+dΩk(X, JiY, JjZ) + dΩk(JiX,Y, JjZ)
(1.15)

for all vector fields X,Y, Z on M ×R, where (i, j, k) is an even permutation of (1, 2, 3) (see [Ka98,
Lemma 3.2]). Taking X,Y, Z ∈ X(M), the left-hand side in (1.15) coincides with g(Nϕi

(X,Y ), Z).
Applying (1.14) and being d

dt
y dΦi = 0 and d

dt
y dηi = 0, we have

Nϕi
(X,Y, Z) =− dΦj(X,Y, ϕjZ) + ηj(Z)dηj(X,Y )

+ dΦj(ϕiX,ϕiY, ϕjZ)− ηi(X)dηj(ϕiY, ϕjZ)

− ηi(Y )dηj(ϕjZ,ϕiX)− ηj(Z)dηj(ϕiX,ϕiY )

+ dΦk(X,ϕiY, ϕjZ)− ηi(Y )dηk(ϕjZ,X)− ηj(Z)dηk(X,ϕiY )

+ dΦk(ϕiX,Y, ϕjZ)− ηi(X)dηk(Y, ϕjZ)− ηj(Z)dηk(ϕiX,Y )

thus proving (1.13).

Remark 1.3.1. As a consequence of the above lemma, we observe: if (M,ϕi, ξi, ηi, g) is an almost
3-contact metric manifold such that dΦi(X,Y, Z) = 0 for all i = 1, 2, 3 and for all horizontal vector
fields X,Y, Z, then Nϕi

(X,Y, Z) = 0 for all X,Y, Z ∈ Γ(H). Hence, in this case conditions 1) and
3) in Definition 2.1.3 of canonical structures below are satisfied.
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2 New classes of almost 3-contact metric manifolds

2.1 Remarkable functions and canonical almost 3-contact metric mani-

folds

Definition 2.1.1. We say that an almost 3-contact metric manifold (M,ϕi, ξi, ηi, g) admits a Reeb
commutator function if there exists a function δ ∈ C∞(M) satisfying

ηk([ξi, ξj ]) = 2δǫijk for every i, j, k = 1, 2, 3,

where ǫijk is the totally skew-symmetric symbol. We shall call the function δ the Reeb commutator
function.

Clearly, the existence of a constant Reeb commutator δ expresses that the three Reeb vector
fields form a Lie algebra under the restriction of the commutator to V , which is abelian in the case
δ = 0, or isomorphic to so(3) if δ 6= 0.

Lemma 2.1.1 (Existence of a Reeb commutator function). Let (M,ϕi, ξi, ηi, g) be an almost 3-
contact metric manifold. Then the following conditions are equivalent:

1) (Lξig)(ξj , ξk) = 0 for every i, j, k = 1, 2, 3;

2) ηk([ξi, ξj ]) = 2δǫijk for some function δ ∈ C∞(M) and for every i, j, k = 1, 2, 3;

3) ηk(∇
g
ξi
ξj) = δǫijk for some function δ ∈ C∞(M) and for every i, j, k = 1, 2, 3.

Proof. The equivalence of 1) and 2) is consequence of the following equations, which hold for every
i, j, k = 1, 2, 3:

(Lξig)(ξj , ξk) = −ηk([ξi, ξj ]) + ηj([ξk, ξi]),

(Lξig)(ξi, ξk) = ηi([ξk, ξi]), (Lξig)(ξk, ξk) = 2 ηk([ξk, ξi]).

Now, let us assume that 2) holds. Since ηi([ξj , ξk]) = ηj([ξk, ξi]) = 2δǫijk, we have

g(∇g
ξj
ξk, ξi)− g(∇g

ξk
ξj , ξi) = g(∇g

ξk
ξi, ξj)− g(∇g

ξi
ξk, ξj).

It follows that g(∇g
ξj
ξi, ξk) = −g(∇g

ξi
ξj , ξk), and thus

2δǫijk = ηk([ξi, ξj ]) = 2 ηk(∇
g
ξi
ξj),

which implies 3). Conversely, 2) immediately follows from 3).

Corollary 2.1.1. Any almost 3-contact metric manifold (M,ϕi, ξi, ηi, g) for which all ξi are Killing
vector fields admits a Reeb commutator function δ.

A second remarkable function catches subtle properties of the Lie derivatives. Given an almost
3-contact metric manifold (M,ϕi, ξi, ηi, g), we introduce the tensor fields Aij , i, j = 1, 2, 3, defined
on the subbundle H of TM by

Aij(X,Y ) := g((Lξjϕi)X,Y ) + dηj(X,ϕiY ) + dηj(ϕiX,Y ). (2.1)

We shall denote by Ai the tensor field Aii. In Proposition 3.2.2, we will prove that an expression
of this type appears as the covariant derivative of ϕ ∈ ΣM for any ϕ-compatible connection, thus
partially explaining its relevance. In Section 2.3, we will encounter many manifolds for which
Ai = 0 and the tensor fields Aij (i 6= j) are skew-symmetric in i, j and proportional to Φk, where
k is the only remaining index in {1, 2, 3} different from i and j. The following definition captures
these properties.
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Definition 2.1.2. An almost 3-contact metric manifold (M,ϕi, ξi, ηi, g) is said to admit a Reeb
Killing function if there exists a smooth function β ∈ C∞(M) such that for every X,Y ∈ Γ(H)
and every even permutation (i, j, k) of (1, 2, 3),

Ai(X,Y ) = 0, Aij(X,Y ) = −Aji(X,Y ) = βΦk(X,Y ). (2.2)

As a special case, M will be called a parallel almost 3-contact metric manifold if it has vanishing
Reeb Killing function, β = 0 or, equivalently, Aij = 0 ∀i, j = 1, 2, 3.

Remark 2.1.1. The intrinsic meaning of the function β is not as obvious as for the Reeb commutator
function, but it will become clearer as we proceed. Most importantly, we shall see later that
it controls the derivatives of the structure tensors ϕi, ξi, and ηi with respect to the canonical
connection (see Remark 4.1.2), and this is in fact the justification why manifolds with vanishing β
are called parallel.

The following definition turns out to be tailor-made for our purposes:

Definition 2.1.3. Let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold. We call it a
canonical almost 3-contact metric manifold if the following conditions are satisfied:

1) each Nϕi
is skew-symmetric on H,

2) each ξi is a Killing vector field,

3) for any X,Y, Z ∈ Γ(H) and any i, j = 1, 2, 3,

Nϕi
(X,Y, Z)− dΦi(ϕiX,ϕiY, ϕiZ) = Nϕj

(X,Y, Z)− dΦj(ϕjX,ϕjY, ϕjZ),

4) M admits a Reeb Killing function β ∈ C∞(M).

As before, a parallel canonical almost 3-contact metric manifold is one with vanishing Reeb Killing
function, β = 0.

By Corollary 2.1.1, a canonical almost 3-contact metric manifold admits also a Reeb commu-
tator function δ. We shall see in Theorem 4.1.1 that canonical almost 3-contact metric manifolds
are exactly those admitting a canonical connection, thus explaining the name. In a first step, we
prove that each of the three almost contact metric structures of a canonical almost 3-contact metric
manifold admits a characteristic connection in the sense of Friedrich and Ivanov (Theorem 1.2.1):

Theorem 2.1.1 (Characteristic connections of canonical manifolds). Let (M,ϕi, ξi, ηi, g) be a
canonical almost 3-contact metric manifold. Then the following hold:

1) The three Nijenhuis tensors Nϕi
(i = 1, 2, 3) are skew-symmetric on TM , and hence each almost

contact metric structure (ϕi, ξi, ηi, g) admits a characteristic connection ∇i.

2) Each almost contact metric structure (ϕ, ξ, η, g) in the associated sphere ΣM admits a charac-
teristic connection.

Proof. 1) By assumption, the three Reeb vector fields ξi are Killing vector fields and the Nijenhuis
tensors Nϕi

are skew-symmetric on H. We prove that each Nϕi
is skew-symmetric on TM . First

of all, the definition of the Nijenhuis tensor implies that for every X,Y ∈ Γ(H) and for every even
permutation (i, j, k) of (1, 2, 3), the following equations hold:

Nϕi
(X,Y ) = [ϕiX,ϕiY ]− [X,Y ]− ϕi[ϕiX,Y ]− ϕi[X,ϕiY ],

Nϕi
(X, ξi) = −[X, ξi]− ϕi[ϕiX, ξi],

Nϕi
(X, ξj) = [ϕiX, ξk]− [X, ξj ]− ϕi[ϕiX, ξj ]− ϕi[X, ξk],

Nϕi
(X, ξk) = −[ϕiX, ξj ]− [X, ξk]− ϕi[ϕiX, ξk] + ϕi[X, ξj ], (2.3)

Nϕi
(ξi, ξj) = −[ξi, ξj ]− ϕi[ξi, ξk],

Nϕi
(ξi, ξk) = −[ξi, ξk] + ϕi[ξi, ξj ],

Nϕi
(ξj , ξk) = 0.
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Let δ be the Reeb commutator function, i. e. ηt([ξr, ξs]) = 2δǫrst, with r, s, t = 1, 2, 3. Using the
defining relations (1.5), one easily checks that

Nϕi
(ξi, ξj , ξi) = Nϕi

(ξi, ξj , ξj) = Nϕi
(ξi, ξk, ξi) = Nϕi

(ξi, ξk, ξk) = 0,

Nϕi
(ξi, ξj , ξk) = Nϕi

(ξi, ξk, ξj) = 0.

For X ∈ Γ(H) and r, s = 1, 2, 3, one checks that

(LXg)(ξr, ξs) = −(Lξrg)(X, ξs)− (Lξsg)(X, ξr).

Since the Reeb vector fields are Killing, this quantity vanishes, which is equivalent to ηr([X, ξs])+
ηs([X, ξr]) = 0. Therefore,

Nϕi
(X, ξi, ξi) = −ηi([X, ξi]) = 0,

Nϕi
(X, ξj , ξj) = ηj([ϕiX, ξk])− ηj([X, ξj ]) + ηk([ϕiX, ξj ]) + ηk([X, ξk]) = 0.

Similarly one shows the following identities:

Nϕi
(X, ξk, ξk) = 0, Nϕi

(X, ξi, ξj) +Nϕi
(X, ξj , ξi) = 0,

Nϕi
(X, ξj , ξk) = Nϕi

(X, ξk, ξj) = 0, Nϕi
(X, ξi, ξk) +Nϕi

(X, ξk, ξi) = 0.

Since ξi is a Killing vector field, we have

Nϕi
(ξi, ξj , X) +Nϕi

(ξi, X, ξj)

= −g([ξi, ξj ], X) + g([ξi, ξk], ϕiX)− g([ξi, X ], ξj) + g([ξi, ϕiX ], ξk)

= (Lξig)(ξj , X)− (Lξig)(ξk, ϕiX) = 0

and analogously, Nϕi
(ξi, ξk, X) +Nϕi

(ξi, X, ξk) = 0. Now the existence of a Reeb Killing function
β (see eq. (2.2)) yields for X,Y ∈ Γ(H)

Nϕi
(X,Y, ξi) +Nϕi

(X, ξi, Y )

= ηi([ϕiX,ϕiY ])− ηi([X,Y ]) + g([ξi, X ], Y )− g([ξi, ϕiX ], ϕiY )

= −dηi(ϕiX,ϕiY ) + dηi(X,Y )− g((Lξiϕi)ϕiX,Y )

= −Ai(ϕiX,Y ) = 0.

Furthermore, one can compute

Nϕi
(X,Y, ξj) = −dηj(ϕiX,ϕiY ) + dηj(X,Y )− dηk(ϕiX,Y )− dηk(X,ϕiY ), (2.4)

as well as

Nϕi
(X, ξj , Y ) = g([ϕiX, ξk], Y )− g([X, ξj ], Y ) + g([ϕiX, ξj ], ϕiY ) + g([X, ξk], ϕiY )

= −g((Lξjϕi)ϕiX,Y )− g((Lξkϕi)X,Y ).

Therefore, using again the existence of a Reeb Killing function, we conclude

Nϕi
(X,Y, ξj) +Nϕi

(X, ξj , Y ) = −Aij(ϕiX,Y )−Aik(X,Y )

= −βΦk(ϕiX,Y ) + βΦj(X,Y )

= −βg(ϕiX,ϕkY ) + βg(X,ϕjY ) = 0.

Analogously one shows that Nϕi
(X,Y, ξk) +Nϕi

(X, ξk, Y ) = 0. Finally,

Nϕi
(ξi, X,X) = −g([ξi, X ], X)− g(ϕi[ξi, ϕiX ], X) = g((Lξiϕi)ϕiX,X) = Ai(ϕiX,X) = 0,
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and furthermore

Nϕi
(ξj , X,X) = g([ξk, ϕiX ], X)− g([ξj , X ], X)− g(ϕi[ξk, X ], X)− g(ϕi[ξj , ϕiX ], X)

= g((Lξkϕi)X,X) + g((Lξjϕi)ϕiX,X) = Aik(X,X) +Aij(ϕiX,X)

= −βΦj(X,X) + βΦk(ϕiX,X) = 0.

Analogously, Nϕi
(ξk, X,X) = 0, completing the proof that each Nϕi

is skew-symmetric on TM .
Since all ξi are Killing vector fields, the existence of a characteristic connection ∇i for each ϕi now
follows from Theorem 1.2.1.

2) Let (ϕ, ξ, η, g) be in the associated sphere ΣM . Its Reeb vector field ξ is obviously Killing,
and thus the main point is to prove that its Nijenhuis tensor Nϕ is skew-symmetric on TM . By
1), each tensor Nϕi

is skew-symmetric on TM , and consequently Proposition 1.3.1 implies that
each Ni,j , i 6= j, is skew-symmetric on H. In view of (1.7), we only need to show that each Ni,j

is skew-symmetric on TM . In the following we fix an even permutation (i, j, k) of (1, 2, 3) and
denote by X,Y, Z horizontal vector fields. We proceed case by case as 1), hence we shall be brief.
From the definition of Ni,j , taking into account that (ϕiϕj + ϕjϕi)X = 0, we obtain after a short
calculation

Ni,j(X,Y ) = [ϕiX,ϕjY ]− [ϕjX,ϕiY ]− ϕi[ϕjX,Y ]− ϕi[X,ϕjY ]

− ϕj [ϕiX,Y ]− ϕj [X,ϕiY ],

Ni,j(X, ξi) = −[ϕiX, ξk]− ϕi[ϕjX, ξi] + ϕi[X, ξk]− ϕj [ϕiX, ξi]

= (Lξkϕi)X − (Lξiϕi)ϕjX − (Lξiϕj)ϕiX,

Ni,j(X, ξj) = [ϕjX, ξk]− ϕi[ϕjX, ξj ]− ϕj [ϕiX, ξj ]− ϕj [X, ξk]

= −(Lξkϕj)X − (Lξjϕi)ϕjX − (Lξjϕj)ϕiX, (2.5)

Ni,j(X, ξk) = [ϕiX, ξi]− [ϕjX, ξj ]− ϕi[ϕjX, ξk]− ϕi[X, ξi]− ϕj [ϕiX, ξk] + ϕj [X, ξj ]

= −(Lξiϕi)X + (Lξjϕj)X − (Lξkϕi)ϕjX − (Lξkϕj)ϕiX,

Ni,j(ξi, ξj) = ϕi[ξk, ξj ]− ϕj [ξi, ξk],

Ni,j(ξi, ξk) = [ξk, ξj ] + ϕj [ξi, ξj ],

Ni,j(ξj , ξk) = [ξk, ξi]− ϕi[ξj , ξi].

Now, since M admits a Reeb commutator function, one easily checks that Ni,j(ξr, ξs, ξt) = 0 for
every r, s, t = 1, 2, 3. Furthermore, since ηr([X, ξs]) + ηs([X, ξr]) = 0, we deduce Ni,j(X, ξr, ξs) +
Ni,j(X, ξs, ξr) = 0. Next we compute

Ni,j(ξi, ξj , X) +Ni,j(ξi, X, ξj)

= −g([ξk, ξj ], ϕiX) + g([ξi, ξk], ϕjX)− g([ξk, ϕiX ], ξj) + g([ξi, ϕjX ], ξk)

= (Lξkg)(ϕiX, ξj)− (Lξig)(ξk, ϕjX) = 0.

Analogously, using the equations in (2.5), one shows that

Ni,j(ξi, ξk, X) +Ni,j(ξi, X, ξk) = 0, Ni,j(ξj , ξk, X) +Ni,j(ξj , X, ξk) = 0.

Since M admits a Reeb Killing function β, we have

Ni,j(X,Y, ξi) +Ni,j(X, ξi, Y )

= −dηi(ϕiX,ϕjY )− dηi(ϕjX,ϕiY ) + dηk(ϕiX,Y ) + dηk(X,ϕiY )

+ g((Lξkϕi)X,Y )− g((Lξiϕi)ϕjX,Y )− g((Lξiϕj)ϕiX,Y )

= Aik(X,Y )−Ai(ϕjX,Y ) + dηi(ϕiϕjX,Y )−Aji(ϕiX,Y ) + dηi(ϕjϕiX,Y )

= −βΦj(X,Y ) + βΦk(ϕiX,Y ) = −βg(X,ϕjY ) + βg(ϕiX,ϕkY ) = 0.
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In the same way one shows that

Ni,j(X,Y, ξj) +Ni,j(X, ξj , Y ) = 0, Ni,j(X,Y, ξk) +Ni,j(X, ξk, Y ) = 0.

Finally,

Ni,j(ξi, X,X) = −g((Lξkϕi)X,X) + g((Lξiϕi)ϕjX,X)− g((Lξiϕj)ϕiX,X)

= −Aik(X,X) +Ai(ϕjX,X) + dηi(ϕjX,ϕiX) + dηi(ϕiϕjX,X)

−Aji(ϕiX,X) + dηi(ϕiX,ϕjX) + dηi(ϕjϕiX,X)

= βΦj(X,X) + βΦk(ϕiX,X) = 0,

and analogously Ni,j(ξj , X,X) = Ni,j(ξk, X,X) = 0, thus completing the proof.

We introduce now a slight generalization of 3-cosymplectic manifolds.

Definition 2.1.4. A 3-δ-cosymplectic manifold is an almost 3-contact metric manifold satisfying

dηi = −2δηj ∧ ηk, dΦi = 0, (2.6)

for some δ ∈ R and for every even permutation (i, j, k) of (1, 2, 3).

When δ = 0, we get the notion of 3-cosymplectic manifolds. We shall describe the class of
3-δ-cosymplectic manifolds with δ 6= 0, and show that all 3-δ-cosymplectic manifolds are parallel
and canonical.

Proposition 2.1.1. Let (M,ϕi, ξi, ηi, g) be a 3-δ-cosymplectic manifold with δ 6= 0. Then the
structure is hypernormal, and the Levi-Civita connection satisfies

(∇g
Xϕi)Y = δ{ηj(X)ηj(Y ) + ηk(X)ηk(Y )}ξi − δ ηi(Y ){ηj(X)ξj + ηk(X)ξk}, (2.7)

∇g
Xξi = δ{ηk(X)ξj − ηj(X)ξk} (2.8)

for every X,Y ∈ X(M) and for every even permutation (i, j, k) of (1, 2, 3). Furthermore, each ξi
is a Killing vector field and M is locally isometric to the Riemannian product of a hyper-Kähler
manifold and the 3-dimensional sphere of constant curvature δ2.

Proof. The fact that the structure is hypernormal is a consequence of Lemma 1.3.3, which expressed
Nϕi

in terms of ηi and Φi. More precisely, the defining relation (2.6) of 3-δ-cosymplectic manifolds,
when plugged into the identity (1.13), yields after a short calculation that Nϕi

= 0.
By [Bl10, Lemma 6.1], the Levi-Civita connection of any hypernormal structure satisfies

2g((∇g
Xϕi)Y, Z) = dΦi(X,ϕiY, ϕiZ)− dΦi(X,Y, Z)

+ dηi(ϕiY,X)ηi(Z)− dηi(ϕiZ,X)ηi(Y )
(2.9)

for every X,Y, Z ∈ X(M). Together with equation (2.6), this yields

2g((∇g
Xϕi)Y, Z) = −2δ(ηj ∧ ηk)(ϕiY,X)ηi(Z) + 2δ(ηj ∧ ηk)(ϕiZ,X)ηi(Y )

= 2δ{ηk(Y )ηk(X) + ηj(X)ηj(Y )}ηi(Z)

+ 2δ{−ηk(Z)ηk(X)− ηj(Z)ηj(X)}ηi(Y ),

and hence we proved (2.7). Applying (2.7) for Y = ξi, we have

∇g
Xξi = −ϕ2

i (∇
g
Xξi) = ϕi((∇

g
Xϕi)ξi) = −δ{ηj(X)ξk − ηk(X)ξj},

which proves (2.8). It follows that

g(∇g
Xξi, Y ) = δ(ηk ∧ ηj)(X,Y )
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for every vector fields X , Y , thus showing that ξi is Killing. We can also deduce that

∇g
ξi
ξi = 0, ∇g

ξi
ξj = −∇g

ξj
ξi = δξk, [ξi, ξj ] = 2δξk.

Then, V is an integrable distribution with totally geodesic leaves, globally spanned by Killing vector
fields. Since H is integrable as well, the manifold is locally isometric to the Riemannian product
of a manifold M ′ tangent to H and a 3-dimensional Lie group tangent to V , which is isomorphic
to SO(3). Owing to (2.7), the almost 3-contact metric structure induces on M ′ a hyper-Kähler
structure. Furthermore, the leaves of V have constant sectional curvature δ2.

Together with what was known before on 3-δ-cosymplectic manifolds with δ = 0 (Section 1.2),
we obtain:

Corollary 2.1.2. Any 3-δ-cosymplectic manifold (M,ϕi, ξi, ηi, g) is a parallel canonical almost
3-contact metric manifold.

Proof. Conditions 1)-3) of Definition 2.1.3 are satisfied since the structure is hypernormal, the
fundamental 2-forms are closed, and the Reeb vector fields are Killing. SinceM is locally isometric
to the Riemannian product of a horizontal hyper-Kähler manifold and a vertical Lie group, we
have (Lξiϕj)X = 0 for every horizontal vector field X and for every i, j = 1, 2, 3. It follows that
Aij(X,Y ) = 0 for every X,Y ∈ H. In particular, this shows that the Reeb Killing functions β
vanishes, i. e. it is a parallel canonical almost 3-contact metric manifold.

For 3-δ-cosymplectic structures on Lie groups, see Example 5.1. Inspired by the previous
result, we sketch a slightly more general construction of parallel canonical almost 3-contact metric
manifolds:

Example 2.1.1 (Examples arising on HKT manifolds). A hyper-Kähler with torsion manifold,
briefly HKT-manifold, is defined as a hyperhermitian manifold (M,Ji, h) endowed with a metric
connection ∇c with skew-symmetric torsion such that ∇cJi = 0 for all i = 1, 2, 3. This is equivalent
to requiring that

J1dΩ1 = J2dΩ2 = J3dΩ3, (2.10)

where Ωi is the Kähler form of Ji. The unique metric connection with skew torsion parallelizing
the complex structures has torsion T0 = −JidΩi. Let us consider a HKT-manifold (M,Ji, h)
and a 3-dimensional Lie group G with Lie algebra g spanned by vector fields ξ1, ξ2, ξ3 such that
[ξi, ξj ] = 2δξk, for some δ ∈ R and for every even permutation (i, j, k) of (1, 2, 3). In particular, for
δ = 0 we have an abelian Lie group, while for δ 6= 0, G is isomorphic to SO(3). On the product
manifoldM ×G one can define in a natural way an almost 3-contact metric structure (ϕi, ξi, ηi, g),
by

ϕi|TM = Ji, ϕiξi = 0, ϕiξj = ξk, ϕiξk = −ξj ,

ηi|TM = 0, ηi(ξi) = 1, ηi(ξj) = ηi(ξk) = 0,

and g the product metric of h and the left invariant Riemannian metric on G with respect to which
ξ1, ξ2, ξ3 are an orthonormal basis of g. We show that this structure is canonical with vanishing
Reeb Killing function.

Since each structure Ji is integrable, one can easily verify that the almost 3-contact structure is
hypernormal. Each fundamental 2-form Φi satisfies Φi(X,Y ) = −Ωi(X,Y ), so that (2.10) implies

dΦi(ϕiX,ϕiY, ϕiZ) = dΦj(ϕjX,ϕjY, ϕjZ)

for every i, j = 1, 2, 3 and X,Y, Z ∈ H. Moreover, each ξi is a Killing vector field and the tensor
fields Aij are all vanishing.

By the previous examples, one could be tempted to believe that parallel canonical almost 3-
contact metric manifolds are always locally isometric to products, and hence of limited interest. In
Example 4.1.3, it is shown that S7 carries in a natural way a parallel canonical almost 3-contact
metric structure as well.
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2.2 A generalization of Kashiwada’s theorem and 3-(α, δ)-Sasaki mani-

folds

In [Ka01] T. Kashiwada proved that a 3-contact metric manifold is necessarily 3-Sasakian. We
shall show that hypernormality is in fact a key property of a larger class of almost 3-contact metric
manifolds, the so-called 3-(α, δ)-Sasaki manifolds.

Definition 2.2.1. An almost 3-contact metric manifold (M,ϕi, ξi, ηi, g) will be called a 3-(α, δ)-
Sasaki manifold if it satisfies

dηi = 2αΦi + 2(α− δ)ηj ∧ ηk (2.11)

for every even permutation (i, j, k) of (1, 2, 3), where α 6= 0 and δ are real constants. A 3-(α, δ)-
Sasaki manifold will be called degenerate if δ = 0 and nondegenerate otherwise—quaternionic
Heisenberg groups are examples of degenerate 3-(α, δ)-Sasaki manifolds (Example 2.3.2). When
α = δ = 1, we have a 3-contact metric manifold, and hence a 3-Sasaki manifold by Kashiwada’s
theorem [Ka01]. For α = δ, one easily verifies that the manifold is 3-α-Sasakian.

Remark 2.2.1. This definition captures two different aspects. First, the manifold is what one could
call a ‘horizontal 3-α-contact metric manifold’ in the sense that it satisfies the α-contact condition
(1.3) for horizontal vector fields,

dηi(X,Y ) = 2αΦi(X,Y ) ∀X,Y ∈ Γ(H).

The second term proportional to ηj ∧ ηk is reminiscent of the definition of 3-δ-cosymplectic man-
ifolds, see equation (2.6); however, it is not a generalization of this notion, since α is not allowed
to vanish and the fundamental 2-forms Φi need not be closed.

The following consequences are immediate. In particular, the second property interprets the
constant δ as the Reeb commutator function, and thus yields a first hint why the distinction
between degenerate and nondegenerate 3-(α, δ)-Sasaki manifolds is reasonable; the H-homothetic
deformations to be studied in the next section will give further justification for this distinction.

Lemma 2.2.1. Any 3-(α, δ)-Sasaki manifold (M,ϕi, ξi, ηi, g) satisfies:

1) Each ξi is an infinitesimal automorphism of the distribution H, i. e.

dηr(X, ξs) = 0 X ∈ Γ(H), r, s = 1, 2, 3;

2) The constant δ is the Reeb commutator function,

dηr(ξs, ξt) = −2δǫrst, r, s, t = 1, 2, 3;

3) The differentials dΦi are given by

dΦi = 2(δ − α)(ηk ∧ Φj − ηj ∧ Φk). (2.12)

Proof. Only the last claim requires a proof. By differentiating (2.11), one obtains

2αdΦi + 2(α− δ)(dηj ∧ ηk − ηj ∧ dηk) = 0.

Applying again (2.11), the result follows since α 6= 0.

The proof that any 3-(α, δ)-Sasaki manifold has Killing Reeb vector fields and admits a constant
Reeb Killing function requires more work, see Corollary 2.3.1 and Corollary 2.3.3. As a first crucial
result, we prove the announced generalization of Kashiwada’s theorem.

Theorem 2.2.1 (Generalized Kashiwada Theorem). Any 3-(α, δ)-Sasaki manifold is hypernormal.
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Proof. We shall compute the tensor fields Nϕi
, distinguishing case by case between horizontal and

vertical vector fields. Again, the crucial ingredient is our Lemma 1.3.3, which expressed Nϕi
in

terms of ηi and Φi. We always denote by X,Y, Z horizontal vector fields and by (i, j, k) an even
permutation of (1, 2, 3).

First, equation (2.12) implies dΦi(X,Y, Z) = 0 and thus Nϕi
(X,Y, Z) = 0 ∀i = 1, 2, 3 by

Remark 1.3.1. Notice that, since

ξiyΦi = 0, ξjyΦi = −ηk, ξkyΦi = ηj ,

equation (2.12) implies that

ξiy dΦi = 0, ξjy dΦi = −2(δ − α)(Φk + ηij), ξky dΦi = 2(δ − α)(Φj + ηki). (2.13)

Therefore, Lemma 1.3.3 implies after applying (2.11) and (2.13):

Nϕi
(X, ξi, Z) = −dΦj(X, ξi, ϕjZ) + dΦk(ϕiX, ξi, ϕjZ) + dηj(ϕiX,ϕjZ) + dηk(X,ϕjZ)

= −2(δ − α)Φk(ϕjZ,X)− 2(δ − α)Φj(ϕjZ,ϕiX)

+ 2αΦj(ϕiX,ϕjZ) + 2αΦk(X,ϕjZ)

= 2δΦj(ϕiX,ϕjZ) + 2δΦk(X,ϕjZ) = −2δg(ϕiX,Z)− 2δg(X,ϕiZ) = 0,

Nϕi
(X, ξj , Z) = dΦj(ϕiX, ξk, ϕjZ) + dΦk(ϕiX, ξj , ϕjZ)

= −2(δ − α)Φi(ϕjZ,ϕiX) + 2(δ − α)Φi(ϕjZ,ϕiX) = 0,

Nϕi
(X, ξk, Z) = −dΦj(X, ξk, ϕjZ)− dΦk(X, ξj , ϕjZ)

= 2(δ − α)Φi(ϕjZ,X)− 2(δ − α)Φi(ϕjZ,X) = 0.

From the definition of Nϕi
(see equation (2.3)), we have

Nϕi
(X,Y, ξi) = −dηi(ϕiX,ϕiY ) + dηi(X,Y ),

Nϕi
(X,Y, ξj) = −dηj(ϕiX,ϕiY ) + dηj(X,Y )− dηk(ϕiX,Y )− dηk(X,ϕiY ),

Nϕi
(X,Y, ξk) = −dηk(ϕiX,ϕiY ) + dηk(X,Y ) + dηj(ϕiX,Y ) + dηj(X,ϕiY ).

Using the fact that the structure is horizontal 3-α-contact, the above terms are all vanishing. On
the other hand, one can easily verify that this is coherent with Lemma 1.3.3. Notice that (2.13)
implies dΦr(X, ξs, ξt) = 0 for every r, s, t = 1, 2, 3 and X ∈ Γ(H). Taking also into account that
dηr(X, ξs) = 0, we deduce from (1.13) that

Nϕr
(X, ξs, ξt) = Nϕr

(ξs, ξt, X) = 0.

Finally, (1.13) implies together with dηr(ξs, ξt) = −2δǫrst that

Nϕi
(ξi, ξj , ξk) = Nϕi

(ξi, ξk, ξj) = Nϕi
(ξj , ξk, ξi) = 0,

completing the proof that M is hypernormal.

2.3 Properties and examples of 3-(α, δ)-Sasaki manifolds

We shall describe the behaviour of 3-(α, δ)-Sasaki structures under a special type of deformations,
inspired by the classical D-homothetic deformations of almost contact metric structures. Given an
almost 3-contact metric structure (ϕi, ξi, ηi, g), one can consider the deformed structure

η′i = cηi, ξ′i =
1

c
ξi, ϕ′

i = ϕi, g′ = ag + b

3
∑

i=1

ηi ⊗ ηi, (2.14)

where a, b, c are real numbers such that a > 0, a+ b > 0, c 6= 0. One can show that (ϕ′
i, ξ

′
i, η

′
i, g

′)
is an almost 3-contact metric structure if and only if c2 = a + b. Indeed, each (ϕ′

i, ξ
′
i, η

′
i) is an
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almost contact structure and equations (1.5) are readily verified. As for the Riemannian metric
g′, if (i, j, k) is an even permutation of (1, 2, 3), we have

g′(ϕ′

iX,ϕ
′

iY ) = ag(ϕiX,ϕiY ) + b{ηj(ϕiX)ηj(ϕiY ) + ηk(ϕiX)ηk(ϕiY )}

= ag(X,Y )− aηi(X)ηi(Y ) + b{ηj(X)ηj(Y ) + ηk(X)ηk(Y )}

= g′(X,Y )− (a+ b)ηi(X)ηi(Y )

= g′(X,Y )−
a+ b

c2
η′i(X)η′i(Y ).

Therefore, g′ is compatible with the structure (ϕ′
i, ξ

′
i, η

′
i) if and only if c2 = a + b. In particular,

for c = a, we can choose b = a(a− 1).

Definition 2.3.1. The deformation (2.14) of an almost 3-contact metric manifold with real param-
eters a, b, c satisfying a > 0, a+ b > 0, c 6= 0, c2 = a+ b will be called a H-homothetic deformation
of the original manifold, and an almost 3-contact metric manifold which can be obtained through
a H-homothetic deformation will be called H-homothetic to the original manifold.

Proposition 2.3.1. The H-homothetic deformation of a 3-(α, δ)-Sasaki manifold is again a 3-
(α′, δ′)-Sasaki manifold with

α′ = α
c

a
, δ′ =

δ

c
.

In particular, α′δ′ has the same sign as αδ, and the H-homothetic deformation is degenerate if and
only if the undeformed 3-(α, δ)-Sasaki manifold is degenerate.

Proof. The fundamental 2-form of the deformed structure is given by

Φ′
i(X,Y ) = g′(X,ϕiY ) = ag(X,ϕiY ) + b{ηj(X)ηj(ϕiY ) + ηk(X)ηk(ϕiY )}

= aΦi(X,Y ) + b{−ηj(X)ηk(Y ) + ηk(X)ηj(Y )},

where (i, j, k) is an even permutation of (1, 2, 3), and thus Φ′
i = aΦi − b ηjk. Then, if (ϕi, ξi, ηi, g)

is 3-(α, δ)-Sasaki, we have

dη′i = 2αcΦi + 2(α− δ)c ηjk = 2α
c

a
(Φ′

i + b ηjk) + 2(α− δ)c ηjk

= 2α
c

a
Φ′

i + 2
(

αc
b + a

a
− δc

)

ηjk = 2α
c

a
Φ′

i + 2
(

α
c

a
−
δ

c

)

η′j ∧ η
′

k,

where we applied c2 = a+ b.

Example 2.3.1 (H-Deformations of 3-Sasaki manifolds I). As a consequence of the above proposi-
tion, if (ϕi, ξi, ηi, g) is a 3-Sasakian structure (α = δ = 1), the H-deformed structure is a 3-(α′, δ′)-
Sasaki structure with α′ 6= δ′ whenever b 6= 0. Indeed

α′ − δ′ =
c

a
−

1

c
=
c2 − a

ac
=

b

ac
6= 0.

Another interesting special case ofH-Deformations of 3-Sasaki manifolds with interesting curvature
properties will be discussed in Example 4.4.1.

Conversely, let us describe those 3-(α, δ)-Sasaki manifolds which admit a 3-α̃-Sasakian H-
homothetic deformation (the tilde only serves to distinguish which parameters correspond to which
manifold):

Lemma 2.3.1. A 3-(α, δ)-Sasaki manifold is H-homothetic to a 3-α̃-Sasaki manifold if and only
if it is nondegenerate with αδ > 0.
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Proof. Since 3-α̃-Sasaki manifolds are nondegenerate, this condition is obvious by Proposition
2.3.1, so we can assume δ 6= 0. In order to be 3-α-Sasakian, we must find admissible parameters
a, b, c such that α′ = δ′, which is equivalent to α

δ
= a

c2
. Since a > 0, the necessary condition

αδ > 0 follows. Furthermore, we can assume that α, δ > 0, since the H-homothetic deformation
with parameters a = 1, c = −1, b = 0 changes the signs of α and δ. For α, δ > 0, one checks that

a = 1, b =
δ

α
− 1, c =

√

δ

α
(2.15)

is the desired deformation.

Remark 2.3.1. Observe that under H-homothetic deformations given by (2.15), αδ = const., so
all 3-(α, δ)-Sasaki manifolds which are H-homothetic under the given deformation to a fixed 3-α-
Sasaki manifold lie on a ‘hyperbola’ in the (α, δ)-plane. For α = δ, the H-homothetic deformation
coincides with the identity.

Thus, the questions arises whether 3-(α, δ)-Sasaki manifolds with αδ < 0 exist at all. In order
to answer this question positively, we need the notion of negative 3-Sasakian manifolds. They
are defined as normal almost 3-contact manifolds (M,ϕi, ξi, ηi) endowed with a compatible semi-
Riemannian metric g̃, i. e. g̃(ϕiX,ϕiY ) = g̃(X,Y )− ηi(X)ηi(Y ) such that g̃ has signature (3, 4n),
where 4n+ 3 is the dimension of M , and dηi(X,Y ) = 2g̃(X,ϕiY ). It is known that quaternionic
Kähler (not hyperKähler) manifolds with negative scalar curvature admit a canonically associated
principal SO(3)-bundle P (M) which is endowed with a negative 3-Sasakian structure [Ko75, Ta96].

If (M,ϕi, ξi, ηi, g̃) is a negative 3-Sasakian manifold, as in [Ta96] we consider the Riemannian
metric

g = −g̃ + 2

3
∑

i=1

ηi ⊗ ηi

which is compatible with the structure (ϕi, ξi, ηi). A simple computation shows that

dηi(X,Y ) = −2g(X,ϕiY )− 4(ηj ∧ ηk)(X,Y )

for every vector fields X,Y . Therefore (M,ϕi, ξi, ηi, g) is a 3-(α, δ)-Sasaki manifold with α = −1
and δ = 1. Applying the H-homothetic deformation (2.14), one obtains a 3-(α′, δ′)-Sasaki structure
with α′δ′ < 0, and α′ 6= −δ′ whenever b 6= 0. Indeed

α′ + δ′ = −
c

a
+

1

c
=
a− c2

ac
= −

b

ac
6= 0.

Conversely, we have the following

Lemma 2.3.2. A 3-(α, δ)-Sasaki manifold is H-homothetic to a 3-(α̃, δ̃)-Sasaki manifold with
α̃ = −δ̃ < 0 if and only if it is nondegenerate with αδ < 0.

Proof. By Proposition 2.3.1 an H-homothetic deformation of a 3-(α̃, δ̃)-Sasaki manifold with α̃ =
−δ̃, is 3-(α, δ)-Sasaki with αδ < 0. Conversely, given a 3-(α, δ)-Sasaki manifold with αδ < 0,
first we can assume that α < 0 and δ > 0 since the H-homothetic deformation with parameters
a = 1, c = −1, b = 0 changes the signs of α and δ. Then, we need admissible parameters a, b, c
such that α′ = −δ′, which is equivalent to α

δ
= − a

c2
. The desired deformation is

a = 1, b = −
δ

α
− 1, c =

√

−
δ

α
. (2.16)

Remark 2.3.2. Under H-homothetic deformations given by (2.16), αδ = const. Then, all 3-(α, δ)-
Sasaki manifolds which are H-homothetic under the given deformation to a fixed 3-(α̃, δ̃)-Sasaki
manifold, with α̃ = −δ̃, lie on a ‘hyperbola’ in the (α, δ)-plane.
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We will now further investigate the geometry of 3-(α, δ)-Sasaki manifolds. First we prove some
preliminary formulas.

Lemma 2.3.3. Let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold. Then the associated
fundamental 2-forms satisfy for all X,Y ∈ X(M) and any cyclic permutation (i, j, k) of (1, 2, 3)
the following relations:

Φj(ϕiX,ϕiY ) = −Φj(X,Y ) + (ηi ∧ ηk)(X,Y ), (2.17)

Φk(ϕiX,ϕiY ) = −Φk(X,Y )− (ηi ∧ ηj)(X,Y ), (2.18)

Φj(ϕiX,Y ) = −Φk(X,Y )− ηi(X)ηj(Y ), (2.19)

Φk(ϕiX,Y ) = Φj(X,Y )− ηi(X)ηk(Y ). (2.20)

Proof. Applying (1.5), we have

Φj(ϕiX,ϕiY ) = g(ϕiX,ϕjϕiY ) = g(ϕiX,−ϕiϕjY + ηi(Y )ξj + ηj(Y )ξi)

= −g(X,ϕjY ) + ηi(X)ηi(ϕjY )− ηi(Y )g(X,ϕiξj)

= −Φj(X,Y ) + ηi(X)ηk(Y )− ηi(Y )ηk(X)

which proves (2.17). As regards (2.19), we have

Φj(ϕiX,Y ) = −g(X,ϕiϕjY ) = −g(X,ϕkY + ηj(Y )ξi) = −Φk(X,Y )− ηi(X)ηj(Y ).

Analogously, one shows (2.18) and (2.20).

The following two propositions contain the necessary preparations for showing that 3-(α, δ)-
Sasaki manifolds are canonical, as they yield remarkable identities for ∇gϕi and ∇gξi.

Proposition 2.3.2. Let (M,ϕi, ξi, ηi, g) be a 3-(α, δ)-Sasaki manifold. Then the Levi-Civita con-
nection satisfies for all X,Y ∈ X(M) and any cyclic permutation (i, j, k) of (1, 2, 3):

(∇g
Xϕi)Y = α [g(X,Y )ξi − ηi(Y )X ]− 2(α− δ) [ηk(X)ϕjY − ηj(X)ϕkY ]

+ (α − δ) [ηj(X)ηj(Y ) + ηk(X)ηk(Y )] ξi

− (α − δ) ηi(Y ) [ηj(X)ξj + ηk(X)ξk] .

(2.21)

Proof. Since the structure is hypernormal, the Levi-Civita connection satisfies by [Bl10, Lemma
6.1] the identity (2.9) used before. Let us evaluate its terms. To start with, the defining relation
(2.12) of a 3-(α, δ)-Sasaki manifold and the preceding equations (2.17)-(2.20) yield

dΦi(X,ϕiY, ϕiZ) =

= 2(δ − α)[ηk(X)Φj(ϕiY, ϕiZ)− ηj(X)Φk(ϕiY, ϕiZ) + ηk(ϕiY )Φj(ϕiZ,X)

− ηj(ϕiY )Φk(ϕiZ,X) + ηk(ϕiZ)Φj(X,ϕiY )− ηj(ϕiZ)Φk(X,ϕiY )]

= 2(δ − α)[−ηk(X)Φj(Y, Z)− ηk(X)(ηk ∧ ηi)(Y, Z)

+ ηj(X)Φk(Y, Z) + ηj(X)(ηi ∧ ηj)(Y, Z)

− ηj(Y )Φk(Z,X)− ηj(Y )ηi(Z)ηj(X) + ηk(Y )Φj(Z,X)− ηk(Y )ηi(Z)ηk(X)

− ηj(Z)Φk(X,Y ) + ηj(Z)ηi(Y )ηj(X) + ηk(Z)Φj(X,Y ) + ηk(Z)ηi(Y )ηk(X)]

= dΦi(X,Y, Z) + 4(δ − α)[−ηk(X)Φj(Y, Z) + ηj(X)Φk(Y, Z)]

+ 4(δ − α)ηj(X)[ηi(Y )ηj(Z)− ηj(Y )ηi(Z)]

+ 4(δ − α)ηk(X)[ηi(Y )ηk(Z)− ηk(Y )ηi(Z)].
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On the other hand, again using the defining relation (2.11), we obtain

dηi(ϕiY,X)ηi(Z)− dηi(ϕiZ,X)ηi(Y ) =

= ηi(Z)[2αΦi(ϕiY,X) + 2(α− δ)(ηj ∧ ηk)(ϕiY,X)]

− ηi(Y )[2αΦi(ϕiZ,X) + 2(α− δ)(ηj ∧ ηk)(ϕiZ,X)]

= 2α[g(X,Y )ηi(Z)− g(X,Z)ηi(Y )]

+ 2(α− δ)ηi(Z)[−ηk(Y )ηk(X)− ηj(X)ηj(Y )]

− 2(α− δ)ηi(Y )[−ηk(Z)ηk(X)− ηj(X)ηj(Z)]

Inserting the above computations in (2.9), we conclude that

g((∇g
Xϕi)Y, Z) = α[g(X,Y )ηi(Z)− g(X,Z)ηi(Y )]

+ 2(δ − α)[ηk(X)g(ϕjY, Z)− ηj(X)g(ϕkY, Z)]

− (α− δ)ηi(Z)[−ηk(Y )ηk(X)− ηj(X)ηj(Y )]

+ (α− δ)ηi(Y )[−ηk(Z)ηk(X)− ηj(X)ηj(Z)]

which implies (2.21).

Corollary 2.3.1. Let (M,ϕi, ξi, ηi, g) be a 3-(α, δ)-Sasaki manifold. Then, for every X ∈ X(M)
and for every even permutation (i, j, k) of (1, 2, 3),

∇g
Xξi = −αϕiX − (α− δ) [ηk(X)ξj − ηj(X)ξk], (2.22)

∇g
ξi
ξi = 0, ∇g

ξi
ξj = −∇g

ξj
ξi = δξk. (2.23)

Consequently, each ξi is a Killing vector field. Furthermore, the distribution V is integrable with
totally geodesic leaves.

Proof. Applying (2.21) for Y = ξi, we get

(∇g
Xϕi)ξi = α[ηi(X)ξi −X ] + (α− δ)[ηj(X)ξj + ηk(X)ξk].

Applying ϕi on both hand-sides, since (∇g
Xϕi)ξi = −ϕi(∇

g
Xξi), we obtain (2.22). Equations (2.23)

are immediate consequences of (2.22). It follows that the distribution V is integrable with totally
geodesic leaves. In particular [ξi, ξj ] = 2δξk. Finally, from (2.22) we have

g(∇g
Xξi, Y ) = αΦi(X,Y ) + (α− δ)(ηj ∧ ηk)(X,Y )

for every X,Y ∈ X(M). Since ∇gξi is skew-symmetric, ξi is Killing.

Corollary 2.3.2. Let (M,ϕi, ξi, ηi, g) be a 3-(α, δ)-Sasaki manifold. Then for every even permu-
tation (i, j, k) of (1, 2, 3) we have

Lξiϕi = 0, Lξiϕj = −Lξjϕi = 2δϕk. (2.24)

Proof. For the first Lie derivative, notice that by (2.21) we have ∇g
ξi
ϕi = 0. Then, applying also

(2.22), for every vector field X we have

(Lξiϕi)X = [ξi, ϕiX ]− ϕi[ξi, X ]

= ∇g
ξi
(ϕiX)−∇g

ϕiX
ξi − ϕi(∇

g
ξi
X) + ϕi(∇

g
Xξi)

= (∇g
ξi
ϕi)X −∇g

ϕiX
ξi + ϕi(∇

g
Xξi)

= αϕ2
iX + (α− δ)[ηk(ϕiX)ξj − ηj(ϕiX)ξk]

− αϕ2
iX − (α− δ)[ηk(X)ϕiξj − ηj(X)ϕiξk] = 0.
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Now, using (2.21) for the covariant derivative ∇gϕj , for every vector field Y , we have

(∇g
ξi
ϕj)Y = α[ηi(Y )ξj − ηj(Y )ξi]− 2(α− δ)ϕkY + (α− δ)[ηi(Y )ξj − ηj(Y )ξi]

= −2(α− δ)ϕkY + (2α− δ)[ηi(Y )ξj − ηj(Y )ξi].

Therefore, applying also (2.22), we get

(Lξiϕj)X = (∇g
ξi
ϕj)X −∇g

ϕjX
ξi + ϕj(∇

g
Xξi)

= −2(α− δ)ϕkX + (2α− δ)[ηi(X)ξj − ηj(X)ξi] + αϕiϕjX

+ (α− δ)ηk(ϕjX)ξj − αϕjϕiX + (α− δ)ηj(X)ϕjξk

= 2δϕkX + α[ηj(X)ξi − ηi(X)ξj ] + (2α− δ + δ − α)[ηi(X)ξj − ηj(X)ξi]

= 2δϕkX.

Analogously, one shows that Lξjϕi = −2δϕk.

Corollary 2.3.3. Every 3-(α, δ)-Sasaki manifold is a canonical almost 3-contact metric manifold.
In particular, it admits a constant Reeb Killing function β = 2(δ − 2α).

Proof. We proved that each ξi is a Killing vector field in Corollary 2.3.1 and that the structure is
hypernormal in Theorem 2.2.1. Furthermore, by (2.12), dΦi(X,Y, Z) = 0 for everyX,Y, Z ∈ Γ(H).
Therefore, conditions 1)-3) of Definition 2.1.3 are satisfied. As regards condition 4), we show that
M admits a (constant) Reeb Killing function β = 2(δ − 2α). Indeed, for every X,Y ∈ Γ(H)

Ai(X,Y ) = g((Lξiϕi)X,Y ) + dηi(X,ϕiY ) + dηi(ϕiX,Y )

= 2αΦi(X,ϕiY ) + 2αΦi(ϕiX,Y ) = 0,

where we have applying (2.24) and (2.11). Moreover, for every even permutation (i, j, k) of (1, 2, 3)
and for every X,Y ∈ Γ(H) we have

Aij(X,Y ) = g((Lξjϕi)X,Y ) + dηj(X,ϕiY ) + dηj(ϕiX,Y )

= −2δg(ϕkX,Y ) + 2αΦj(X,ϕiY ) + 2αΦj(ϕiX,Y )

= 2δg(X,ϕkY ) + 2αg(X,ϕjϕiY )− 2αg(X,ϕiϕjY )

= 2(δ − 2α)Φk(X,Y ).

Analogously, one checks Aji(X,Y ) = −2(δ − 2α)Φk(X,Y ). Hence, M is canonical.

Definition 2.3.2. Accordingly, we will call a 3-(α, δ)-Sasaki manifold with δ = 2α a parallel
3-(α, δ)-Sasaki manifold, compare Definition 2.1.2.

We close the section with some examples of degenerate 3-(α, δ)-Sasaki manifolds and the ob-
servation that any 3-(α, δ)-Sasaki manifold admits an underlying quaternionic contact Einstein
structure; this will allow us to compute the Riemannian Ricci curvature of a 3-(α, δ)-Sasaki mani-
fold.

Example 2.3.2 (Quaternionic Heisenberg groups). The quaternionic Heisenberg group of dimen-
sion 4p+3 is the connected, simply connected Lie group Np with Lie algebra np spanned by vector
fields ξ1, ξ2, ξ3, τr, τp+r, τ2p+r, τ3p+r, r = 1, . . . , p, whose non-vanishing commutators are:

[τr, τp+r] = λξ1 [τr, τ2p+r] = λξ2 [τr, τ3p+r ] = λξ3

[τ2p+r, τ3p+r] = λξ1 [τ3p+r, τp+r] = λξ2 [τp+r, τ2p+r ] = λξ3,

where λ is a positive real number. As described in [AFS15], the Lie groupNp admits a left invariant
almost 3-contact metric structure (ϕi, ξi, ηi, gλ), i = 1, 2, 3, where gλ is the Riemannian metric with
respect to which the above basis is orthonormal, ηi is the dual 1-form of ξi, and ϕi is given by

ϕi = ηj ⊗ ξk − ηk ⊗ ξj +

p
∑

r=1

[θr ⊗ τip+r − θip+r ⊗ τr + θjp+r ⊗ τkp+r − θkp+r ⊗ τjp+r ]
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where θl, l = 1, . . . , 4p, is the dual 1-form of τl, and (i, j, k) is an even permutation of (1, 2, 3). The
differential of each 1-form ηi is given by

dηi = −λ

p
∑

r=1

[θr ∧ θip+r + θjp+r ∧ θkp+r],

and the fundamental 2-forms of the structure are

Φi = − ηj ∧ ηk −

p
∑

r=1

[θr ∧ θip+r + θjp+r ∧ θkp+r].

Therefore,
dηi = λ(Φi + ηj ∧ ηk).

Then (Np, ϕi, ξi, ηi, gλ) is a 3-(α, δ)-Sasaki manifold with 2α = λ and δ = 0.

The previous example suggests that there might be a deeper relation between 3-(α, δ)-Sasaki
manifolds and quaternionic contact manifolds. We are now going to explain this relation.

A quaternionic contact manifold is a (4n + 3)-dimensional manifold with a distribution H
of codimension 3 and a Sp(n)Sp(1) structure locally defined by 1-forms η̃1, η̃2, η̃3. Then, H =
∩3
i=1Ker(η̃i) carries a positive definite symmetric tensor g, called the horizontal metric and a

compatible rank-three bundle Q consisting of endomorphisms of H locally generated by three
almost complex structures I1, I2, I3, such that

i) I1I2 = I3,

ii) g(Ii·, Ii·) = g(·, ·),

iii) 2g(IiX,Y ) = dη̃i(X,Y ), X,Y ∈ Γ(H).

In dimension at least eleven, such a manifold admits a unique distribution V , called the vertical
distribution, supplementary to H, and a unique linear connection, called the Biquard connection,
satisfying distinguished conditions [Bi00]. The vertical distribution is locally generated by the
Reeb vector fields ξ̃1, ξ̃2, ξ̃3 such that

η̃i(ξ̃j) = δij , (ξ̃iydη̃j)|H = 0, (ξ̃iydη̃j)|H = −(ξ̃jydη̃i)|H.

In dimension 7 the existence of the Biquard connection still holds provided that one assumes the
existence of the Reeb vector fields [Du06].

In [IMV14] the authors introduce quaternionic contact Einstein manifolds, briefly qc-Einstein
manifolds, defined as quaternionic contact manifolds such that

Ric(X,Y ) =
Scal

4n
g(X,Y ), X, Y ∈ Γ(H),

where Ric and Scal are respectively the qc Ricci tensor and the qc scalar curvature associated
to the Biquard connection. In [IMV16] a qc-Einstein manifold is characterized as a quaternionic
contact manifold whose structure satisfies

dη̃i = 2ωi + Sη̃j ∧ η̃k, (2.25)

for every even permutation (i, j, k) of (1, 2, 3), where S is a constant related to the qc scalar
curvature by 8n(n+ 2)S = Scal, and each ωi is a 2-form defined by

ξyωi = 0, 2ωi(X,Y ) = dη̃i(X,Y ) ξ ∈ Γ(V), X, Y ∈ Γ(H).

Now, the horizontal metric g can be extended to a metric h on M by requiring that H and V
are orthogonal and h(ξ̃i, ξ̃j) = δij . Furthermore, one can consider a one-parameter family of
(pseudo)Riemannian metrics hλ, λ 6= 0, defined by

hλ(X,Y ) = h(X,Y ), hλ(X, ξ̃i) = 0, hλ(ξ̃i, ξ̃j) = λh(ξ̃i, ξ̃j) = λδij , X, Y ∈ Γ(H). (2.26)
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In [IMV16] it is proved that on a qc-Einstein manifold the (pseudo)Riemannian Ricci and scalar
curvatures of hλ are given by

Ricλ(A,B) =
(

4nλ+
S2

2λ

)

hλ(AV , BV) +
(

2S(n+ 2)− 6λ
)

hλ(AH, BH), (2.27)

Scalλ =
1

λ

(

− 12nλ2 + 8n(n+ 2)Sλ+
3

2
S2

)

,

where, for a vector field A on M , AV and AH denote the orthogonal projections of A on H and V ,
respectively.

Proposition 2.3.3. Every 3-(α, δ)-Sasaki manifold (M,ϕi, ξi, ηi, g) admits an underlying quater-
nionic contact structure which is qc-Einstein with S = 2αδ, and its Riemannian Ricci curvature
is given by

Ricg = 2α
(

2δ(n+ 2)− 3α
)

g + 2(α− δ)
(

(2n+ 3)α− δ
)

3
∑

i=1

ηi ⊗ ηi.

In particular, a 3-(α, δ)-Sasaki manifold is Riemannian Einstein if and only if δ = α or δ =
(2n+ 3)α.

Proof. The underlying quaternionic contact structure is given by the horizontal distribution H,
the Riemannian metric g, the almost complex structures Ii and the 1-forms η̃i defined by

Ii := ϕi|H, η̃i := −
1

α
ηi.

Indeed, for all horizontal vector fields X,Y

dη̃i(X,Y ) = −
1

α
dηi(X,Y ) = −2Φi(X,Y ) = 2g(IiX,Y ).

Let us show that this is in fact a qc-Einstein structure. For this, let ωi be the 2-form defined by

ξryωi = 0, 2ωi(X,Y ) = dη̃i(X,Y ), X, Y ∈ Γ(H),

hence
ωi = −Φi − ηj ∧ ηk.

Since dηi = 2αΦi + 2(α− δ)ηj ∧ ηk, we have

dη̃i = −2Φi − 2
α− δ

α
ηj ∧ ηk = 2ωi + 2ηj ∧ ηk − 2

α− δ

α
ηj ∧ ηk

= 2ωi + 2
δ

α
ηj ∧ ηk = 2ωi + 2αδ η̃j ∧ η̃k.

Therefore, (2.25) is satisfied with S = 2αδ. Now, the Reeb vector fields associated to the qc
structure are ξ̃i := −αξi, and the Riemannian metric g coincides with the Riemannian metric hλ

defined in (2.26) with λ = α2. Therefore, the Ricci tensor of g is

Ricg(A,B) =
(

4nα2 + 2δ2
)

g(AV , BV) +
(

4αδ(n+ 2)− 6α2
)

g(AH, BH).

Since g(AV , BV) =
∑3

i=1
ηi(A)ηi(B) and g(AH, BH) = g(A,B)−

∑3

i=1
ηi(A)ηi(B), applying (2.27)

from [IMV16], we have

Ricg(A,B) =
(

4αδ(n+ 2)− 6α2
)

g(A,B) + 2
(

δ2 − 2αδ(n+ 2) + (2n+ 3)α2
)

3
∑

i=1

ηi(A)ηi(B)

=
(

4αδ(n+ 2)− 6α2
)

g(A,B) + 2(α− δ)
(

(2n+ 3)α− δ
)

3
∑

i=1

ηi(A)ηi(B).

In Remark 4.4.1, we will establish that the canonical connection of a 3-(α, δ)-Sasaki manifold
is indeed a qc connection for the underlying quaternionic contact structure.
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3 ϕ-compatible connections of almost 3-contact metric man-

ifolds

3.1 General existence of ϕ-compatible connections

Definition 3.1.1. Let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold, ϕ an almost contact
metric structure in the associated sphere ΣM . A linear connection ∇ on M will be called a
ϕ-compatible connection if it is a metric connection with skew torsion preserving the splitting
TM = H⊕ V , and such that

(∇Xϕ)Y = 0 ∀X,Y ∈ Γ(H). (3.1)

Notice that, given a metric connection ∇ on M , the requirement that ∇ preserves the splitting
of the tangent bundle is equivalent to any of the following conditions:

a) ∇XY ∈ Γ(H) for every X ∈ X(M) and Y ∈ Γ(H);

b) ∇Xξi ∈ Γ(V) for every X ∈ X(M) and i = 1, 2, 3.

Therefore, if the splitting is preserved, H being ϕ-invariant, condition (3.1) is equivalent to

g((∇Xϕ)Y, Z) = 0 ∀X,Y, Z ∈ Γ(H). (3.2)

Comparing to the characteristic connection of an almost contact metric manifold, we see that
condition (3.1) is weaker than the requirement ∇ϕ = 0, whereas the requirement to preserve the
distributions H and V was, in the previous situation, an automatic consequence.

Remark 3.1.1. Notice that for any structure ϕ ∈ ΣM , setting J := ϕ|H : H → H, one has J2 = −I.
Therefore, (H, J) is an almost CR structure on M , compatible with the Riemannian metric g. In
[DL14] the authors study metric connections with skew torsion on a Riemannian manifold (M, g)
endowed with a compatible almost CR structure (H, J). The characteristic connections defined
in that case are required to parallelize the structure (H, J). In our approach to almost 3-contact
metric manifolds, the condition of ϕ-compatibility is weaker, since we do not require the parallelism
of the tensor J along Reeb vector fields.

We shall determine necessary and sufficient conditions for an almost 3-contact metric manifold
(M,ϕi, ξi, ηi, g) to admit ϕ-compatible connections.

Theorem 3.1.1 (Existence of ϕ-compatible connections). Let (M,ϕi, ξi, ηi, g) be an almost 3-
contact metric manifold, ϕ an almost contact metric structure in the associated sphere ΣM . Then
M admits a ϕ-compatible connection if and only if the following conditions are satisfied:

i) the tensor field Nϕ is skew-symmetric on H;

ii) (Lξig)(X,Y ) = 0 for every X,Y ∈ Γ(H) and i = 1, 2, 3;

iii) (LXg)(ξi, ξj) = 0 for every X ∈ Γ(H) and i, j = 1, 2, 3.

The torsion of any ϕ-compatible connection satisfies (X,Y, Z ∈ Γ(H), i, j = 1, 2, 3):

T (X,Y, Z) = Nϕ(X,Y, Z)− dΦ(ϕX,ϕY, ϕZ), (3.3)

T (X,Y, ξi) = dηi(X,Y ), (3.4)

T (X, ξi, ξj) = −g([ξi, ξj ], X). (3.5)

Remark 3.1.2. Thus, the ϕ-compatible connections are parametrized by smooth functions T (ξ1, ξ2, ξ3) :=
γ ∈ C∞(M). Once γ is fixed, the torsion of the corresponding ϕ-compatible connection is given
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by

T (X,Y, Z) = Nϕ(XH, YH, ZH)− dΦ(ϕXH, ϕYH, ϕZH)

+
∑

i

{ηi(X)dηi(YH, ZH) + ηi(Y )dηi(ZH, XH) + ηi(Z)dηi(XH, YH)}

−
∑

i,j

{ηi(X)ηj(Y )g([ξi, ξj ], ZH) + ηi(Y )ηj(Z)g([ξi, ξj ], XH)

+ ηi(Z)ηj(X)g([ξi, ξj ], YH)} + γη123(X,Y, Z),

where XH denotes the horizontal part of a vector field X . Sometimes, we will call the chosen
function γ the parameter function of the ϕ-compatible connection ∇.

Proof. First, one can easily check that for every X,Y, Z ∈ Γ(H),

Nϕ(X,Y, Z) = g((∇g
ϕXϕ)Y − (∇g

Y ϕ)ϕX + (∇g
Xϕ)ϕY − (∇g

ϕY ϕ)X,Z). (3.6)

Let us suppose that M admits a ϕ-compatible connection ∇, with torsion T . Then, from (1.4)
and (3.2) we have

2g((∇g
Xϕ)Y, Z) + T (X,ϕY, Z) + T (X,Y, ϕZ) = 0 (3.7)

for every X,Y, Z ∈ Γ(H). Using (3.6) and (3.7) we get

Nϕ(X,Y, Z) = T (X,Y, Z)− T (ϕX,ϕY, Z)− T (ϕX, Y, ϕZ)− T (X,ϕY, ϕZ), (3.8)

which implies that Nϕ is skew-symmetric on H. Since ∇g = 0 and the connection preserves the
splitting of the tangent bundle, we have

(Lξig)(X,Y ) =

= ξi(g(X,Y ))− g(∇ξiX −∇Xξi − T (ξi, X), Y )− g(X,∇ξiY −∇Y ξi − T (ξi, Y ))

= T (ξi, X, Y ) + T (ξi, Y,X) = 0,

which proves ii). Analogously, we get iii). Before proving the converse, we verify equations (3.3),
(3.4) and (3.5). Equations (3.4) and (3.5) are immediate consequence of the fact that ∇ preserves
the splitting TM = H⊕ V . As regards (3.3), applying (3.7), for every X,Y, Z ∈ Γ(H), we have

dΦ(X,Y, Z) = −
XY Z

S g((∇g
Xϕ)Y, Z) =

XY Z

S T (X,Y, ϕZ), (3.9)

where
XY Z

S denotes the cyclic sum over X,Y, Z. Applying (3.8) and (3.9), we obtain (3.3).
As for the converse, let us suppose that i)-iii) hold. Let T be the 3-form on M defined by

(3.3)-(3.5) and

T (ξi, X, Y ) = −T (X, ξi, Y ) = T (X,Y, ξi),

T (ξi, ξj , X) = −T (ξi, X, ξj) = T (X, ξi, ξj),

T (ξi, ξj , ξk) = ǫijkγ,

for every X,Y ∈ Γ(H) and i, j, k = 1, 2, 3, where γ is a smooth function on M . Let ∇ be the
metric connection with totally skew-symmetric torsion T , which is given by (1.4). We prove that
∇ preserves the splitting TM = H⊕ V . Indeed, for every X,Y ∈ Γ(H) and i = 1, 2, 3, we have

g(∇XY, ξi) = g(∇g
XY, ξi)−

1

2
g([X,Y ], ξi) =

1

2
g(∇g

XY +∇g
YX, ξi) = −

1

2
(Lξig)(X,Y )

which vanishes because of ii). Analogously, from iii), for every X ∈ Γ(H) and i, j = 1, 2, 3,

g(∇ξjX, ξi) =
1

2
(LXg)(ξi, ξj) = 0.
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In order to prove (3.2), a simple computation using (3.3) and (3.6) gives

T (X,Y, Z) = g((∇g
Xϕ)Y − (∇g

Y ϕ)X,ϕZ)− g((∇g
ϕZϕ)X,Y ) (3.10)

for every X,Y, Z ∈ Γ(H). Applying the above formula and Lemma 1.3.1 3), we have

T (X,ϕY, Z) + T (X,Y, ϕZ) = g((∇g
Xϕ)ϕY − (∇g

ϕY ϕ)X,ϕZ)− g((∇g
ϕZϕ)X,ϕY )

−g((∇g
Xϕ)Y − (∇g

Y ϕ)X,Z) + g((∇g
Zϕ)X,Y )

= − 2g((∇g
Xϕ)Y, Z).

Therefore,

g((∇Xϕ)Y, Z) = g((∇g
Xϕ)Y, Z) +

1

2
(T (X,ϕY, Z) + T (X,Y, ϕZ)) = 0.

Remark 3.1.3. Condition iii) in Theorem 3.1.1 is equivalent to

dηi(X, ξj) + dηj(X, ξi) = 0,

or also
g(∇g

ξi
ξj , X) + g(∇g

ξj
ξi, X) = 0 (3.11)

for every X ∈ Γ(H) and i, j = 1, 2, 3.

A particularly simple situation occurs when Nϕ vanishes on H. We give some simple-to-check
criteria when this happens.

Proposition 3.1.1. Let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold, and ϕ ∈ ΣM .
Assume thatM admits a ϕ-compatible connection ∇ with torsion T . Then, the following conditions
are equivalent:

a) g((∇g
Xϕ)Y, Z) = 0 for every X,Y, Z ∈ Γ(H),

b) T (X,Y, Z) = 0 for every X,Y, Z ∈ Γ(H),

c) dΦ(X,Y, Z) = 0 for every X,Y, Z ∈ Γ(H).

If any of these conditions is satisfied, Nϕ(X,Y, Z) = 0 for any X,Y, Z ∈ Γ(H).

Proof. The equivalence of a) and b) follows from (3.10) and (3.7). Condition a) obviously implies
c). Conversely, supposing that c) holds, from (3.3) it follows that T and Nϕ coincide on H. Hence,
from (3.9), we have

Nϕ(X,Y, ϕZ) +Nϕ(Y, Z, ϕX) +Nϕ(Z,X, ϕY ) = 0

for every X,Y, Z ∈ Γ(H). Since Nϕ is skew-symmetric and Nϕ(ϕX, Y ) = −ϕNϕ(X,Y ), we deduce
that Nϕ(X,Y, ϕZ) = 0. Therefore b), or equivalently a), holds.

Assume that M admits ϕi-compatible connections, in the sense that conditions i)-iii) in The-
orem 3.1.1 are satisfied for each structure (ϕi, ξi, η, g). We would like to conclude that M admits
ϕ-compatible connections for any ϕ ∈ ΣM . Conditions ii) and iii) do not depend on the choice of
ϕ, hence there is nothing to check. To verify condition i) for ϕ, we need to know that Nϕ is skew-
symmetric on H if this is true for each Nϕi

—but this is exactly the contents of our Proposition
1.3.1. Hence, we can state the following remarkable corollary from Proposition 1.3.1 and Theorem
3.1.1. It underlines once more that the associated sphere is a very canonical object.

Corollary 3.1.1. Let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold. If M admits ϕi-
compatible connections for every i = 1, 2, 3, then M admits ϕ-compatible connections for every
almost contact metric structure ϕ in the associated sphere ΣM .
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3.2 Effect of Killing Reeb vector fields

Looking back at the conditions for the existence of ϕ-compatible connections from Theorem 3.1.1,
we see that conditions ii) and iii) on the Reeb vector fields ξi are rather weak—in particular, they
don’t need to be Killing. Nevertheless, it is a familiar fact from examples that this is the case in
many interesting classes of almost 3-contact metric manifolds. Thus, we investigate the situation
of Killing Reeb vector fields separately in this section.

Proposition 3.2.1. Let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold, ϕ an almost
contact metric structure in the associated sphere ΣM . Given a ϕ-compatible connection ∇, the
Reeb vector fields are ∇-parallel along the distribution H if and only if (Lξig)(X, ξj) = 0 for any
X ∈ Γ(H) and i, j = 1, 2, 3.

Proof. If ∇ is a ϕ-compatible connection, we deduce for every X ∈ Γ(H) and i, j = 1, 2, 3 from
(1.4), (3.5) and (3.11)

g(∇Xξi, ξj) = g(∇g
Xξi, ξj)−

1

2
g([ξi, ξj ], X) = g(∇g

Xξi, ξj)−
1

2
g(∇g

ξi
ξj −∇g

ξj
ξi, X)

= g(∇g
Xξi, ξj) + g(∇g

ξj
ξi, X) = (Lξig)(X, ξj).

Since the distribution V is parallel with respect to the connection ∇, we have that ∇Xξi = 0 for
every X ∈ Γ(H) and i = 1, 2, 3, if and only if the Lie derivatives (Lξig)(X, ξj) are all vanishing.

The following proposition shows that when the Reeb vector fields are Killing, the existence of
ϕ-compatible connections and the existence of the Reeb commutator function (Definition 2.1.1),
garanteed by Corollary 2.1.1, are intricately related. In return, the Reeb commutator function
and the parameter function of a ϕ-compatible connection ∇ describe the ∇-derivative of one Reeb
vector field through the other Reeb vector fields in a very symmetric expression.

Proposition 3.2.2. Let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold, ϕ an almost
contact metric structure in the associated sphere. Assume that

i) the tensor field Nϕ is skew-symmetric on H;

ii) each ξi is a Killing vector field.

Let δ be its Reeb commutator function. Then M admits ϕ-compatible connections. If ∇ is any
ϕ-compatible connection with torsion T and parameter function γ, the following equations hold:

1) For every X ∈ X(M), and for every even permutation (i, j, k) of (1, 2, 3),

∇Xξi =
2δ+γ

2
(ηk(X)ξj − ηj(X)ξk). (3.12)

2) For every i = 1, 2, 3, and for every X,Y ∈ Γ(H),

g((∇ξiϕ)X,Y ) = g((Lξiϕ)X,Y ) + dηi(ϕX, Y ) + dηi(X,ϕY ). (3.13)

Proof. First we prove that condition iii) in Theorem 3.1.1 is satisfied. Indeed, one can easily check
that for every X ∈ Γ(H) and i, j = 1, 2, 3,

(LXg)(ξi, ξj) = −(Lξig)(X, ξj)− (Lξjg)(X, ξi) = 0.

Hence, by Theorem 3.1.1, M admits ϕ-compatible connections. Given a ϕ-compatible connection
∇ with torsion T , let γ = T (ξ1, ξ2, ξ3) be the parameter function. Recall that by Lemma 2.1.1, the
Reeb commutator function δ satisfies

ηk([ξi, ξj ]) = 2 ηk(∇
g
ξi
ξj) = 2δǫijk (3.14)
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for every i, j, k = 1, 2, 3. In order to verify (3.12), by Proposition 3.2.1, we have ∇Xξi = 0 for every
X ∈ Γ(H). Recall that the distribution V is parallel with respect to the ϕ-compatible connection.
Therefore, since ∇ξiξi = ∇g

ξi
ξi ∈ Γ(V), formula (3.14) gives ∇ξiξi = 0. Now, if (i, j, k) is an even

permutation of (1, 2, 3), for the covariant derivative ∇ξj ξi, we have

g(∇ξjξi, ξi) = 0, g(∇ξj ξi, ξj) = −g(ξi,∇ξj ξj) = 0,

and applying again (3.14),

g(∇ξjξi, ξk) = g(∇g
ξj
ξi, ξk) +

1

2
T (ξj, ξi, ξk) = −

2δ + γ

2
.

Therefore, ∇ξj ξi = − 2δ+γ
2
ξk. Analogously, one checks that ∇ξkξi =

2δ+γ
2
ξj , completing the proof

of (3.12).
We prove (3.13). Applying the Koszul formula for the Levi-Civita connection, for every X,Y ∈

Γ(H) we have

2g((∇g
ξi
ϕ)X,Y ) = 2g(∇g

ξi
(ϕX), Y ) + 2g(∇g

ξi
X,ϕY )

= g([ξi, ϕX ], Y )− g([ϕX, Y ], ξi) + g([Y, ξi], ϕX)

+ g([ξi, X ], ϕY )− g([X,ϕY ], ξi) + g([ϕY, ξi], X). (3.15)

Since ξi is a Killing vector field, we get

0 = (Lξig)(X,ϕY ) + (Lξig)(ϕX, Y )

= −g([ξi, X ], ϕY )− g([ξi, ϕY ], X)− g([ξi, ϕX ], Y )− g([ξi, Y ], ϕX). (3.16)

Therefore, from (3.15) and (3.16) it follows that

2 g((∇g
ξi
ϕ)X,Y ) = 2g([ξi, ϕX ], Y ) + 2 g([ξi, X ], ϕY )− ηi([X,ϕY ])− ηi([ϕX, Y ])

= 2 g((Lξiϕ)X,Y )) + dηi(X,ϕY ) + dηi(ϕX, Y ).

Finally, applying the above formula and (3.4),

2 g((∇ξiϕ)X,Y ) = 2 g((∇g
ξi
ϕ)X,Y ) + T (ξi, ϕX, Y ) + T (ξi, ϕX, Y )

= 2 g((Lξiϕ)X,Y )) + 2 dηi(X,ϕY ) + 2 dηi(ϕX, Y ),

which proves (3.13).

Remark 3.2.1. We recognize that the right hand side of eq. (3.13) in the previous Proposition is
just, for ϕ = ϕj , the tensor field Aji introduced in equation (2.1).
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4 The canonical connection of an almost 3-contact metric

manifold

4.1 General existence of the canonical connection

In the following we will provide a criterion allowing to define a unique metric connection with skew
torsion on an almost 3-contact metric manifold (M,ϕi, ξi, ηi, g), called the canonical connection.
Its crucial property is captured by equation (4.1), from which all others will follow. Hence, we
start by explaining what singles out this particular condition.

Remark 4.1.1. Recall that a hyper-Kähler manifold can be defined as a Riemannian manifold
of dimension 4n ≥ 4 admitting an anti-commuting pair I1, I2 of integrable complex structures,
relative to both of which the metric is Kähler. This implies that I1, I2, and I3 := I1I2 are parallel
for the Levi-Civita connection ∇g. In contrast, on a general quaternion-Kähler manifold it is not
possible to find individual structures I1, I2, I3 that are parallel, but only a bundle of endomorphisms
(namely, the one spanned by I1, I2, I3) preserved as a whole; more precisely, there should exist 1-
forms αi such that

∇g
XIi = −αk(X)Ij + αj(X)Ik ∀X ∈ X(M)

for every even permutation (i, j, k) of (1, 2, 3). These equations were first considered by [Is74],
see also [Sa99] for a very nice survey. Now, the analogy to equation (4.1) becomes obvious: A
canonical connection is one mimicking the derivative equations of quaternion-Kähler geometry,
with Ii replaced by ϕi and αi replaced by −β̃ηi.

Theorem 4.1.1 (Existence of the canonical connection). Let (M,ϕi, ξi, ηi, g) be an almost 3-
contact metric manifold. Then M admits a metric connection ∇ with skew torsion such that for
some smooth function β̃,

∇Xϕi = β̃(ηk(X)ϕj − ηj(X)ϕk) ∀X ∈ X(M) (4.1)

for every even permutation (i, j, k) of (1, 2, 3), if and only if it is a canonical almost 3-contact
metric manifold.

If such a connection ∇ exists, it is unique and it is ϕ-compatible for every almost contact metric
structure ϕ in the associated sphere ΣM , and β̃ coincides with the Reeb Killing function β. The
torsion of ∇ is given by (3.3)-(3.5) and the parameter function is

γ := T (ξ1, ξ2, ξ3) = 2(β − δ), (4.2)

where δ is the Reeb commutator function.

Proof. Let us assume that M admits a metric connection ∇ with skew torsion satisfying (4.1).
First we show that

∇Xξi = β̃(ηk(X)ξj − ηj(X)ξk) (4.3)

for every X ∈ X(M) and for every even permutation (i, j, k) of (1, 2, 3). Indeed, from (4.1) we have

(∇Xϕi)ξi = −β̃(ηk(X)ξk + ηj(X)ξj). (4.4)

Since (∇Xϕi)ξi = −ϕi(∇Xξi) and ηi(∇Xξi) = 0, applying ϕi on both sides of (4.4), we get (4.3).
Therefore, being ∇ a metric connection preserving the distribution V , it preserves the splitting
TM = H ⊕ V . On the other hand, since ∇Xϕi = 0 for every X ∈ Γ(H), it turns out that ∇ is a
ϕi-compatible connection for all i = 1, 2, 3. Then, conditions i)-iii) in Theorem 3.1.1 are satisfied.
In particular, each Nϕi

is skew-symmetric on H and, by equation (3.3), the torsion T of ∇ satisfies

T (X,Y, Z) = Nϕi
(X,Y, Z)− dΦi(ϕiX,ϕiY, ϕiZ)

for every X,Y, Z ∈ Γ(H) and i = 1, 2, 3, thus proving condition 3) of Definition 2.1.3 of a canonical
almost 3-contact metric manifold.
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In order to prove that each ξi is a Killing vector field, we already know, by the ϕi-compatibility,
that (Lξig)(X,Y ) = 0 for every X,Y ∈ Γ(H) and i, j = 1, 2, 3. Furthermore, since ∇Xξi = 0 for
all X ∈ Γ(H), Proposition 3.2.1 implies that (Lξig)(X, ξj) = 0. Now, one can easily check that
equation (4.3) implies

g(∇ξiξj , ξk) = β̃ǫijk

for all indices i, j, k = 1, 2, 3. Setting γ := T (ξ1, ξ2, ξ3), we have

g(∇g
ξi
ξj , ξk) = g(∇ξiξj , ξk)−

1

2
T (ξi, ξj , ξk) =

2β̃ − γ

2
ǫijk,

so that condition 3) in Lemma 2.1.1 is satisfied for δ = 2β̃−γ
2

. Therefore, for all indices i, j, k =
1, 2, 3, we have (Lξig)(ξj , ξk) = 0, or equivalently ηk([ξi, ξj ]) = 2δǫijk. This completes the proof
that each ξi is Killing. Furthermore, notice that the linear connection ∇ is uniquely determined,
the parameter function being given by γ = 2(β̃ − δ).

Finally, we prove that β̃ is the Reeb Killing function. By Proposition 3.2.2, equation (3.13)
holds. On the other hand, taking into account the definition of the tensor fields Aij in (2.1), and
applying (4.1), we have

Ai(X,Y ) = g((∇ξiϕi)X,Y ) = 0,

Aij(X,Y ) = g((∇ξjϕi)X,Y ) = −β̃g(ϕkX,Y ) = β̃Φk(X,Y ),

Aji(X,Y ) = g((∇ξiϕj)X,Y ) = β̃g(ϕkX,Y ) = −β̃Φk(X,Y ),

for every X,Y ∈ Γ(H) and for every even permutation (i, j, k) of (1, 2, 3). Hence, β̃ is the Reeb
Killing function on M .

In order to prove the converse, let us assume that M is a canonical almost 3-contact metric
manifold. First we notice that, since each ξi is a Killing vector field, Lemma 2.1.1 implies the
existence of a Reeb commutator function δ, i. e. ηk([ξi, ξj ]) = 2δǫijk. By Proposition 3.2.2, M
admits ϕi-compatible connections for all i = 1, 2, 3. We denote by ∇i the ϕi-compatible connection
with torsion Ti such that

Ti(ξ1, ξ2, ξ3) = 2(β − δ),

where β is the Reeb Killing function. Then, owing to condition 3) of Definition 2.1.3 and equations
(3.3), (3.4), (3.5) for the torsion of a ϕ-compatible connection, we have T1 = T2 = T3, hence the
three connections coincide. We denote by ∇ this unique connection and we prove that it satisfies
(4.1) with β̃ = β. From Proposition 3.2.2, applying (3.12) with γ = 2(β − δ), we have

∇Xξi = β(ηk(X)ξj − ηj(X)ξk)

for every X ∈ X(M) and for every even permutation (i, j, k) of (1, 2, 3). Using the above equation,
one can check that

(∇Xϕi)ξh = β(ηk(X)ϕjξh − ηj(X)ϕkξh) (4.5)

for every h = 1, 2, 3. Indeed, for h = i, we obtain

(∇Xϕi)ξi = −ϕi(∇Xξi) = −β(ηk(X)ξk + ηj(X)ξj) = β(ηk(X)ϕjξi − ηj(X)ϕkξi).

Analogously, one verifies (4.5) for h = j, k. From equation (3.13) and the fact that M admits the
Reeb Killing function β, for every Y, Z ∈ Γ(H) we have

g((∇ξiϕi)Y, Z) = Ai(Y, Z) = 0,

g((∇ξjϕi)Y, Z) = Aij(Y, Z) = βΦk(Y, Z) = −βg(ϕkY, Z),

g((∇ξkϕi)Y, Z) = Aik(Y, Z) = −βΦj(Y, Z) = βg(ϕjY, Z),
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where (i, j, k) is an even permutation of (1, 2, 3). Then, since ∇ preserves the splitting of the
tangent bundle, we have

(∇ξiϕi)Y = 0, (∇ξjϕi)Y = −βϕkY, (∇ξkϕi)Y = βϕjY. (4.6)

On the other hand, since ∇ is ϕi-compatible, we have

(∇Xϕi)Y = 0 (4.7)

for all X,Y ∈ Γ(H). Then, taking into account (4.5), (4.6), and (4.7), equation (4.1) is verified.

Definition 4.1.1. If (M,ϕi, ξi, ηi, g) is a canonical almost 3-contact metric manifold, the connec-
tion ∇ satisfying (4.1) of Theorem 4.1.1 will be called the canonical connection of M .

Remark 4.1.2. If (M,ϕi, ξi, ηi, g) is a canonical almost 3-contact metric manifold with canonical
connection ∇, the covariant derivatives of the structure tensors are completely determined by the
Reeb Killing function β,

∇Xϕi = β(ηk(X)ϕj − ηj(X)ϕk),

∇Xξi = β(ηk(X)ξj − ηj(X)ξk),

∇Xηi = β(ηk(X)ηj − ηj(X)ηk),

where (i, j, k) is an even permutation of (1, 2, 3). The first identity holds by definition, whereas
the second and third identity follow from Proposition 3.2.2. In particular, we observe that each
structure (ϕi, ξi, ηi, g) is parallel along H and its Reeb vector field ξi. In analogy to quaternion-
Kähler geometry, we may consider the fundamental 4-form Ψ

Ψ := Φ1 ∧Φ1 +Φ2 ∧ Φ2 +Φ3 ∧ Φ3.

It is independent of choice of basis and Ψn 6= 0. The last formulas imply immediately:

Corollary 4.1.1. The canonical connection of a canonical almost 3-contact metric manifold
(M4n+3, ϕi, ξi, ηi, g) leaves the associated bundle of endomorphisms ΥM invariant and it satisfies

∇Ψ = 0, ∇η123 = 0.

In particular, its holonomy algebra hol(∇) is contained in (sp(n)⊕ sp(1))⊕ so(3) ⊂ so(4n)⊕ so(3).

By Remark 3.1.2, we know that η123 is one summand of the torsion of the canonical connection
(and in fact of any ϕ-compatible connection). In general, however, the torsion will not be parallel.
In Theorem 4.4.1, we shall prove that it is parallel for 3-(α, δ)-Sasaki manifolds.

Finally, let us look at the special case of vanishing Reeb Killing function β. The canonical
connection satisfies then ∇ϕi = ∇ξi = 0 ∀ i, i. e. all structure tensors are parallel; by uniqueness
of the characteristic connection, we conclude:

Corollary 4.1.2. The canonical connection ∇ of a parallel canonical almost 3-contact metric
manifold (M,ϕi, ξi, ηi, g) coincides with the characteristic connection ∇i of each of its almost
contact metric structures (ϕi, ξi, ηi, g), i = 1, 2, 3. Furthermore, its holonomy algebra satisfies
hol(∇) ⊂ sp(n).

In general, it is not possible to derive a simple formula for the canonical torsion of a canonical
almost 3-contact metric manifold. Here are some exceptional cases:

Example 4.1.1. We already know from Corollary 2.1.2 that any 3-δ-cosymplectic manifold is a
parallel canonical almost 3-contact metric manifold. Therefore, the identities (3.3)-(3.5) and (4.2)
imply directly that the torsion of the canonical connection is given by

T = −2δ η123.

Of course, this is not surprising if we recall that M is locally isometric to the product of a hyper-
Kähler manifold with either a 3-dimensional flat group (δ = 0, [CN07]) or a 3-dimensional sphere
(δ 6= 0, Proposition 2.1.1).
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Example 4.1.2. Similarly, one shows that for the product of a HKT-manifold M with a certain
Lie group G considered in Example 2.1.1, the torsion T of the canonical connection ∇ is given by

T = T0 − 2δ η123,

where we extend the 3-form T0 on the product M ×G in such a way that ξiyT0 = 0.

A well-celebrated theorem of Cartan and Schouten states that the only manifolds carrying a
flat metric connection with torsion are compact Lie groups and the 7-sphere ([CS26]; see [D’AN68,
Wo72a, Wo72b] for proofs and [AF10b] for a classification-free short proof). The following example
shows that this flat connection is in fact the canonical connection of a natural almost 3-contact
metric structure on S7. We follow the notations used in [AF10b], hence we shall be brief.

Example 4.1.3 (S7 as a non-hypernormal parallel canonical almost 3-contact metric manifold). In
dimension 7, the complex Spin(7)-representation ∆C

7 is the complexification of a real 8-dimensional
representation κ : Spin(7) → End(∆7), since the real Clifford algebra C(7) is isomorphic to M(8)⊕
M(8). Thus, we may identify R8 with the vector space ∆7 and embed therein the sphere S7 as the
set of all (algebraic) spinors of length one, equipped with the induced metric g. Fix your favourite
explicit realisation of the spin representation by skew matrices, κi := κ(ei) ∈ so(8) ⊂ End(R8),
i = 1, . . . , 7. Define vector fields e1, . . . , e7 on S7 by

ei(x) = κi · x for x ∈ S7 ⊂ ∆7.

From the antisymmetry of κ1, . . . , κ7, one deduces that they form an orthonormal global frame of
TS7. Hence, they constitute an explicit parallelisation of S7 by Killing vector fields. We define an
almost 3-contact metric structure by setting ξi := ei (i = 1, 2, 3), V = 〈ξ1, ξ2, ξ3〉, H = 〈e4, . . . , e7〉,
and

Φ1 = −(e23 + e45 + e67), Φ2 = e13 − e46 + e57, Φ3 = −(e12 + e47 + e56).

Furthermore, we define functions on S7 by αijk(x) := −g(κiκjκkx, x): they are quadratic functions
in the coordinates xi and hence never constant (for i, j, k all different) and the properties of Clifford
multiplication imply that they are totally skew-symmetric in all indices. The commutator of vector
fields is inherited from the ambient space, hence [ei(x), ej(x)] = 2κiκjx for i 6= j. This implies

[ei(x), ej(x)] = 2

7
∑

k=1

αijk(x) ek(x) ∀i, j = 1, . . . , 7,

and hence δ(x) := α123(x) is the Reeb commutator function of the almost 3-contact metric struc-
ture. One further checks that all Nϕi

are skew-symmetric but non-trivial. Hence, the structure
is not hypernormal, but each (ξi,Φi, ηi) admits a characteristic connection. We now define a con-
nection ∇ on TS7 by ∇ei(x) = 0 ∀i; observe that this implies that all tensor fields with constant
coefficients like the Φi’s are parallel as well. In particular, by its uniqueness, ∇ has to coincide with
the characteristic connection of all three almost contact structures. This connection is trivially flat
and metric and just the one claimed to exist by the Cartan-Schouten result. By Theorem 4.1.1, it
coincides with the canonical connection of (S7, ξi,Φi, ηi, g) and has vanishing Reeb Killing function
β. Alltogether, we conclude that (S7, ξi,Φi, ηi, g) is a non-hypernormal parallel canonical almost 3-
contact metric manifold, as claimed. Just as an additional piece of information, let us observe that
it is proved in [AF10b] that ∇ does not have parallel torsion (in fact, T (ei, ej, ek) = −g([ei, ej ], ek))
and it is a characteristic G2-connection of Fernandez-Gray class X1 ⊕ X3 ⊕ X4.

For general β, the difference ∇−∇i is computed in the next theorem.

4.2 Properties of the canonical connection

By Theorem 2.1.1, the three almost contact metric structures (ϕi, ξi, ηi, g) of a canonical almost
3-contact metric manifold admit characteristic connections ∇i, i = 1, 2, 3. As a first result, we
compare them to the canonical connection.
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Theorem 4.2.1. Let (M,ϕi, ξi, ηi, g) be a canonical almost 3-contact metric manifold, ∇ its canon-
ical connection, β its Reeb Killing function, and ∇i the characteristic connections of the three
almost contact metric structures (ϕi, ξi, ηi, g). The connections ∇ and ∇i are related by

∇ = ∇i −
β

2
(ηj ∧Φj + ηk ∧ Φk) (4.8)

for every even permutation (i, j, k) of (1, 2, 3).

Proof. By Theorem 1.2.1, the torsion Ti of ∇
i is given by

Ti = ηi ∧ dηi +Nϕi
+ dϕiΦi − ηi ∧ (ξiyNϕi

). (4.9)

We show that the torsions T and Ti of ∇ and ∇i are related by

T − Ti = −β(ηj ∧ Φj + ηk ∧ Φk), (4.10)

where (i, j, k) is an even permutation of (1, 2, 3). We will proceed case by case, computing the
difference T −Ti on horizontal and vertical vector fields. First of all, we deduce from (4.9) and the
general expressions (3.3), (3.4) for the torsion of any ϕ-compatible connection

T (X,Y, Z) = Ti(X,Y, Z) = Nϕi
(X,Y, Z)− dΦi(ϕiX,ϕiY, ϕiZ),

T (X,Y, ξi) = Ti(X,Y, ξi) = dηi(X,Y )

for every X,Y, Z ∈ Γ(H). Now, fixing an even permutation (i, j, k) of (1, 2, 3) and using Lξkg = 0,
for every X,Y ∈ Γ(H) we have

dΦi(X,Y, ξk) = ξk(Φi(X,Y ))− Φi([X,Y ], ξk)− Φi([Y, ξk], X)− Φi([ξk, X ], Y )

= −ξk(g(ϕiX,Y )) + g([X,Y ], ξj) + g([ξk, Y ], ϕiX)− g([ξk, X ], ϕiY )

= −g([ξk, ϕiX ], Y )− g([ξk, X ], ϕiY ) + ηj([X,Y ])

= −g((Lξkϕi)X,Y )− dηj(X,Y ).

One can verify that g((Lξkϕi)ϕiX,ϕiY ) = −g((Lξkϕi)X,Y ) so that

dΦi(ϕiX,ϕiY, ξk) = g((Lξkϕi)X,Y )− dηj(ϕiX,ϕiY ). (4.11)

Using the expression (4.9) for the torsion Ti, and applying equations (2.4) and (4.11), we have

Ti(X,Y, ξj) = Nϕi
(X,Y, ξj)− dΦi(ϕiX,ϕiY, ξk)

= dηj(X,Y )− dηk(ϕiX,Y )− dηk(X,ϕiY )− g((Lξkϕi)X,Y ).

On the other hand, the torsion T satisfies T (X,Y, ξj) = dηj(X,Y ), and we have

T (X,Y, ξj)− Ti(X,Y, ξj) = Aik(X,Y ) = −βΦj(X,Y ),

where we used the fact that β is a Reeb Killing function. Analogously, one can check that
T (X,Y, ξk)− Ti(X,Y, ξk) = −βΦk(X,Y ), coherently with (4.10).

Now, using again (4.9), we have

Ti(X, ξi, ξj) = dηi(ξj , X) = −g([ξj, X ], ξi).

On the other hand, by (3.5), T (X, ξi, ξj) = −g([ξi, ξj ], X). Hence,

T (X, ξi, ξj)− Ti(X, ξi, ξj) = −(Lξjg)(ξi, X) = 0.

In the same way one shows that T (X, ξi, ξk)−Ti(X, ξi, ξk) = 0, and these relations are in accordance
with (4.10), since for example

−β(ηj ∧ Φj + ηk ∧ Φk)(X, ξi, ξj) = −βΦj(X, ξi) = 0.
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We shall compute now the difference T − Ti on vector fields X, ξj , ξk, with X ∈ Γ(H). First, from
ηr([X, ξr]) = 0, we have

dΦi(X, ξj , ξk) = X(Φi(ξj , ξk))− Φi([X, ξj ], ξk)− Φi([ξj , ξk], X)− Φi([ξk, X ], ξj)

= −X(g(ξj , ξj)) + ηj([X, ξj ])− g([ξj , ξk], ϕiX)− ηk([ξk, X ])

= −g([ξj , ξk], ϕiX). (4.12)

From (4.9) we have

Ti(X, ξj , ξk) = Nϕi
(X, ξj , ξk) + dΦi(ϕiX, ξk, ξj) = −g([ξj, ξk], X),

where we used (4.12) and the fact thatNϕi
(ξj , ξk) = 0 (see (2.3)). Therefore, by (3.5), Ti(X, ξj , ξk) =

T (X, ξj, ξk), again coherently with (4.10). Finally, by (4.2) and (4.9), we have

T (ξi, ξj , ξk)− Ti(ξi, ξj , ξk) = 2β − 2δ − dηi(ξj , ξk) = 2β − 2δ + 2δ = 2β,

and one can easily check that

−β(ηj ∧ Φj + ηk ∧ Φk)(ξi, ξj , ξk) = −β(Φj(ξk, ξi) + Φk(ξi, ξj)) = 2β,

which completes the proof of (4.10). Therefore, by (1.4) and (4.10), we get (4.8).

Remark 4.2.1. Under the hypotheses Theorem 4.2.1, equation (4.10) implies that the torsion T of
the canonical connection and the torsions T1, T2, T3 of the three characteristic connections satisfy

3T = T1 + T2 + T3 − 2β(η1 ∧ Φ1 + η2 ∧Φ2 + η3 ∧ Φ3).

We shall show now that 3-(α, δ)-Sasaki manifolds are the only canonical horizontal 3-α-contact
metric manifolds with integrable distribution V . By a result of B. Cappelletti-Montano, we have
the following

Proposition 4.2.1 ([Ca09, Prop. 3.2]). Let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold
such that the distribution V is integrable and each ξi is a Killing vector field. Then, the following
properties hold:

i) [ξi, ξj ] = 2δξk for every even permutation (i, j, k) of (1, 2, 3), and some constant δ;

ii) each ξi is an infinitesimal automorphism of the horizontal distribution H, i .e. [ξi, X ] ∈ Γ(H)
for every X ∈ Γ(H);

iii) the distribution V has totally geodesic leaves.

Observe that under the hypothesis that V is integrable, condition i) is equivalent to the existence
of a constant Reeb commutator function, since the projection of the commutator to H vanishes.

Theorem 4.2.2. Let (M,ϕi, ξi, ηi, g) be a canonical almost 3-contact metric manifold with canon-
ical connection ∇ and Reeb Killing function β. Assume that the following conditions hold:

i) the distribution V is integrable;

ii) dηi(X,Y ) = 2αΦi(X,Y ) for every X,Y ∈ Γ(H) and i = 1, 2, 3, and for some real constant
α 6= 0.

Then the structure admits a constant Reeb commutator δ and (M,ϕi, ξi, ηi, g) is a 3-(α, δ)-Sasaki
manifold.
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Proof. Since the distribution V is integrable and the Reeb vector fields are Killing, from Proposition
4.2.1, each ξi is an infinitesimal automorphism of the horizontal distribution H, and thus

dηr(X, ξs) = 0, ∀X ∈ Γ(H), r, s = 1, 2, 3.

Furthermore, [ξi, ξj ] = 2δξk for every even permutation (i, j, k) of (1, 2, 3) and some constant δ.
Therefore,

dηr(ξs, ξt) = −2δǫrst.

Taking into account condition ii) we deduce that the differential of each 1-form ηi is given by

dηi = 2αΦi + 2(α− δ)ηj ∧ ηk

where (i, j, k) is an even permutation of (1, 2, 3).

4.3 The cone of a canonical almost 3-contact metric manifold

In [AH15] the authors studied cones of G manifolds endowed with a characteristic connection.
Given a Riemannian manifold (M, g) equipped with a metric connection ∇ with skew-symmetric
torsion T , the cone (M̄, ḡ) = (M × R+, a2r2g + dr2), a > 0, can be endowed with an appendant
connection ∇̄ := ∇ḡ + 1

2
T̄ , where T̄ is the skew-symmetric torsion of ∇̄, defined by

T̄ (X,Y ) = T (X,Y ) for X,Y ⊥ ∂r, ∂ryT̄ = 0.

The positive real number a will be called the cone constant.
Now, let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold. On the cone (M̄, ḡ) one can

consider three almost hermitian structures defined by

J1(ar∂r) = ξ1, J1(ξ1) = −ar∂r, J1(V ) = −ϕ1(V ) for V ⊥ ξ1, ∂r,

J2(ar∂r) = ξ2, J2(ξ2) = −ar∂r, J2(V ) = −ϕ2(V ) for V ⊥ ξ2, ∂r, (4.13)

J3(ar∂r) = −ξ3, J3(ξ3) = ar∂r, J3(V ) = −ϕ3(V ) for V ⊥ ξ3, ∂r,

These structures satisfy J1J2 = J3 = −J2J1, and hence (M̄, ḡ, J1, J2, J3) is an almost hyperhermi-
tian manifold. We will use the following result.

Theorem 4.3.1 ([AH15]). Let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold such that
each structure (ϕi, ξi, ηi, g) admits a characteristic connection ∇i with skew torsion Ti. Let ∇ be
a metric connection with totally skew-symmetric torsion on M . Then the appendant connection
∇̄ satisfies ∇̄J1 = ∇̄J2 = ∇̄J3 = 0 if and only if there exists some positive constant a (the
cone constant) such that the three tensors Si := Ti − 2aηi ∧ Φi coincide with the torsion T of ∇.
Furthermore, if M is hypernormal, then M̄ is an HKT manifold.

Let us point out that in the preceding result, the non-existence of a characteristic connection
for almost 3-contact metric manifolds was circumvented by requiring the property that the three
difference tensors Si should coincide—one then views them as the torsion of a connection and lifts
it to the cone.

Corollary 4.3.1. Let (M,ϕi, ξi, ηi, g) be a canonical almost 3-contact metric manifold, ∇ its
canonical connection. Assume that its Reeb Killing function β is constant and negative. If ∇′ is
the metric connection on M with skew torsion T ′ given by

T ′ := T + β(η1 ∧ Φ1 + η2 ∧Φ2 + η3 ∧ Φ3),

the appendant connection ∇̄′ on the cone (M̄, ḡ), with cone constant a = −β
2

is a hermitian
connection, i. e. it parallelizes the almost hermitian structures Ji, i = 1, 2, 3, defined by (4.13).

If, furthermore, (M,ϕi, ξi, ηi, g), is a 3-(α, δ)-Sasaki manifold, then the cone (M̄, ḡ) is an HKT
manifold.
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Proof. From Theorem 2.1.1, we know that each almost contact metric structure (ϕi, ξi, ηi, g) admits
a characteristic connection ∇i; Theorem 4.2.1 shows that the connections ∇ and ∇i are related by
(4.8). Now, taking Si := Ti + βηi ∧ Φi, by (4.10) we get

Si = T + β(η1 ∧ Φ1 + η2 ∧Φ2 + η3 ∧ Φ3),

so that the three tensors Si, i = 1, 2, 3, coincide. We can thus apply Theorem 4.3.1. Consider the
cone (M̄, ḡ) corresponding to the cone constant a := −β

2
. If ∇′ is the metric connection on M

with totally skew-symmetric torsion T ′ := S1 = S2 = S3, the appendant connection ∇̄′ parallelizes
the almost hermitian structures Ji, i = 1, 2, 3.

Theorem 2.2.1 states that any 3-(α, δ)-Sasaki manifold is hypernormal, hence the last claim
follows from the corresponding statement in Theorem 4.3.1.

Remark 4.3.1. Recall that for a 3-(α, δ)-Sasaki manifold, the Reeb Killing function β is automat-
ically constant and may be computed from α and δ through β = 2δ − 4α. Thus, the condition
β < 0 in Corollary 4.3.1 may be restated as 2α > δ in this situation.

Remark 4.3.2. For example, we know that any 3-Sasakian manifold is a 3-(α, δ)-Sasaki manifold
with β = −2 < 0. Comparing the expression for T ′ above with the results of [AH15, Section
3.5], one sees that ∇̄′ will then coincide with the Levi-Civita connection of the natural hyper-
Kähler structure on the cone M̄ . Similarly, the quaternionic Heisenberg group is a 3-(α, δ)-Sasaki
manifold with β = −2λ, λ a positive non-zero parameter. In [AFS15, Thm 11] it was shown (by
applying Theorem 4.3.1) that the cone of the 7-dimensional quaternionic Heisenberg group is a
HKT manifold. Hence, Corollary 4.3.1 generalizes both results.

4.4 The canonical connection of a 3-(α, δ)-Sasaki manifold

We now look in detail at the canonical connection of a 3-(α, δ)-Sasaki manifold. Recall that such
a manifold is always a canonical almost 3-contact metric manifold (Corollary 2.3.3), and hence the
existence (and uniqueness) of the canonical connection is garanteed.

Remark 4.4.1 (∇ as a qc connection). By Proposition 2.3.3, we know that every 3-(α, δ)-Sasaki
manifold (M,ϕi, ξi, ηi, g) admits an underlying quaternionic contact structure which is qc-Einstein
with S = 2αδ, with almost complex structures Ii := ϕi|H and 1-forms η̃i := − 1

α
ηi. In general, the

condition for a metric connection ∇ to preserve the qc structure reduces to the requirement that
∇ preserves the splitting TM = H⊕ V and has the additional properties

∇(I1 ⊗ I1 + I2 ⊗ I2 + I3 ⊗ I3) = 0, ∇(ξ̃1 ⊗ I1 + ξ̃2 ⊗ I2 + ξ̃3 ⊗ I3) = 0.

The equations of Remark 4.1.2 imply that the canonical connection of a 3-(α, δ)-Sasaki manifold
is indeed a qc connection (this was already observed for the quaternionic Heisenberg group in
[AFS15]). The most commonly used such connection is the well-known Biquard connection.

Remark 4.4.2. The relations ((i, j, k) an even permutation of (1, 2, 3))

ξiyΦi = 0, ξjyΦi = −ηk, ξkyΦi = ηj

holding for any 3-(α, δ)-Sasaki manifold imply that we can split the 2-forms Φi in their vertical
and horizontal part,

Φ1 = −η23 +ΦH

1 , Φ2 = η13 +ΦH

2 , Φ3 = −η12 +ΦH

3 , ΦH

i ∈ Λ2(H) for i = 1, 2, 3,

which we can alternatively summarize as Φi = −ηjk + ΦH
i for even permutations. Furthermore,

the defining condition of a 3-(α, δ)-Sasaki manifold may be reformulated as

dηi = 2αΦH

i − 2δ ηjk

for even permutations. All in all, this distinction between horizontal and vertical contributions
allows to identify the horizontal, vertical, and mixed parts of the torsion and its derivative more
clearly.
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Theorem 4.4.1. Let (M,ϕi, ξi, ηi, g) be a 3-(α, δ)-Sasaki manifold. The torsion of its canonical
connection ∇ is given by

T =
3

∑

i=1

ηi ∧ dηi + 8(δ − α) η123 = 2α
3

∑

i=1

ηi ∧ΦH

i + 2(δ − 4α) η123

and satisfies ∇T = 0 as well as

dT = 4α2

3
∑

i=1

Φi ∧ Φi + 8α(δ − α)
i,j,k

S Φi ∧ ηjk

= 4α2

3
∑

i=1

ΦH

i ∧ΦH

i + 8α(δ − 2α)
i,j,k

S ΦH

i ∧ ηjk.

Here, the symbol
i,j,k

S means the sum over all even permutations of (1, 2, 3).

Proof. Each almost contact metric structure (ϕi, ξi, ηi, g) admits a characteristic connection ∇i

(Theorem 2.1.1) with torsion
Ti = ηi ∧ dηi + dϕiΦi,

since the structure is hypernormal. Applying (2.12), since ηk ◦ ϕi = ηj and ηj ◦ ϕi = −ηk, and
using also equations (2.17) and (2.18), we have

dϕiΦi(X,Y, Z) = 2(α− δ){(ηk ∧Φj)(ϕiX,ϕiY, ϕiZ)− (ηj ∧ Φk)(ϕiX,ϕiY, ϕiZ)}

= 2(α− δ){−ηj(X)(Φj + ηki)(Y, Z)

− ηj(Y )(Φj + ηki)(Z,X)− ηj(Z)(Φj + ηki)(X,Y )}

− 2(α− δ){ηk(X)(Φk + ηij)(Y, Z)

+ ηk(Y )(Φk + ηij)(Z,X) + ηk(Z)(Φk + ηij)(X,Y )}

= 2(α− δ)(−ηj ∧ Φj − ηjki)(X,Y, Z)

− 2(α− δ)(ηk ∧Φk + ηkij)(X,Y, Z)

= 2(δ − α)(ηj ∧ Φj + ηk ∧ Φk + 2 η123)(X,Y, Z).

Therefore, the torsion Ti is given by

Ti = ηi ∧ dηi + 2(δ − α)(ηj ∧ Φj + ηk ∧Φk + 2 η123),

and by (4.10), the torsion of the canonical connection is

T = Ti − 2(δ − 2α)(ηj ∧ Φj + ηk ∧ Φk)

= ηi ∧ dηi + 2α(ηj ∧Φj + ηk ∧ Φk) + 4(δ − α)η123

= ηi ∧ dηi + ηj ∧ {dηj + 2(δ − α)ηki}+ ηk ∧ {dηk + 2(δ − α)ηij}+ 4(δ − α)η123

=

3
∑

i=1

ηi ∧ dηi + 8(δ − α)η123 .

The alternative expression in terms of ΦH
i follows by substituting their definitions from Remark

4.4.2.
One can verify that both expressions for T are coherent with equations (3.3), (3.4), (3.5) and

(4.2). In particular,
T (X,Y, Z) = T (X, ξi, ξj) = 0, (4.14)

T (X,Y, ξi) = 2αΦi(X,Y ), T (ξi, ξj , ξk) = 2(β − δ) = 2(δ − 4α), (4.15)
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for every X,Y, Z ∈ Γ(H), and where (i, j, k) is an even permutation of (1, 2, 3). Now, since the
canonical connection ∇ preserves the splitting TM = H⊕ V , from (4.14) we obtain

(∇UT )(X,Y, Z) = (∇UT )(X, ξi, ξj) = 0,

for every U ∈ X(M) and X,Y, Z ∈ Γ(H). By Remark 4.1.2, the covariant derivatives ∇ξi are given
by

∇Uξi = β(ηk(U)ξj − ηj(U)ξk) (4.16)

for every U ∈ X(M) and where β = 2(δ − 2α). In particular, ∇Uξi ∈ 〈ξj , ξk〉 and thus, using also
the second identity in (4.15), we get

(∇UT )(ξi, ξj , ξk) = 0.

Furthermore, using the first identity in (4.15), and (4.16), we have

(∇UT )(X,Y, ξi)

= 2α∇U (Φi(X,Y ))− 2αΦi(∇UX,Y )− 2αΦi(X,∇UY )− T (X,Y,∇Uξi)

= 2α(∇UΦi)(X,Y ) + βηk(U)T (X,Y, ξj)− βηj(U)T (X,Y, ξk)

= 2αg(X, (∇Uϕi)Y ) + 2βαηk(U)Φj(X,Y )− 2βαηj(U)Φk(X,Y )

= 2α{g(X, (∇Uϕi)Y ) + βg(X, ηk(U)ϕjY − ηj(U)ϕkY )}

which vanishes because of (4.1). This completes the proof that ∇T = 0. Finally, differentiating
the expression for T , we obtain

dT =
3

∑

i=1

dηi ∧ dηi + 8(δ − α)
i,j,k

S dηi ∧ ηjk

=
i,j,k

S
(

2αΦi + 2(α− δ)ηjk
)

∧
(

2αΦi + 2(α− δ)ηjk
)

+ 16α(δ − α)
i,j,k

S Φi ∧ ηjk

= 4α2

3
∑

i=1

Φi ∧ Φi − 8α(α− δ)
i,j,k

S Φi ∧ ηjk.

This completes the proof.

Remark 4.4.3 (ϕ-compatible connections of 3-(α, δ)-Sasaki manifolds). An immediate computa-
tion based on Proposition 3.2.2 and the preceding Theorem 4.4.1 shows that for a ϕ-compatible
connection ∇γ with parameter function γ of a 3-(α, δ)-Sasaki manifold, the general expression for
the torsion Tγ is

Tγ =

3
∑

i=1

ηi ∧ dηi + (8δ − 4α+ γ) η123 = 2α

3
∑

i=1

ηi ∧ ΦH
i + γ η123.

The canonical connection corresponds to the choice γ = 2(δ − 4α).

The following lemma is purely computational, hence we omit the proof. The formulas are,
however, quite useful, for example in the next section.

Lemma 4.4.1.

1) dΦH
i = 2δ(ΦH

j ∧ ηk − ΦH
k ∧ ηj) and α dΦH

i = δ d(ηjk) for even permutations,

2) The form ΨH :=
∑3

i=1
ΦH

i ∧ ΦH
i satisfies dΨH = 0,

3) d
[

∑3

i=1
ηi ∧ΦH

i

]

= 2αΨH + 2δ
i,j,k

S ΦH
i ∧ ηjk,
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4) dη123 = 2α
i,j,k

S ΦH
i ∧ ηjk.

Since any 3-α-Sasakian manifold is 3-(α, δ)-Sasaki with δ = α, we have the following

Corollary 4.4.1. Any 3-α-Sasakian manifold (M,ϕi, ξi, ηi, g) admits a canonical connection ∇
with torsion

T = η1 ∧ dη1 + η2 ∧ dη2 + η3 ∧ dη3

which satisfies ∇T = 0.

Remark 4.4.4 (Canonical connection of a 3-Sasakian manifold). The canonical connection defined
in the above Corollary coincides with the linear connection considered in [AF10a] for 7-dimensional
3-Sasakian manifolds. In this case the canonical connection ∇ coincides with the characteristic
connection of the canonical (cocalibrated) G2-structure of the 3-Sasakian manifold. This fact will
be generalized in Section 4.5.

Remark 4.4.5 (Connections on S7). The 7-sphere carries a dazzling array of interesting metric
connections with skew torsion—we saw one of them in Example 4.1.3, and of course the natural
3-Sasaki structure on S7 is covered by the previous Corollary and Remark. The 7-sphere can
be endowed with several natural metrics: the round metric, the family of Berger metrics, or the
naturally reductive metric stemming from the realisation as the homogeneous space Spin(7)/G2. A
thorough investigation of metric connections invariant under Lie groups was carried out in [DGP16]
(G = Spin(6)) and [Ch16] (G = Spin(7)). A comparison of their results with ours shows that none
of these connections is ϕ-compatible for the underlying 3-Sasaki structure, because they do not
preserve the distributions V and H (for details, see [DGP16, 5.13–5.19] and [Ch16, Ex. 4.8]).

For parallel 3-(α, δ)-Sasaki manifolds, corresponding to δ = 2α, we can state the following

Corollary 4.4.2. The canonical connection of a parallel 3-(α, δ)-Sasaki manifold (M,ϕi, ξi, ηi, g)
has torsion

T =

3
∑

i=1

ηi ∧ dηi + 8αη123

and satisfies ∇T = 0.

Remark 4.4.6. Notice that any 3-α-Sasakian structure admits H-homothetic deformations which
are 3-(α′, δ′)-Sasaki with δ′ = 2α′. Indeed, if (M,ϕi, ξi, ηi, g) is a 3-α-Sasakian manifold, the H-
deformed structure (2.14) is 3-(α′, δ′)-Sasaki with α′ = α c

a
, δ′ = α

c
by Proposition 2.3.1. Therefore,

these coefficients satisfy δ′ = 2α′ if and only if a = 2c2. On the other hand, we know that c2 = a+b.
Hence, we can conclude that all the deformed structures

η′i = cηi, ξ′i =
1

c
ξi, ϕ′

i = ϕi, g′ = 2c2g − c2
3

∑

i=1

ηi ⊗ ηi

are 3-(α′, δ′)-Sasaki with α′ = α
2c

and δ′ = α
c
= 2α′, each one admitting a canonical connection

which parallelizes the structure tensor fields.

We showed that the quaternionic Heisenberg group (Np, ϕi, ξi, ηi, gλ) is a degenerate 3-(α, δ)-
Sasaki manifold (δ = 0) with 2α = λ. Therefore,

Corollary 4.4.3. The quaternionic Heisenberg group (Np, ϕi, ξi, ηi, gλ) admits a canonical con-
nection ∇ with torsion T given by

T = η1 ∧ dη1 + η2 ∧ dη2 + η3 ∧ dη3 − 4λη123

which satisfies ∇T = 0.
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Remark 4.4.7. The canonical connection of the quaternionic Heisenberg group determined in the
above corollary coincides with the canonical connection defined in [AFS15]. In [AFS15] the authors
prove that this connection ∇ parallelizes its torsion and curvature tensors, and the holonomy
algebra of ∇ is isomorphic to su(2). In the 7-dimensional case this connection ∇ is also the
characteristic connection of a cocalibrated G2-structure.

Remark 4.4.8. In [Ca09], Cappelletti-Montano investigated hypernormal almost 3-contact metric
manifolds admitting metric connections with certain invariance properties, but only under the
assumption of having skew-symmetric torsion on H. He calls these manifolds almost 3-contact
metric manifolds with torsion. One easily checks with the properties of 3-(α, δ)-Sasaki manifolds
we compiled that these are always almost 3-contact metric manifolds with torsion by [Ca09, Thm
4.3].

Finally, we formulate the result for the Ricci curvature Ric of the canonical connection. The
computation is rather lengthy, but standard, hence we omit it. Observe that the property of being
symmetric follows for Ric from ∇T = 0.

Theorem 4.4.2 (∇-Ricci curvature for 3-(α, δ)-Sasaki manifolds). Let (M,ϕi, ξi, ηi, g) be a 3-
(α, δ)-Sasaki manifold of dimension 4n+ 3. The Ricci tensor of the canonical connection ∇ is for
all X,Y ∈ X(M) given by

Ric = 4α{δ(n+ 2)− 3α} g + 4α{δ(2− n)− 5α}

3
∑

i=1

ηi ⊗ ηi

= 4α{δ(n+ 2)− 3α} IdH + 16α(δ − 2α) IdV .

In particular, the manifold is ∇-Einstein if and only if δ(2−n) = 5α, and it is never ∇-Ricci flat.

For details on the notion of ∇-Einstein manifolds, we refer to [AF14]. Together with the
expression for the Riemannian Ricci curvature stated in Proposition 2.3.3, we can conclude after
a short calculation:

Corollary 4.4.4. A 3-(α, δ)-Sasaki manifold (M,ϕi, ξi, ηi, g) is both Riemannian Einstein and
∇-Einstein if and only if dimM = 7 and δ = 5α.

Example 4.4.1 (H-Deformations of 3-Sasaki manifolds II). Consider now a 7-dimensional 3-
Sasaki manifold (M7, ϕi, ξi, ηi, g), i. e. α0 = δ0 = 1, and the particular one-parameter family of
H-homothetic deformations given by a > 0 arbitrary, b = 1− a, c = 1, hence α = 1

a
and δ = 1 for

the resulting 3-(α, δ)-Sasaki manifold (Proposition 2.3.1). From Corollary 2.3.3, we conclude that
its Reeb Killing function is β = 2(1 − 2/a). This is a well-known family of deformations, see for
example [FKMS97, Fri07]. We conclude at once that a assumes the following particular values:

a properties

1 Einstein and 3-Sasakian
2 parallel 3-(α, δ)-Sasakian
5 Einstein and ∇-Einstein 3-(α, δ)-Sasakian

4.5 The canonical G2-structure of a 7-dimensional 3-(α, δ)-Sasaki mani-

fold

In this Section, we restrict our attention to the situation that (M7, ϕi, ξi, ηi, g) is a (simply con-
nected) 7-dimensional 3-(α, δ)-Sasaki manifold. In the adapted frame e1 = ξ1, e2 = ξ2, e3 = ξ3,
e4 any vector field orthonormal to V , e5 = ϕ1e4, e6 = ϕ2e4, e7 = ϕ3e4 with dual 1-forms
ηi, i = 1, . . . , 7, the horizontal fundamental forms are given by

ΦH

1 = −η45 − η67, ΦH

2 = −η46 + η57, ΦH

3 = −η47 − η56.

We shall prove that as in the 7-dimensional 3-Sasaki case [AF10a], its canonical connection is, in
fact, a G2-connection:
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Theorem 4.5.1. Let (M7, ϕi, ξi, ηi, g) be a 7-dimensional 3-(α, δ)-Sasaki manifold. The 3-form

ω :=
3

∑

i=1

ηi ∧ ΦH

i + η123 = −η145 − η167 − η246 + η257 − η347 − η356 + η123

defines a cocalibrated G2-structure, i. e. it is of Fernandez-Gray type W1⊕W3, that we shall call the
canonical G2-structure. Its characteristic connection ∇ coincides with the canonical connection.

Proof. As this is not a paper on G2-manifolds, we shall be brief, the necessary details on G2-
manifolds and their characteristic connection may for example be found in [FI02, Ag06]. For
commodity, let us split ω as

ω = ω1 + ω2 with ω1 =

3
∑

i=1

ηi ∧ ΦH

i , ω2 = η123.

One checks by an explicit calculation that their Hodge duals are given by

∗ω1 = −η2367 − η2345 − η1357 + η1346 − η1256 − η1247 =
i,j,k

S ΦH
i ∧ ηjk, ∗ω2 = η4567 =

1

6
ΨH.

By Lemma 4.4.1, ∗ω1 and ∗ω2 are closed, hence d ∗ ω = 0, which is the condition for being
a cocalibrated G2-structure. It is proved in [FI02] that any cocalibrated G2-manifold admits a
unique characteristic connection ∇ with torsion

T = − ∗ dω +
1

6
〈dω, ∗ω〉ω.

Again, dωi (i = 1, 2) may be read off directly from Lemma 4.4.1, from which we conclude that
∗dω2 = 2αω1 and ∗dω1 = 2δ ω1 + 12αω2. One checks that 〈dω, ∗ω〉 = 24α+ 12 δ, and thus

T = 2αω1 + 2(δ − 4α)ω2,

in full agreement with Theorem 4.4.1.

This result allows us to use the full machinery of G2-geometry for further investigations of the
connection ∇. In particular, since G2 is the stabilizer of a generic spinor inside Spin(7), there
exists a ∇-parallel spinor field ψ0. For a systematic investigation of G2-manifolds via spinors, we
refer to [ACFH15].

Definition 4.5.1 (Canonical spinor field). Let Σ be the real spin bundle of M7. The G2-form
ω acts via Clifford multiplication on Σ as a symmetric endomorphism field with eigenvalue −7
(multiplicity one) and eigenvalue +1 (multiplicity seven). Consequently, it defines (assuming M7

simply connected) a unique canonical spinor field ψ0 such that

∇ψ0 = 0, ω · ψ0 = −7ψ0, |ψ0| = 1.

Furthermore, a cocalibratedG2-manifold with characteristic torsion T satisfies T ·ψ0 = − 1

6
〈dω, ∗ω〉ψ0,

which in our situation means
T · ψ0 = −(4α+ 2δ)ψ0.

Definition 4.5.2. Recall that a spinor field ψ is called a generalized Killing spinor if there exists
a symmetric endomorphism field S such that ∇g

Xψ = S(X) · ψ; being symmetric, we may assume
that S is given in diagonal form. We call the eigenvalues of S the generalized Killing numbers
of ψ. If they coincide and are non-zero (i. e. S is a non-trivial multiple of the identity), we have
a (classical) Riemannian Killing spinor. The following results on 7-dimensional compact simply
connected spin manifolds are well-known (see [FK90, BFGK91, Ag06, CS06, ABK13]):
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1) M7 admits (at least) one generalized Killing spinor if it is a cocalibrated G2-manifold;

2) M7 admits exactly one resp. two resp. three Killing spinor(s) if it is a nearly parallelG2-manifold
resp. Einstein-α-Sasaki manifold resp. 3-α-Sasaki manifold.

Thus, our 7-dimensional 3-(α, δ)-Sasaki manifold should have at least one generalized Killing
spinor. In fact, we will show that it has four of them: the canonical spinor ψ0 and the three Clifford
products ξi ·ψ0, which are linearly independent due to general properties of the spin representation.

Theorem 4.5.2 (Existence of generalized Killing spinors). Let (M7, ϕi, ξi, ηi, g) be a simply con-
nected 7-dimensional 3-(α, δ)-Sasaki manifold, ψ0 its canonical spinor.

1) The canonical spinor field ψ0 is a generalized Killing spinor:

∇g
Xψ0 = −

3α

2
X · ψ0 for X ∈ H, ∇g

Y ψ0 =
2α− δ

2
Y · ψ0 for Y ∈ V .

The two generalized Killing numbers coincide if and only if δ = 5α; in this case, the G2-form
ω defines a nearly parallel G2-structure (Gray-Fernandez type W1).

2) The Clifford products ψi := ξi · ψ0, i = 1, 2, 3, are generalized Killing spinors:

∇g
ξi
ψi =

2α− δ

2
ξi · ψi, ∇g

ξj
ψi =

3δ − 2α

2
ξj · ψi (i 6= j), ∇g

Xψi =
α

2
X · ψi for X ∈ H.

Any two of the generalized Killing numbers coincide if and only if α = δ, i. e. if M7 is 3-α-
Sasakian.

Proof. By Theorem 4.4.1, we know that (M7, ω) is not only cocalibrated, but that it also has
parallel torsion. We are thus in the context of cocalibrated G2-manifolds with parallel torsion,
studied by Friedrich in [Fri07]. The shape of the torsion identifies the right subcase to consider
(Section 10, hol(∇) = su(2)⊕ suc(2), the correct identification of parameters is, up to an irrelevant
change of numeration, a = 2α and b = 2(δ − 5α)). Thus, the results of [Fri07, p.646] yield the
stated equations for ψ0. Let us write this equation in a more uniform way by introducing the two
generalized Killing numbers µH, µV ∈ R

∇g
Xψ0 = µHX · ψ0 for X ∈ H, ∇g

Y ψ0 = µV Y · ψ0 for Y ∈ V .

To compute the Levi-Civita derivatives of ψi = ξi · ψ0, we begin with

∇g
X(ξi · ψ0) = ∇g

X(ξi) · ψ0 + ξi · ∇
g
Xψ0 ∀ X ∈ X(M).

By Corollary 2.3.1, we know that∇g
X(ξi) = −αϕH

i (X) forX ∈ H, ∇g
ξi
(ξi) = 0, and∇g

ξj
(ξi) = −δ ξk

for even permutations. Hence, it makes sense to distinguish these three cases; in particular, the first
part of the claim follows immediatly. For the other two cases, a computer-assisted computation in
the spin representation is needed: one checks that

ϕH

i (X) · ψ0 = X · ξi · ψ0 for X ∈ H, ξi · ξj · ψ0 = ξk · ψ0 for even permutations.

The remaining claims now follow from a short calculation2.

2Observe that the theorem corrects a small computation error for the generalized Killing number in case X ∈ H

from [AFS15, Cor.9]; this was due to a wrong sign in the expression for ϕH
i
(X) · ψ0.

50



5 Appendix: Examples on Lie groups

In this section we denote by G a (4n + 3)-dimensional Lie group with Lie algebra g spanned by
vector fields ξ1, ξ2, ξ3, τr, τn+r, τ2n+r, τ3n+r, r = 1, . . . , n. We also consider the left invariant almost
3-contact metric structure (ϕi, ξi, ηi, g), where g is the Riemannian metric with respect to which
the basis is orthonormal, ηi is the dual 1-form of ξi, and ϕi is given by

ϕi = ηj ⊗ ξk − ηk ⊗ ξj +

n
∑

r=1

[θr ⊗ τin+r − θin+r ⊗ τr + θjn+r ⊗ τkn+r − θkn+r ⊗ τjn+r ] (5.1)

where θl, l = 1, . . . , 4n, is the dual 1-form of τl, and (i, j, k) is an even permutation of (1, 2, 3). The
fundamental 2-forms of the structure are given by

Φi = − ηj ∧ ηk −

n
∑

r=1

[θr ∧ θin+r + θjn+r ∧ θkn+r]. (5.2)

All our examples will be on nilpotent Lie groups, except the following one:

Example 5.1. Let g be the Lie algebra with nonvanishing commutators given by

[ξi, ξj ] = 2δξk

where δ ∈ R, δ 6= 0, and (i, j, k) is any even permutation of (1, 2, 3). It is isomorphic to so(3)⊕R4n.
The differential of each 1-form ηi is given by

dηi = −2δηj ∧ ηk,

Since the 1-forms θl are closed, from (5.2) we have

dΦi = −dηj ∧ ηk + ηj ∧ dηk = 2δ ηk ∧ ηi ∧ ηk − 2δ ηj ∧ ηi ∧ ηj = 0.

Then the corresponding Lie group (G,ϕi, ξi, ηi, g) is a 3-δ-cosymplectic manifold.

Example 5.2. Here we will construct an example of a hypernormal canonical non-parallel almost
3-contact metric manifold (M,ϕi, ξi, ηi, g) that is not 3-(α, δ)-Sasaki (see Figure 1). Let g be the
Lie algebra with nonvanishing commutators given by

[τr , τn+r] = ξ1, [τr, τ2n+r] = ξ2, [τr, τ3n+r] = ξ3.

Therefore,

dηi = −
n
∑

r=1

θr ∧ θin+r, dθl = 0,

for every i = 1, 2, 3 and l = 1, . . . , 4n. First, let us check that the left invariant almost 3-contact
metric structure (ϕi, ξi, ηi, g) defined on the Lie group G is not 3-(α, δ)-Sasaki, nor in fact 3-δ-
cosymplectic. Indeed, we have

dηi = Φi + ηj ∧ ηk +

n
∑

r=1

θjn+r ∧ θkn+r.

The differential of the fundamental 2-forms are given by

dΦi = −dηj ∧ ηk + ηj ∧ dηk.

Therefore, for every X,Y, Z ∈ H we have dΦi(X,Y, Z) = 0 and Nϕi
(X,Y, Z) = 0. Since each ξi is

a Killing vector field, in order to prove that the structure is canonical, we show that it admits a
Reeb Killing function. Notice that (5.1) implies

θr ◦ ϕi = −θin+r, θin+r ◦ ϕi = θr, θin+r ◦ ϕj = θkn+r = −θjn+r ◦ ϕi,
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for every even permutation (i, j, k) of (1, 2, 3). Now, since Lξjϕi = 0, for every X,Y ∈ H, we have

Aij(X,Y ) = dηj(X,ϕiY ) + dηj(ϕiX,Y )

= −

n
∑

r=1

(θr ∧ θjn+r)(X,ϕiY )−

n
∑

r=1

(θr ∧ θjn+r)(ϕiX,Y )

=

n
∑

r=1

[θr(X)θkn+r(Y )− θjn+r(X)θin+r(Y ) + θin+r(X)θjn+r(Y )− θkn+r(X)θr(Y )]

=

n
∑

r=1

(θr ∧ θkn+r)(X,Y ) +

n
∑

r=1

(θin+r ∧ θjn+r)(X,Y )

= −Φk(X,Y ).

Analogously, one shows that Aji(X,Y ) = Φk(X,Y ). Furthermore,

Ai(X,Y ) = −

n
∑

r=1

(θr ∧ θin+r)(X,ϕiY )−

n
∑

r=1

(θr ∧ θin+r)(ϕiX,Y )

= −
n
∑

r=1

[θr(X)θr(Y ) + θin+r(X)θin+r(Y )− θin+r(X)θin+r(Y )− θr(X)θr(Y )] = 0.

Therefore, the structure admits constant Reeb Killing function β = −1, and it is canonical. Observe
that this allows us to conclude that the structure is hypernormal: Indeed, we already showed that
Nϕi

(X,Y, Z) = 0 for every X,Y, Z ∈ Γ(H). Since the structure is canonical, by Theorem 2.1.1,
each tensor field Nϕi

is skew-symmetric on TM . Furthermore, each ξi lies in the center of the Lie
algebra. Then, taking into account equations (2.5) one easily verifies that Nϕi

= 0.
Using (3.3)-(3.5) and (4.2), one can check that the torsion T of the canonical connection is

given by

T =
3

∑

i=1

ηi ∧ dηi − 2 η1 ∧ η2 ∧ η3.

By Theorem 4.2.1, the characteristic connection of the structure (ϕi, ξi, ηi, g) has torsion

Ti = T − ηj ∧ Φj − ηk ∧ Φk

= T − ηj ∧ (dηj − ηk ∧ ηi −

n
∑

r=1

θkn+r ∧ θin+r)− ηk ∧ (dηk − ηi ∧ ηj −

n
∑

r=1

θin+r ∧ θjn+r)

= ηi ∧ dηi +
n
∑

r=1

(ηj ∧ θkn+r − ηk ∧ θjn+r) ∧ θin+r .

We end with two examples of almost 3-contact metric manifolds (M,ϕi, ξi, ηi, g) that admit
ϕi-compatible connections despite not being canonical (and, furthermore, not hypernormal).

Example 5.3. Let g be the Lie algebra with non-vanishing commutators

[τr, τn+r] = [τ2n+r, τ3n+r] = ξ1.

Assuming the corresponding Lie group G to be connected and simply connected, it is the product
H2n

R
×R2, where H2n

R
is the real Heisenberg group of dimension 4n+1. The left invariant structure

(ϕi, ξi, ηi, g) satisfies

dη1 = −

n
∑

r=1

[θr ∧ θn+r + θ2n+r ∧ θ3n+r] = Φ1 + η2 ∧ η3, dη2 = 0, dη3 = 0.
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Being also dθl = 0, we have

dΦ1 = 0, dΦ2 = η3 ∧ dη1 = η3 ∧ Φ1, dΦ3 = −dη1 ∧ η2 = −Φ1 ∧ η2.

Then, for every i = 1, 2, 3, and for everyX,Y, Z ∈ H, we have dΦi(X,Y, Z) = 0 andNϕi
(X,Y, Z) =

0. Each ξi is a Killing vector field. Proposition 3.2.2 implies that the manifold admits ϕi-compatible
connections for every i = 1, 2, 3. Nevertheless, the structure is not canonical. Indeed, one can easily
verify that, for every X,Y ∈ H,

Ai2(X,Y ) = Ai3(X,Y ) = 0, i = 1, 2, 3,

A1(X,Y ) = 0, A21(X,Y ) = 2Φ3(X,Y ), A31(X,Y ) = −2Φ2(X,Y ).

One can also notice that this structure is not hypernormal. Indeed, using (2.3), we see that
Nϕ1

= 0, but
Nϕ2

(X,Y, ξ1) = Nϕ3
(X,Y, ξ1) = 2Φ1(X,Y ) ∀X,Y ∈ H.

Example 5.4. Let g be the Lie algebra with non-vanishing commutators

[τr, τn+r] = [τ2n+r, τ3n+r] = ξ1, [τr, τ2n+r] = [τ3n+r, τn+r] = ξ2.

The corresponding connected simply connected Lie group G is the product H2n
C

×R, where H2n
C

is
the complex Heisenberg group of real dimension 4n+ 2. The left invariant structure (ϕi, ξi, ηi, g)
satisfies

dη1 = −

p
∑

r=1

[θr ∧ θn+r + θ2n+r ∧ θ3n+r] = Φ1 + η2 ∧ η3,

dη2 = −

p
∑

r=1

[θr ∧ θ2n+r + θ3n+r ∧ θn+r] = Φ2 + η3 ∧ η1,

and dη3 = 0. Since dθl = 0, we have

dΦ1 = −dη2 ∧ η3 = −Φ2 ∧ η3, dΦ2 = η3 ∧ dη1 = η3 ∧ Φ1,

dΦ3 = −dη1 ∧ η2 + η1 ∧ dη2 = −Φ1 ∧ η2 + η1 ∧ Φ2.

Again, for every i = 1, 2, 3, and for everyX,Y, Z ∈ H, we have dΦi(X,Y, Z) = 0 andNϕi
(X,Y, Z) =

0. Each ξi is a Killing vector field. From Proposition 3.2.2 the manifold admits ϕi-compatible con-
nections for every i = 1, 2, 3. Nevertheless, the structure is not canonical. Indeed, for every
X,Y ∈ H,

A13(X,Y ) = A23(X,Y ) = 0, A31(X,Y ) = −2Φ2(X,Y ), A32(X,Y ) = 2Φ1(X,Y ).

The structure is not hypernormal. Indeed, using (2.3), we see that Nϕ3
= 0, but

Nϕ1
(X,Y, ξ3) = Nϕ2

(X,Y, ξ3) = −2Φ3(X,Y ) ∀X,Y ∈ H.
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