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I
n a talk delivered in Leipzig (Germany) on
June 11, 1900, Friedrich Engel gave the
first public account of his newly discovered
description of the smallest exceptional Lie
group G2, and he wrote in the corresponding

note to the Royal Saxonian Academy of Sciences:

Moreover, we hereby obtain a direct defi-
nition of our 14-dimensional simple group
[G2] which is as elegant as one can wish for.
[En00, p. 73]1

Indeed, Engel’s definition of G2 as the isotropy
group of a generic 3-form in 7 dimensions is at
the basis of a rich geometry that exists only on
7-dimensional manifolds, whose full beauty has
been unveiled in the last thirty years.

This article is devoted to a detailed historical
and mathematical account of G2’s first years, in
particular the contributions and the life of Engel’s
almost forgotten Ph. D. student Walter Reichel,
who worked out the details of this description in
1907. We will also give an introduction to mod-
ern G2 geometry and its relevance in theoretical
physics (in particular, superstring theory).

The Classification of Simple Lie Groups
In 1887 Wilhelm Killing [Kil89] succeeded in classi-
fying those transformation groups that are rightly
called simple: by definition, these are the Lie groups
that are not abelian and do not have any nontrivial
normal subgroups.

Every Lie groupGhas a Lie algebra g (the tangent
space to the group manifold at the identity), which
is a vector space endowed with a skew-symmetric
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1In Engel’s own words: “Zudem ist hiermit eine direkte
Definition unserer vierzehngliedrigen einfachen Gruppe
gegeben, die an Eleganz nichts zu wünschen übrig lässt.”

product, the Lie bracket [ , ]; as a purely algebraic
object it is more accessible than the original Lie
groupG. IfG happens to be a group of matrices, its
Lie algebra g is easily realized by matrices too, and
the Lie bracket coincides with the usual commuta-
tor of matrices. In Killing’s and Lie’s time, no clear
distinction was made between the Lie group and
its Lie algebra. For his classification, Killing chose
a maximal set h of linearly independent, pairwise
commuting elements of g and constructed base
vectors Xα of g (indexed over a finite subset R of
elements α ∈ h∗, the roots) on which all elements
of h act diagonally through [ , ]:

[H,Xα] = α(H)Xα for all H ∈ h.

In order to avoid problems when doing so he chose
the complex numbers C as the ground field. The
dimension of the maximal abelian subalgebra h
(also called, somehow wrongly, a Cartan subalge-
bra) is the rank of the Lie algebra. It is a general
fact that all roots α ≠ 0 appear only once. If we
write gα := C · Xα (these are the root spaces), we
obtain a decomposition of g as

g = h
⊕

α∈R

gα

and vectors in gα, gβ for two roots α,β satisfy an
extremely easy multiplication rule: [gα, gβ] ⊂ gα+β
if α+ β is again a root, while otherwise it is zero.

Two families of complex simple Lie algebras
were well-known at that time:

(1) the Lie algebras so(n,C) consisting of
skew-symmetric complex matrices, which
are the Lie algebras of the orthogonal
groups SO(n,C) (n = 3 or n ≥ 5),

(2) the Lie algebras sl (n,C) consisting of
trace-free matrices, which are the Lie al-
gebras of the groups SL(n,C) of matrices
of determinant one (n ≥ 2).
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It was Killing’s original intent to prove that these
were the only simple complex Lie algebras.2 In
fact, there exists a third family of simple algebras,
namely the Lie algebras sp(2n,C) of the symplectic
groups Sp(2n,C) for n ≥ 1, defined as invariance
groups of non-degenerate 2-forms ω on C2n:

Sp(2n,C) = {g ∈ GL(2n,C) : ω = g∗ω}.

Around 1886, Sophus Lie and Friedrich Engel were
aware of their existence, but they had not yet
appeared in print anywhere [Ha00, p. 152]. To his
big surprise, in May 18873 Killing discovered a
completely unknown complex simple Lie algebra
of rank 2 and dimension 14, which is just the
exceptional Lie algebra g2. By October 1887, he
had basically completed his classification. He dis-
covered that besides g2 and the three families
mentioned above, there exist four additional ex-
ceptional simple Lie algebras. In modern notation,
they are: f4, e6, e7, e8, and they have dimensions
52, 78, 133, and 248 respectively.

There exist many real orthogonal Lie groups
with complexification SO(n,C)—namely all or-
thogonal groups SO(p, q) associated with scalar
products with indefinite signature (p, q) such that
p + q = n; they are called real forms of SO(n,C)
(similarly for the Lie algebras), and it is an easy
fact that SO(p, q) is compact only for q = 0. Just
as well, the complex Lie algebra g2 with complex
Lie group G2 has two real forms that we are going
to denote by gc2 and g∗2 ; of their (simply connected)
Lie groups Gc2 and G∗2 , only the former is compact.

Without doubt, the classification of complex
simple Lie algebras is one of the outstanding
results of nineteenth century mathematics (this
was not Killing’s point of view, however: his orig-
inal aim had been a classification of all real Lie
algebras, he was unsatisfied with his own expo-
sition and the incompleteness of results, so that
he would not have published his results with-
out strong encouragement from Friedrich Engel).
Indeed, Killing’s formidable work contains some
gaps and mistakes:4 in his thesis (1894), Élie
Cartan gave a completely revised and polished
presentation of the classification [Ca94], which
has therefore become the standard reference for
the result.

2Letter from W. Killing to Fr. Engel, April 12, 1886; see
[Ha00, p. 153].
3Letter from W. Killing to Fr. Engel, May 23, 1887; see
[Ha00, p. 161].
4For example, he had found two exceptional Lie algebras
of dimension 52 and overlooked that they are isomorphic,
and his classification was based on three main theorems
whose statements and proofs were partially wrong.

Élie Cartan
(1869–1951) in the
year 1904.

Friedrich Engel
(1861–1941) around
1922.
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First Results on G2

We can only conjecture how Killing and his contem-
poraries felt about the exceptional Lie algebras—as
disturbances to the symmetry or as exotic and
unique objects. But since Lie theory as a whole
was developed in these times, they were investi-
gated too, but not with high priority. G2 was the
first—and, for rather a long time, the only—Lie
group for which further results were obtained.
This is natural for dimensional considerations,
but we will see later that it has also much deeper
reasons.

From the weight lattice, which one obtains auto-
matically during the classification, one can easily
determine the lowest dimensional representation
of any simple Lie algebra. This Cartan did in the
last section of his thesis, and he rightly observed
that g2 admits a 7-dimensional complex represen-
tation, which furthermore possesses a symmetric
nondegenerate g2-invariant bilinear form [Ca94,
p. 146]:

β := x2
0 + x1y1 + x2y2 + x3y3.

This scalar product has real coefficients, hence can
be interpreted over the reals as well; in that case
it has signature (4,3), and one can understand
Cartan’s result as giving a real representation of
the noncompact form g∗2 inside so(4,3).

At this stage, the question about explicit con-
structions of the exceptional Lie algebras becomes
pressing. Élie Cartan and Friedrich Engel obtained
the first breakthrough, published in two simulta-
neous notes to the Académie des Sciences de Paris
[Ca93], [En93]: For every point a ∈ C5, consider
the 2-plane πa in the tangent space TaC5 that is
the zero set of the Pfaffian system

dx3 = x1 dx2 − x2 dx1,

dx4 = x2 dx3 − x3 dx2,

dx5 = x3 dx1 − x1 dx3.
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The 14 vector fields on C5 whose local flows map
the planes πa to each other satisfy the commu-
tator relations of the Lie algebra g2. Both authors
then gave in the same papers a second geometric
realization of g2: Engel derived it from the first
by a contact transformation, while Cartan identi-
fied g2 as the symmetries of the solution space
of the system of second order partial differential
equations5 (f = f (x, y))

fxx =
4

3
(fyy)

3, fxy = (fyy)
2.

Both viewed their second realization as being
different from the one through the Pfaffian system.
Of course, this is correct: stated in modern terms,
the complex Lie group G2 has two non-conjugate
9-dimensional parabolic subgroups P1 and P2, and
G2 acts on the two compact homogeneous spaces
M5
i := G2/Pi , i = 1,2. It is a detail that Engel and

Cartan did not describe the g2 action on the full
spacesM5

i , but rather on an open subset; this was
the common way at that time.

Let us have a closer look at these two homoge-
neous spaces. For this, we need the lattice inside
h∗ spanned by the 12 roots of g2, the root lattice.
It is the usual hexagonal planar lattice, in which
the roots are denoted by arrows:
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Figure 1. The g2 root system and lattice.

The g2 root system is the only one in which
two roots include an angle of π/6, indicating its
exceptional standing among all root systems. The
roots above respectively below the dashed line
are called positive respectively negative roots, and
R = R+ ∪ R−. The two positive roots marked α1

and α2 alone already generate the lattice; they
are called simple roots. Keeping in mind the root
system with the multiplication rule for root spaces

5In 1910, Élie Cartan returned to his description of G∗2
by Pfaffian systems and differential equations [Ca10];
a modern treatment and further investigation can be
found in the worthwhile article by P. Nurowski [Nu05].
It is quite remarkable that the thesis of yet another
of Engel’s students plays a decisive role here (Karl
Wünschmann, Greifswald, 1905).

gα stated before, one sees that the direct sum of
h (corresponding, loosely speaking, to the origin),
the six positive root spaces, and the root space of
one negative of a simple root, span a subalgebra:

pi := h⊕ g−αi
⊕

α∈R+

gα.

Subalgebras of this kind are called parabolic sub-
algebras. The 9-dimensional groups P1 and P2

above are now exactly the subgroups of G2 with
Lie algebras p1 and p2. By general results, the
space G2/Pi is a compact homogeneous variety,
and it can be realized in the projectivization of the
representation space Vi with highest weight ωi

(see figure) as the G2 orbit of some distinguished
vector vi ; butω1 generates the 7-dimensional rep-
resentation (spanned by the six short roots and
zero with multiplicity one), whileω2 is the highest
weight of the adjoint representation (spanned by
all roots and zero with multiplicity two). Hence,
we obtain

M5
1 = G2/P1 = G2 · [v1] ⊂ P(C

7) = CP6,

M5
2 = G2/P2 = G2 · [v2] ⊂ P(g2) = CP

13.

The first spaceM5
1 is thus a quadric in CP6; we will

come back to the second space later.
Let us look again at the real situation. There

are two real 9-dimensional subgroups P∗i inside
the noncompact real form G∗2 corresponding to
the complex parabolic groups Pi ⊂ G2; but they
have no counterparts in the compact Lie group
Gc2 (roughly speaking, gc2 ⊂ so(7) consists of skew-
symmetric matrices, while parabolics are always
upper triangular): a maximal subgroup ofGc2 is iso-
morphic to SU(3) and thus 8-dimensional. Hence
a geometric realization of the compact form Gc2 is
still missing.

G2 and 3-forms in Seven Variables
In his talk on June 11, 1900, in Leipzig, Friedrich
Engel presented some results on the complex Lie
group G2 that finally led to the missing realization
of its compact form Gc2. Engel’s geometric insight
into the geometry ofM5

1 ⊂ CP
6 was so good that he

realized that it can be written as the zero set of an
equation depending solely on the coefficients of a
generic 3-form in seven variables [En00, p. 220].

By a generic p-form we mean an element ω ∈

Λp(Cn)∗ with open GL(n,C) orbit. For dimensional

reasons, n2 ≥
(
n

p

)
is a necessary condition for the

existence of generic p-forms; it holds for all n if
p = 2, but only for n ≤ 8 when p = 3, and, indeed,
generic p-forms do exist for these values. The
isotropy group of a differential form (or, for that
matter, any tensor) consists of all group elements
leaving the form invariant,

Gω := {A ∈ GL(n,C) : ω = A∗ω}.
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For a generic 3-form in dimension 7, its dimension
is

dimGω = dim GL(7,C)− dimΛ3(C7)∗ = 14.

Friedrich Engel observed that all generic 3-forms
are equivalent under GL(7,C) and proved the
following theorem:

Theorem 1 (F. Engel, 1900). There exists exactly
one GL(7,C) orbit of generic complex 3-forms
[En00, p. 74]. One such generic form is given by

ω0 := (e1e4 + e2e5 + e3e6)e7 − 2e1e2e3 + 2e4e5e6.

For every generic complex 3-form ω ∈ Λ3(C7)∗,
the following holds:

(1) The isotropy group of ω is isomorphic to
the simple Lie group G2 [En00, p. 73];

(2) ω defines a non-degenerate symmetric bi-
linearform βω [En00, p. 222] that is cubic
in the coefficients of ω, and the quadric
M5

1 is its isotropic cone in CP6. In particu-
lar, every isotropy group Gω is contained
in some SO(7,C).

(3) There exists a G2-invariant polynomial
λω ≠ 0 of degree 7 in the coefficients of ω
[En00, p. 231].

In fact, Engel had already conjectured in a letter
to Killing of April 1886 that the isotropy group of
a 3-form might be a simple 14-dimensional group,
but apparently neither he nor Killing had pursued
this idea at that time.6 In modern notation, we can
define βω through [Br87]

βω(X, Y) := (X ω)∧ (Y ω)∧ω,

which is a symmetric bilinear form with values in
the one-dimensional vector space Λ7(C7)∗. Over
the reals, it can be turned into a true real-valued
scalar product gω after taking an additional square
root [Br87], [Hi00]. Geometrically, this means that
every generic 3-form on a real 7-dimensional man-
ifold induces a (pseudo)-Riemannian metric. An
easy dimension count shows that the isotropy
group of a generic 3-form can be a subset of
SO(n,C) only for n = 7,8.

Since βω is cubic inω, its determinant is a poly-
nomial of degree 21 in the ω coefficients; Engel
understood that it is the third power of a degree
7 element λω, and its non-vanishing is equivalent
to the nondegeneracy of βω.

Engel’s arguments still hold over the reals, as
long as the isotropic cone does not degenerate
completely. For the 3-form ω0 cited above, gω0

is a real scalar product on R7 with signature
(4,3) [En00, p. 64]. In particular, there exists ex-
actly one GL(7,R) orbit of real generic 3-forms
ω ∈ Λ3(R7)∗ with non-degenerate isotropic cone
for gω. Its isotropy group is again isomorphic to
the real noncompact real form G∗2 ⊂ SO(4,3).

6Letter from Fr. Engel to W. Killing, April 8, 1886; see
[Ha00, p. 152].

In the same article, Engel invested a lot of en-
ergy in a description of the second homogeneous
space M5

2 ⊂ P(g2) through the coefficients of ω.
For this, he used a symbolic method for invariants
of alternating forms that was communicated to
him by Eduard Study; however, Study’s formalism
is not in use anymore, hence his computations
are rather hard to follow. Today, we know that
M5

2 = G2/P2 ⊂ CP
13 is a rather complicated pro-

jective algebraic variety: it has degree 18 and its
complete intersection with three hyperplanes is a
K3 surface of genus 10 [Bor83]. For a geometric
description of G2/P2 in terms of ω, observe that
the 21-dimensional representationΛ2C7 splits un-
der G2 into g2 ⊕ C

7, hence G2/P2 is a subvariety
of P(Λ2C7) as well. By the Plücker embedding, the
14-dimensional Grassmann variety G(2,7) of 2-
planes in C7 lies in P(Λ2C7). Now, G2/P2 is just the
intersection of G(2,7) with P(g2) inside P(Λ2C7).
As a subvariety ofG(2, 7),G2/P2 consists precisely
of those 2-planes π ⊂ C7 on which βω andω both
degenerate (see [LM03] for a modern account), i. e.,
such that

π βω = 0, π ω = 0.

It was the realization ofG2 presented in Theorem 1
that led Friedrich Engel to the comment cited in
the introduction. Besides its elegance, Theorem 1
has far-reaching consequences for modern differ-
ential geometry (see last section); furthermore, it
will provide the missing realization of Gc2, as is
explained now.

Walter Reichel and the Invariants of G2

While a professor at Greifswald University (1904-
1913), Friedrich Engel turned again to this topic
and assigned to his Ph. D. student Walter Reichel
the task of computing a complete system of in-
variants for complex 3-forms in six and seven
dimensions in Study’s formalism. The thesis de-
fended by Reichel in 1907 indeed contains the
detailed description of the invariants and rela-
tions among them as well as normal forms of all
3-forms under the action of GL(7,C). The vanish-
ing of λω for non-generic forms and the drop of
rank of the bilinear form βω play an essential role
here.

Furthermore, Walter Reichel described the
isotropy algebra gω of any generic 3-form ω
directly through its coefficients [Rei07, p. 48],
whereas Friedrich Engel had only computed it for
one representative. Over the complex numbers,
this makes no difference; but it turns out that
when passing to real numbers, the one orbit of
complex, GL(7,C) equivalent 3-forms splits into
two orbits of real generic GL(7,R) equivalent
3-forms. If one interprets the scalar product βω as
a real one, it turns out to have signature (4,3) on
one orbit and signature (7,0) on the other orbit.
It does not come as a surprise that the isotropy
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Figure 2. Title page of W. Reichel’s thesis.
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Walter Reichel
(1883–1918) in

November 1914.

W. Reichel (undated);
one can recognize a

portrait of Kant on
the desk.

group gω is isomorphic to g∗2 ⊂ so(4,3) in the first
case and isomorphic to gc2 ⊂ so(7) in the second
case.

Thus, Reichel obtained a uniform geometric
description of both real forms of G2. Unfortu-
nately, the result was slowly forgotten afterwards;
J. A. Schouten described the normal forms of
3-forms on C7 in 1931 by simpler methods (with-
out invariants, mainly by reduction to smaller
dimensions) and observed that Walter Reichel
had missed two out of the nine normal forms
[Sch31]. Based on these results, Gurevich solved

the problem in dimension 8 [Gu35]. Up to our
knowledge, the next authors to cite Reichel’s the-
sis again are E. B. Vinberg and A. G. Elashvili in
1978, who worked out the details of the extremely
involved case n = 9 [VE78].

It is well known that Gc2 is the automorphism
group of the octonians O. Élie Cartan includ-
ed this as a comment in his long article on
complex numbers and their generalizations from
1908 [Ca08, p. 467] (see also [Ca14, p. 298]), but
apparently never returned to this topic. This ap-
proach to exceptional Lie groups became popular
through the work of Hans Freudenthal, starting
with the article [Fr51], and made the memory of the
3-form approach vanish. In fact, these descriptions
are equivalent (a third equivalent description is
through so-called “vector cross-products”), as is
explained with great care in the article by J. Baez
[Ba02, p. 37-39].

The Mathematician Walter Reichel
Whereas the life and work of all mathematicians
mentioned up to here are well known, virtually
nothing was known about Walter Reichel, despite
the fact that his thesis has been cited widely in
recent years. The 100th anniversary of his thesis
last year was a further motivation to investigate
his story.

Walter Reichel was born on November 3, 1883,
in a little Silesian village then called Gnadenfrei
(now Piława Górna, Poland). This village had been
founded by members of the Moravian Unity, of
which Reichel’s father was deacon and, later, bish-
op. The Moravian Unity, or Unitas Fratrum (Unity
of Brethren), emerged in the middle of the fif-
teenth century from the Bohemian Reformation
Movement around Jan Hus (1369–1415) and was
renewed in the early eighteenth century in Herrn-
hut (Saxony, not far from the Czech and Polish
borders), where the management of its European
branch and its archive are still hosted today. The
history of the Reichel family is closely linked to
the Brüdergemeine, as the Moravian Unity is called
in German.

In his handwritten CV (which can be found
in his Ph. D. files at Greifswald University), Walter
Reichel describes how he went to school first in his
home village, followed by four years at the “Päda-
gogium” in Niesky (another town founded by the
Unitas Fratrum, close to Herrnhut) and three years
at the Gymnasium in Schweidnitz (now Świdnica,
Poland), from where he received his high school
degree (“Reifezeugnis”) at Easter 1902. He then
studied mathematics, physics, and philosophy at
the Universities of Greifswald, then Leipzig, Halle,
and again, Greifswald.

Among others, he attended lectures by Friedrich
Engel and Theodor Vahlen (in Greifswald); by Carl
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The “Old Pädagogium” in Niesky, now a public
library, built in 1741 as the first parish house
of the newly founded community in Niesky.
Between 1760 and 1945 it was used as an
advanced boarding school.

Neumann (in Leipzig), who formulated the Neu-
mann boundary condition in analysis and founded
the Mathematische Annalen together with Alfred
Clebsch; by Georg Cantor and Felix Bernstein (in
Halle), to whom we owe the foundations of set the-
ory and the Cantor-Bernstein-Schröder Theorem
in logic; by the theoretical physicist Gustav Mie (in
Greifswald), who made important contributions
to electromagnetism and general relativity; by the
experimental physicist Friedrich Ernst Dorn (in
Halle), who discovered the gas Radon in 1900. Mo-
roever, he took courses in philosophy, chemistry,
zoology, and art history.

In July 1907, Walter Reichel passed the ex-
amination for high school teachers in “pure and
applied mathematics, physics and philosophical
propaedeutics” with distinction. He spent one year
as teacher-in-training in Görlitz, and was then ap-
pointed in Fall 1908 at the “Realprogymnasium”
in Sprottau (now Szprotawa, Poland). In April 1914
he moved for an “Oberlehrer” position to Schwei-
dnitz (now Świdnica, Poland). With the beginning
of the First World War he was drafted, and he died
in France on March 30, 1918. He has no grave,
but an inscription on the WWI memorial on the
“God’s acre” of the Moravian community in Niesky
commemorates his death.

Walter Reichel married Gertrud, née Müller
(1889–1956) in 1909. They had three sons (born
1910, 1913, and 1916), who left no children, and
a daughter (born March 11, 1918). After the first
World War, Reichel’s widow moved with her chil-
dren to Niesky, where she was supported by the
Moravian Unity. For many years, she accommodat-
ed pupils of the “Pädagogium” who did not live in
the boarding school’s dormitories. Walter Reichel’s
daughter Irmtraut Schiller now lives in Bremen and
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Memorial stone on the “God’s acre” in Niesky.

Detail of the inscription on the memorial
stone. Walter Reichel’s name and date of death
(“30.3.18”) are in the second to last line; the
stone has been damaged and repaired above
his name.

has three children; one of her granddaughters is a
teacher of mathematics.

G2 Geometry in Dimension 7
The classical symmetry approach to differential
geometry is based on the notion of the isom-
etry group of a Riemannian manifold, i. e., the
group of all transformations acting on the man-
ifold that preserve the metric. In the twentieth
century, the concept of (Riemannian) holonomy
group became fundamental to Riemannian ge-
ometry: it is the group generated by all parallel
transports along closed null-homotopic loops on
the manifold. Here, parallel transport is under-
stood with respect to the Levi-Civita connection
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∇g, i. e., the straightforward—but not the only
possible—generalization of the directional deriva-
tive of vectors. Marcel Berger’sHolonomy Theorem
from 1955 states that for an irreducible non-
symmetric manifold, the holonomy group is either
SO(n) or from a finite list—and Gc2 is the only ex-
ceptional Lie group on that list. In this case,
the manifold is necessarily 7-dimensional, the
holonomy group Gc2 acts on the tangent bundle
by its 7-dimensional real representation, and the
manifold would be called a parallel or integrable
Gc2-manifold. The argument of the proof is basi-
cally reduced to the question of which compact
Lie groups admit transitive sphere actions, and
this is the case for Gc2 on S6, thought of not as a
symmetric space but rather as the homogeneous
space Gc2/SU(3).

Since Berger’s Holonomy Theorem lists only
the possible holonomy groups without actually
constructing manifolds admitting them, his clas-
sification result was not an end point, but rather
a research program asking for a more detailed
geometric investigation (and a long breath); in
particular, no Riemannian manifolds with holo-
nomy group Gc2 were known. In 1966, Edmond
Bonan observed in a note preceding his thesis
(supervised by André Lichnerowicz) that mani-
folds with Gc2 holonomy admit a global 3-form ω
with ∇gω = 0, and, in consequence, have to be
Ricci flat—a very restrictive geometric condition
that intrigued some contemporaries [Bon66]. This
3-form ω is of course precisely the form whose
stabilizer is Gc2 as described by Engel and Reichel,
but had already been forgotten in this time. For his
work, Edmond Bonan had started from Cartan’s
description of Gc2 as the automorphism group of
the octonians, and saw how to derive an invariant
3-form from its multiplication law.

The credit for having made the most creative
use of Gc2 and its defining 3-form in differen-
tial geometry goes without doubt to Alfred Gray.
Since the 1960s he had investigated vector cross
products and their geometric properties in a se-
ries of papers. In 1971 he had the radical idea
of weakening the classical holonomy concept to
cover interesting manifolds that do not appear
in Berger’s list. In particular, he defined nearly
parallel Gc2-manifolds: they have structure group
Gc2, but instead of being parallel, the 3-form ω
satisfies the differential equation

dω = λ∗ω

for a real constant λ ≠ 0, and they are Einstein with
strictly positive scalar curvature. Later, he proved
together with Marisa Fernández that there are in
fact four basic classes of Gc2-manifolds depending
on the possible nature of the tensor ∇gω [FG82].
Maybe even more importantly, they initiated the
(still-ongoing) construction of many interesting
examples—ranging from S7 = Spin(7)/Gc2 to the

Allow-Wallach spheres SU(3)/S1, from extensions
of Heisenberg groups to clever non-homogeneous
examples. Since then, these non-integrable geome-
tries (not only for Gc2, but also for contact struc-
tures, almost Hermitian structures, 8-dimensional
Spin(7)-structures, etc.) have been studied inten-
sively [Ag06]. Today, the main philosophy is that
for many Riemannian geometries (M, g) defined
by tensors that are not∇g-parallel, it is possible to
replace the Levi-Civita connection by a more suit-
able metric connection ∇ with skew-symmetric
torsion T ∈ Λ3(M) (the characteristic connection)

g(∇XY,Z) := g(∇g
XY,Z)+

1

2
T(X, Y ,Z)

such that the object becomes parallel, and the
holonomy group of this new connection plays the
role of the classical Riemannian holonomy group.
For example, a Gc2-manifold (M, g,ω) admits a
characteristic connection if and only if there is a
vector field β such that δ(ω) = −β ω (this ex-
cludes one of the four basic types), and its torsion
is then given by [FI02]

T = −∗ dω−
1

6
(dω,∗ω)ω+∗(β∧ω).

For integrable Gc2 geometries, the first break-
through was obtained a few years after Gray’s
work. In 1987 and 1989, Robert Bryant and Simon
Salamon succeeded in constructing local complete
metrics with Riemannian holonomy Gc2 ([Br87],
[BrSa89]). It was only in 1996—more than forty
years after Berger’s original paper—that Dominic
Joyce was able to show the existence of compact
Riemannian 7-manifolds with Riemannian holono-
my Gc2 [Joy00]: this comes down to proving the
existence of solutions of nonlinear elliptic partial
differential equations on compact manifolds by
very difficult and involved analytical methods.

One distinguished property of Gc2 is still miss-
ing in our discussion—this is the one that makes
it attractive for mathematical physics. The group
Gc2 can be lifted to the universal covering Spin(7)
of SO(7), and Spin(7) has an 8-dimensional irre-
ducible real representation ∆7, the spin represen-
tation, that decomposes under Gc2 ⊂ Spin(7) into
the trivial and the 7-dimensional representation.
Thus, a 7-dimensional spin manifold endowed
with a connection∇ has a∇-parallel spinor field if
and only if the holonomy of ∇ lies inside Gc2, and
Gc2 is the isotropy group of a generic spinor. In fact,
any spinor field defines a global 3-form and vice
versa, so this last characterization ofGc2 is, in itself,
nothing new. But it explains the intricate relation
between Gc2 and spin geometry. For example, the
nearly parallelGc2-manifolds discovered by Gray in
1971 are precisely those 7-manifolds that admit
a real Killing spinor field [FK90]. More recently,
superstring theory has stimulated a deep interest
in 7-manifolds with integrable or non-integrable
Gc2 geometry [Du02]. In this approach, a∇-parallel

928 Notices of the AMS Volume 55, Number 8



spinor field is interpreted as a supersymmetry
transformation: by tensoring with a spinor field,
bosonic particles can be transformed into fermion-
ic particles (and vice versa). The torsion of ∇ (if
present) is related to the B-field, a higher order
version of the classical field strength of Yang-Mills
theory (which would be a 2-form and not a 3-form,
of course).

The story of G2 and its relatives is far from con-
cluded. The algebraic foundations for the many
lines of development sketched in this article were
laid more than a hundred years ago by Friedrich
Engel and his student Walter Reichel in a work of
remarkable mathematical insight.
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