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A few classical facts

e 1960: Sasaki introduces Sasakian manifolds

e 1970: 3-Sasakian manifolds defined (Kuo, Udriste)

e Quick definition:
(M*+3_g) is 3-Sasakian if its metric cone (R* x M, dr? +r2g) has
holonomy inside Sp(n + 1), i.e. it is hyperkahler.

- odd Betti numbers up to middle dimension are divisible by 4,
structure group is Sp(n) x Ids, it's spin (Kuo)

- they are Einstein (Kashiwada, 1971)

- relation to quaternionic Hopf fibration $* — S7 — S (Tanno, 1971)
and quaternionic K3hler manifolds (Ishihara, 1974; Salamon, 1982)

- & there exist three Killing spinors (Friedrich-Kath, 1990)

- Many examples, classification of homogeneous case (Boyer-Galicki,
> 1993)

e Berger's holonomy Theorem: Does not cover any contact manifolds,
meaning that the Levi-Civita connection is not adapted for
investigating such geometries



Context: Geometry of almost 3-contact metric manifolds

Goals

Define and investigate new classes of such manifolds:

e what geometric quantities are best suited for capturing their key
geometric properties — in particular, the relative behaviour of the 3
almost contact structures?

e should admit ‘good’ metric connections with skew torsion

In particular,

e introduce ‘Reeb commutator function’ and ‘Reeb Killing function’,
e define the new class of 3-(«, ¢)-Sasaki manifolds,
e introduce notion of p-compatible connections,

e make them unique by a certain extra condition — canonical
connection,

e compute torsion, holonomy, curvature of this connection,

e provide lots of examples, classify the homogeneous ones, further
applications (metric cone, generalized Killing spinors.. . ),



Almost contact metric mnfds

(M?"*1 g.m, &, ©) almost contact metric
mnfd if
@ 7: 1-form (dual to vector field &)

@ (£)* admits an almost complex
structure ¢ compatible with g.
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Almost contact metric mnfds

(M?"*1 g.m, &, ©) almost contact metric
mnfd if
@ 7: 1-form (dual to vector field &)

@ (£)* admits an almost complex
structure ¢ compatible with g.

Then,
@ the structure group is reducible to
U(n) x {1},
@ the fundamental 2-form is defined
by

O(X,Y) = g(X, ¢Y),
@ it is called normal if
Ny =g, 0] +dn®{ =0,
@ «-Sasakian, « € R*, if
dn=2a®, N,=0 (= ¢ Killing)
@ Sasakian if 1-Sasakian.

Y




Special geometries via connections with (skew) torsion

Given a mnfd M™ with G-structure (G C SO(n)), replace V9 by a
metric connection NV with torsion that preserves the geometric structure!

torsion: T(X,Y,Z) = g(VxY —VyX — [X,Y],2)
Special case: require T € A3(M™) (< same geodesics as V)
= g(VxY,Z) = g(V&Y,2)+ 3 T(X,Y,Z)
If existent and unique it is called 'characteristic connection’.

Theorem (Friedrich-Ivanov, 2002)

An almost contact metric manifold (M, ¢,£,m, g) admits a unique metric
connection NV with skew torsion satisfying Vi = V& = Ve = 0 iff

1. the tensor Ny, := [p, @] + dn ® £ is totally skew-symmetric,
2. & is a Killing vector field.

In particular, it exists for a-Sasaki mnfds and its torsion 7' =1 A dn is
parallel. [Kowalski-Wegrzynowski, 1987]



Almost 3-contact metric mnfds

(M4n+37g77h7€i7§0i)7i = 17273 V <€1>J-
almost 3-contact metric mnfd if

e each triple (1;,&;, i)
defines an a.c.m. str. on
M4n+3

e TM =H &YV with
H = 0?21 ker n;,
Vo= <€17§27€3>
e Compatibility conditions:
E1x&=EonY
p10p2 =3 inH
©1(&) = & + cyclic perm.

e structure group reducible to
Sp(n) x {13}

o 5 = = £ DA



The manifold is said to be hypernormal if N, =0, i =1,2,3.

Some remarkable classes:

Vi=1,2,3:

3-a-Sasakian

(3-Sasakian)

(pi,&ismi, g) is a-Sasakian
(a=1)

3-cosymplectic

(©i,&iymiy ) is cosymplectic

3-quasi-Sasakian

(pi,&i, i, g) is quasi Sasakian

}= Einstein!

Observe: No new conditions on the relative ‘behaviour’ of the three

single a.c.m. structures, just for each single structure!

Theorem (Kashiwada, 2001)
If dn; = 2®;, i = 1,2, 3, then the manifold is hypernormal (and thus

3-Sasakian).



The associated sphere of a.c.m. structures X,

Any almost 3-contact metric mnfd (M*"*3 g, n;, &, ¢:) 52
comes with a sphere ¥, =2 52 of almost contact metric

structures: A
Va = (a1,az,a3) € S? C R? put ‘\

‘

3 3 3 w
Pa = Zai@m o = Zazfn Na = Zaim.
=1 i=1 i=1

Then (@a,&a,Na, g) defines an almost contact metric structure on
MAn+3

Theorem (Cappelletti Montano - De Nicola - Yudin, 2016)

If Ny, =0 for alli =1,2,3, then N, = 0 for all p € ¥yy.

Theorem

If each N, is skew symmetric on M (resp.on T'M ), then for all ¢ € Xy,
N,, is skew symmetric on H (resp. on T'M ).



Proposition

Let (M, ;,&i,1ni,9) be a almost 3-contact metric manifold. If each
(@i &i,mi,9), @ = 1,2,3 admits a characteristic connection, the same
holds for every structure in the sphere.
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Let (M, ;,&i,1ni,9) be a almost 3-contact metric manifold. If each
(pi, &, miyg), i =1,2,3 admits a characteristic connection, the same
holds for every structure in the sphere.

Do these connections coincide?

Is it possible to find a metric connection with skew torsion
parallelizing ALL the structure tensor fields?




Proposition

Let (M, ;,&i,1ni,9) be a almost 3-contact metric manifold. If each
(@i &i,mi,9), @ = 1,2,3 admits a characteristic connection, the same
holds for every structure in the sphere.

Do these connections coincide?

Is it possible to find a metric connection with skew torsion
parallelizing ALL the structure tensor fields?

! For a 3-Sasakian manifold the characteristic connection of the
structure ((ph giv um g) is

) 1
V1:V9+§T¢, T; = m; A dn;.

For i # j, T; # T and thus V' # V7
=> No characteristic connection for 3-Sasakian manifolds!



Canonical connection for 7-dimensional 3-Sasaki manifolds
(Agricola-Friedrich, 2010)

Let (M, ¢;,&i,7ni,9) be a 7-dimensional 3-Sasakian manifold.
The 3-form

1
w¢:§ZﬂiAdﬂi+4ﬁ123 a3 = 1M An2 Ans

defines a cocalibrated Go-structure and hence admits a characteristic
connection V; its torsion is

3
T = Z ni A\ dn;
i=1

V is called the canonical connection, and verifies the following:
@ it preserves H and V),
e VT =0,

@ V admits a parallel spinor v, called canonical spinor, such that the
Clifford products &; - v are exactly the 3 Riemannian Killing spinors.



Canonical connection for quaternionic Heisenberg groups

N, = R**3 connected, simply connected Lie group, with commutators
depending on a parameter A > 0.

N, admits an almost 3-contact metric structure (¢;, &, 1;, gx) which is
hypernormal but not 3-quasi-Sasakian. None of the metrics g, is Einstein.

The canonical connection is the metric connection V with skew torsion

(Agricola-Ferreira-Storm, 2015)
3

T = Z i N dn; —4 An123
i=1
It satisfies:

@ VI = VR = 0 ~» naturally reductive homogeneous space,
@ hol(V) ~ su(2), acting irreducibly on V and H.



Canonical connection for quaternionic Heisenberg groups

N, = R**3 connected, simply connected Lie group, with commutators
depending on a parameter A > 0.

N, admits an almost 3-contact metric structure (¢;, &, 1;, gx) which is
hypernormal but not 3-quasi-Sasakian. None of the metrics g, is Einstein.

The canonical connection is the metric connection V with skew torsion
(Agricola-Ferreira-Storm, 2015)
3
T = Z 7 Adn; —4 Anos
i=1
It satisfies:
@ VI = VR = 0 ~» naturally reductive homogeneous space,

@ hol(V) ~ su(2), acting irreducibly on V and H.

In the 7-dim. case, V is the characteristic connection of a cocalibrated
G5 structure = 3 parallel spinor field ) and 9; := & -, i = 1,2, 3, are
generalised Killing spinors:

5A

A A .,
VEvi= 58 Vi, Vivi=—5& 4 (i #]), Vii= X ¢ XeH



Well-known:

e the metric cone of a 3-Sasakian manifold is hyper-Kahler

e the metric cone of the quaternionic Heisenberg group is a
hyper-Kahler manifold with torsion (‘HKT manifold’)

Agricola-Hall, 2015: Criterion when the metric cone (for suitable a > 0)
(M, g) = (M x R",a?r?g + dr?)

of an almost 3-contact metric manifold M admits a hyper-Hermitian
structure, and when it is a HKT manifold (but unclear what a ‘good’ large
class of manifolds satisfying the criterion could be)



Well-known:

e the metric cone of a 3-Sasakian manifold is hyper-Kahler

e the metric cone of the quaternionic Heisenberg group is a
hyper-Kahler manifold with torsion (‘HKT manifold’)

Agricola-Hall, 2015: Criterion when the metric cone (for suitable a > 0)
(M,g) = (M x R*, a®r?g + drz)

of an almost 3-contact metric manifold M admits a hyper-Hermitian
structure, and when it is a HKT manifold (but unclear what a ‘good’ large
class of manifolds satisfying the criterion could be)

Is it possible to find a larger class of
almost 3-contact metric manifolds
with similar properties?




3-(a, §)-Sasaki manifolds

Definition
A 3-(«av, 6)-Sasaki manifold is an almost 3-contact metric manifold
(M, @i,&,mi,9) such that

dn; = 2a®; + 2(a — 6)n; A i,
a € R* § R, (1,7, k) even permutation of (1,2,3).



3-(a, §)-Sasaki manifolds

Definition
A 3-(«a,0)-Sasaki manifold is an almost 3-contact metric manifold
(M, @i, &, mi,g) such that

dn; = 2a®; + 2(a — 6)n; A i,
a € R* § R, (1,7, k) even permutation of (1,2,3).
@ 3-a-Sasakian manifolds: dn; = 2a®; ~ a =46

@ quat. Heisenberg groups: dn; = A(®; +n; Ang) ~ 2a=X,0 =0



3-(a, §)-Sasaki manifolds

Definition
A 3-(«v,0)-Sasaki manifold is an almost 3-contact metric manifold
(M, p;,&i,mi,9) such that
dn; = 2a®; + 2(a — 6)n; A i,
a € R* § R, (1,7, k) even permutation of (1,2,3).

@ 3-a-Sasakian manifolds: dn; = 2a®; ~ a =46
@ quat. Heisenberg groups: dn; = A(®; +n; Ang) ~ 2a=X,0 =0

We call the structure degenerate if § = 0 and nondegenerate otherwise.

Theorem

For every 3-(c, 0)-Sasaki manifold:
@ the structure is hypernormal (generalization of Kashiwada's thm),
@ the distribution V is integrable with totally geodesic leaves,
@ each &; is a Killing vector field, and [¢;,&;] = 20¢;,.



Definition
An H-homothetic deformation of an almost 3-contact metric strucure
(i, & iy ) is given by
1 3
m=ens &=<G wi= i g =ag+by m@mn,
i=1
a,b,ceR,a>0,c2=a+b>0.
If (pi,&,m:,9) is 3-(ax, §)-Sasaki, then (¢}, &l nk, ¢') is 3-(¢, §')-Sasaki
with . S
a = GS ==,
a &
@ the class of degenerate 3-(«, §)-Sasaki structures is preserved
@ in the non-degenerate case, the sign of ad is preserved.

Definition

We say that a 3-(«, 6)-Sasaki manifold is positive (resp. negative) if
ad >0 (resp. ad < 0).

Proposition

ad > 0 <= M is H-homothetic to a 3-Sasakian manifold (a =6 =1)
ad < 0 <= M is H-homothetic to one with o« = —1, § = 1.



Do there exist 3-(«, d)-Sasaki manifolds with ad < 0?7

YES — here is a construction:
Definition
A negative 3-Sasakian manifold is a normal almost 3-contact manifold

(M, p;,&,m:) endowed with a compatible semi-Riemannian metric § of
signature (3,4n) and s. t. dn;(X,Y) = 25(X, p;Y).

Proposition
If (M, ¢i,&:,m:,9) is a negative 3-Sasakian manifold, take

3
9= —§+2Zm®m-
i=1
Then (p;,&,mi,9) is a 3-(«, 6)-Sasaki structure with « = —1 and § = 1.
It is known that quat. K3hler (not hK) mnfds with neg. scalar curvature

admit a canonically associated principal SO(3)-bundle which is endowed
with a negative 3-Sasakian structure (Konishi, 1975/Tanno, 1996).



Overview: Hierarchy of ‘good’ connections

XM

‘ p-compatible connections‘

e depend only on ¢ € ¥

e main defining condition:
(Vxe)Y =0

parameter function ~

e exist under very weak
assumptions

VX,Y e (H)
e not unique: depends on a

1%

|| canonical connection “

e depends on the whole a.
3-contact m. str.
(8 :=2(6 - 2a))

e main defining condition:
Vxei = Bme(X)ep; —
n; (X)er) VX € X(M)

e unique: corresponds to
v =2(8-19)

e exists on all 3-(«, 6)-Sasaki
manifolds (and again some
weaker assumptions)



(-compatible connections

Definition
Let (M, ;,&i,ni,9) be an almost 3-contact metric manifold, ¢ a

structure in the associated sphere ;. Let V be a metric connection
with skew torsion on M. We say that V is a ¢o-compatible connection if

1) V preserves the splitting TM =H &V,
2) (Vxp)Y =0 VX,Y e T(H).



(-compatible connections

Definition
Let (M, ;,&i,ni,9) be an almost 3-contact metric manifold, ¢ a

structure in the associated sphere ;. Let V be a metric connection
with skew torsion on M. We say that V is a ¢o-compatible connection if

1) V preserves the splitting TM =H &V,
2) (Vxp)Y =0 VX,Y e T(H).

Theorem
M admits a p-compatible connection if

1) N, is skew-symmetric on H,
2) each &; is Killing.

Remark This is a special case of an iff criterion. ¢-compatible
connections are parametrized by their parameter function

v i=T(&1,&,8) € CF(M).



(-compatible connections

Definition
Let (M, ;,&i,ni,9) be an almost 3-contact metric manifold, ¢ a

structure in the associated sphere ;. Let V be a metric connection
with skew torsion on M. We say that V is a ¢o-compatible connection if

1) V preserves the splitting TM =H &V,
2) (Vxp)Y =0 VX,Y e T(H).

Theorem
M admits a p-compatible connection if

1) N, is skew-symmetric on H,
2) each &; is Killing.

Remark This is a special case of an iff criterion. ¢-compatible
connections are parametrized by their parameter function

v i=T(&1,&,8) € CF(M).



The canonical connection

V; =0 is too strong ~~ suppose V preserves the 3-dim. distribution in
End(TM) spanned by ¢; as do quaternionic connections (qK case):

Vxei = Bm(X)p; —nj(X)pr) VX € X(M)



The canonical connection

Theorem

Let (M, ¢;,&i,1ni,9) be a 3-(c, 0)-Sasakian manifold. Then M admits a
metric connection V with skew torsion such that for a smooth function (3,

Vxpi = Bne(X)g; —ni(X)er) VX € X(M)

for every even permutation (i, j, k) of (1,2,3).
Such a connection V is unique, preserves the splitting TM =YV & H and
the ; are parallel along H.

V is called the canonical connection of M. The function (5 is a constant
given by
B =2(0 —2a).



The canonical connection V satisfies

Vxpi = B (X)p; —nj(X)er),
Vx& = Bk (X)E — 1 (X)Ek),
Vxni = Bk (X)n; — n;(X)nk),

and also
V¥ =0, V23 = 0,

U= ®; APy + Py A Py + P3 A O3, fundamental 4-form. In particular
hol(V) C (sp(n) @ sp(1)) @ s0(3) C so(4n) @ so(3).
For parallel canonical manifolds (5 = 0):

Vo, =0, V& =0, Vn; =0, and hol(V) C sp(n)

=> canonical conn. = characteristic conn. of all 3 a.c.m. str.
[first known examples where this happens!]



The canonical connection V satisfies
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Vx& = Bk (X)E — 1 (X)Ek),
Vxni = Bk (X)n; — n;(X)nk),

and also
V¥ =0, V23 = 0,

U= ®; APy + Py A Py + P3 A O3, fundamental 4-form. In particular
hol(V) C (sp(n) @ sp(1)) @ s0(3) C so(4n) @ so(3).
For parallel canonical manifolds (5 = 0):

Vo, =0, V& =0, Vn; =0, and hol(V) C sp(n)

=> canonical conn. = characteristic conn. of all 3 a.c.m. str.
[first known examples where this happens!]



The metric cone

Given an almost 3-contact metric manifold (M, v;, &, 74, g), on the
metric cone

(M,g) = (M xRY,a*?g+dr®), a>0,
one can define an almost hyperHermitian structure (g, J1, Jo, J3)
(Agricola-Hall, 2015).
Theorem

If (M, @i, &, mi,9) is 3-(, 0)-Sasakian, the metric cone is hyper-Kahler
with torsion (HKT manifold).



Overview: 3-(a, d)-Sasakian structures

~
) Ny
/
= <
g/
oy
Lp==f--A 3-Sasaki manifolds
|
!
! ot
1
1 degenerate
negative 3-(c, 6)-Sas. (ad < 0)




The canonical connection of 3-(«, §)-Sasaki manifolds

Theorem

The canonical connection of a 3-(«v, §)-Sasaki manifold has torsion
3
T = Zni Adn; +8(0 — a) m123

i=1
and satisfies V1T = 0.

Moreover, every 3-(a, §)-Sasakian manifold admits an underlying
quaternionic contact structure, and the canonical connection turns out to
be a quaternionic contact connection. In fact, it is qc-Einstein (lvanov -
Minchev - Vassilev, 2016) and this allows to determine the Riemannian
Ricci curvature:



Theorem

The Riemannian Ricci curvature of a 3-(«, §)-Sasaki manifold is

Ric? = 20(26(n +2) — 3a)g + 2(a — 8)((2n + 3)or — Zm @ n;



Theorem

The Riemannian Ricci curvature of a 3-(«, §)-Sasaki manifold is

Ric? = 20(26(n +2) — 3a)g + 2(a — 8)((2n + 3)or — Zm ® n;
The V-Ricci curvature is
3
Ric = 4a{o(n+2) — 3a} g + 4a{d(2 — n) — ba} Z 7 @ 1.
i=1

The property of being symmetric follows for Ric from VT = 0.



Theorem

The Riemannian Ricci curvature of a 3-(«, §)-Sasaki manifold is
Ric? = 20(26(n +2) — 3a)g + 2(a — 8)((2n + 3)or — Zm @ n;
The V-Ricci curvature is
Ric = 4a{o(n+2) — 3a} g + 4a{d(2 — n) — ba} 23: 7 @ 1.
i=1
The property of being symmetric follows for Ric from VT = 0.
@ M is Riemannian Einstein iff . = § or 6 = (2n + 3)av.

@ The manifold is V-Einstein iff §(2 — n) = 5a.

@ The manifold is both Riemannian Einstein and V-Einstein if and
only if dim M = 7 and § = b« (happens for example for ‘compatible’
nearly parallel Ga-str., see next result).



Spinors on 7-dimensional 3-(cv, §)-Sasaki manifolds

Theorem

Any T-dimensional 3-(«, §)-Sasaki manifold admits a a cocalibrated
Go-structure (Fernandez-Gray type Wy @ W3 ) such that its characteristic
connection V coincides with the canonical connection.

Because G5 is the stabilizer of a generic spinor in dim. 7, this
Go-structure defines a unique parallel spinor field v, called the canonical
spinor field.

Theorem
1) The canonical spinor field v is a generalized Killing spinor, Killing iff
d = ba (nearly parallel Gy-structure).

2) The Clifford products v; :== &; - 1o, i = 1,2, 3, are generalized Killing
spinors; any two of the generalized Killing numbers coincide iff « = 6,
i.e. if M7 is 3-o-Sasakian.



Homogeneous 3-Sasakian manifolds

Theorem (Boyer, Galicki, Mann, 1994)

Let (M, g,m:,&i,¢i) be a homogeneous 3-Sasakian manifold. Then M is
one of the following homogeneous spaces:

Sp(n+1) Sp(n+1) SU(m +2) SO(k +4)
Sp(n) ’ Sp(n) x Zs’ S(U(m) x U(1))’ SO(k) x Sp(1)’
Go Fy Esg E7 Eg

Sp(1)’  Sp@3)’  SU6)’  Spim(12)’  E;

Heren >0, m>1 and k > 3.

@ They are all simply connected except for RP4"+3 ~ sspp(%ilzl

@ 1-1 correspondence between simply connected 3-Sasakian
homogeneous manifolds and compact simple Lie algebras



Uniform description of homogeneous 3-Sasakian manifolds
(Draper, Ortega, Palomo, 2018)
Definition
A 3-Sasakian data is a triple (G, Go, H) of Lie groups such that
@ G is a compact, simple Lie Group
@ H C Gy C G connected Lie subgroups
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and the Lie algebras ) C go C g satisfy:
@ go = h @ sp(l) with sp(l) and b commuting subalgebras,
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Uniform description of homogeneous 3-Sasakian manifolds
(Draper, Ortega, Palomo, 2018)
Definition
A 3-Sasakian data is a triple (G, Go, H) of Lie groups such that
@ G is a compact, simple Lie Group
@ H C Gy C G connected Lie subgroups
and the Lie algebras ) C go C g satisfy:
@ go = h @ sp(l) with sp(l) and b commuting subalgebras,
@ (g,g90) form a symmetric pair, g = go @ g1,

@ the complexification g§ = C? ¢ W for some h®-module of
dimc W = 2n,

o hC sp(1)C C g act on g§ by their action on W and C2.

Remark In total the Lie algebra decomposes as
90
—
g=hdsp(l) dgs (m is a reductive complement for M = G /H)
——

m



go
—

g="bhosp(l) g

@ The subspaces sp(1) and g1 will play the role of the vertical and
horizontal subspace V, H of the 3-(«, §)-Sasakian structure on
M=G/H

@ M fibers over the compact quaternion Kahler symmetric space
G/Gy



Homogeneous 3-Sasakian model

Theorem (Draper, Ortega, Palomo, 2018)
Let (G, Gy, H) be 3-Sasakian data. On M = G//H consider the
G-invariant structure defined by the Ad(H )-invariant tensors on m:

@ the inner product g

—K —K
o) "1z Yo "5z Iwome =
k the Killing form on G.
o & =0y, 1=1,2,3, 0; standard basis of sp(1)=V Cgo, 7: = 9(&, )
@ the endomorphisms p; as

1
Qpi|5p(1) = 9 ad(&), 901'|gl = ad(&;)-

Then (M, i, &,mi, g) defines a homogeneous 3-Sasakian manifold.

Conversely every homogeneous 3-Sasakian manifold M # RP*"+3 js
obtained by this construction.



Homogeneous positive 3-(«, §)-Sasakian model

Idea: Use H-homothetic deformation to obtain 3-(c, §)-Sasakian mnfds
for ad > 0



Homogeneous positive 3-(«, §)-Sasakian model

Idea: Use H-homothetic deformation to obtain 3-(c, §)-Sasakian mnfds
for ad > 0

Theorem

Let (G,Go, H) be 3-Sasakian data, a6 > 0. On M = G/H consider the
G-invariant structure by the Ad(H )-invariant tensors on m:

—K —K
g‘gp(l) = 4(52(n+2)a g|91 = 8(}(5(77,—1—2)’ g|5p(1)xgl =0

1 1
901‘|5p(1) =35 ad(&;), 901‘|gl =3 ad(&;).

Then (M, ;,&,m;i,g) defines a homogeneous 3-(«, §)-Sasakian mnfd.

Conversely every homogeneous 3-(c, §)-Sasakian manifold M # RP*"+3
with ad > 0 is obtained by this construction.

Remark: (G/H,g) is naturally reductive < § = 2a < parallel 3-(a, d).



Generalized setup

Definition
A generalized 3-Sasakian data is a triple (G, Gy, H) of Lie groups such
that
@ G is a real simple Lie Group
@ H C Gy C G connected Lie subgroups
and the Lie algebras h C go C g satisfy:
@ go = h Dsp(l) with sp(l) and b commuting subalgebras,
@ (g,g90) form a symmetric pair, g = go @ g1,

@ the complexification gt = C?> @c W for some h®-module of
dim¢c W = 2n,

@ hC sp(1)C C g act on g§ by their action on W and C2.
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Definition
A generalized 3-Sasakian data is a triple (G, Gy, H) of Lie groups such
that
@ G is a real simple Lie Group
@ H C Gy C G connected Lie subgroups
and the Lie algebras h C go C g satisfy:
@ go = h Dsp(l) with sp(l) and b commuting subalgebras,
@ (g,g90) form a symmetric pair, g = go @ g1,
@ the complexification gt = C?> @c W for some h®-module of
dimc W = 2n,
@ hC sp(1)C C g act on g§ by their action on W and C2.

If (g,90) is a compact symmetric pair such that (G, Gy, H) is 3-Sasakian
data, then (G*, Gy, H) is generalized 3-Sasakian data, where (g*, go) is
the dual non-compact symmetric pair.



Negative homogeneous 3-(«, §)-Sasakian manifolds

Theorem

Let (G*,Go, H) be non-compact generalized 3-Sasakian data, a6 < 0.

On M = G*/H consider the G*-invariant structure defined by the
Ad(H)-invariant tensors on m

—K —K
gisp(l) - 46%(n +2)’ g|91 B 8ad(n +2)’ g|5p(1)X91 =0
gi:(sah ni:g(fh')?

1 1
Pilgpr) = 55 (&), vily, = 5 2d(&),

k the Killing form on G*, o; standard basis sp(1) =V C go.
Then (M, g,&,mi, i) defines a homogeneous 3-(c, §)-Sasakian manifold.



In total we obtain homogeneous 3-(«, §)-Sasakian structures on the

following list of homogeneous spaces (G/H compact, G*/H
non-compact):

G G* H Gy dim
Sp(n+1) | Sp(n,1) Sp(n) Sp(n)Sp(1) | 4n+3
SU(n +2) | SUM,2) | S(UM) x UA)) | SUmUER) | 4n+3
SO(n+4) | SO(n,4) | SO(n) x Sp(1) | SOM)SO@) | 4n+3

Gs a2 Sp(1) SO(4) 11

Foo | B Sp(3) Sp@)Sp(1) | 31

Eg B3 SU(6) SU(6)Sp(1) 43

E; E;° Spin(12) Spin(12)Sp(1) | 67

Esg Eg 2 E; E-Sp(1) 115

Remark: RP*+3 = fpp((,:;ilzl and non compact dual Sil()f;;“xléz also
admit 3 (a 5) Sasaki structures, as the quotient of S4"+3 = %(:)1),

resp. by Zs inside the fiber.

Sp(n)
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Question: Are these all homogenous negative 3-(«, §)-Sasaki manifolds?

NO!

Idea: Start with V. Cortes, A New Construction of Homogeneous
Quaternionic Manifolds and Related Geometric Structures, Mem. AMS
147 (2000) and previous work of C {Alekseevsky, Cortes}

The construction is highly algebraic!

@ Obtain examples over bases not included in previous construction
(for example, Alekseevsky spaces of negative scalar curvature)

@ First such example not covered by previous theorem: dimension
n=19=4-443

Difficulty: Pick the positive definite examples, discard redundancies, give
a more geometric description. . .



Definiteness of curvature operators

Consider the Riemannian curvature as a symmetric operator

RY:AN*M — N*M (RIXAY),ZAV)=—g(RI(X,Y)Z,V).
Definition
A Riemannian manifold (M, g) is said to have strongly positive curvature

if there exists a 4-form w such that RY + w is positive-definite at every
point x € M (Thorpe, 1971).

For every 2-plane o, being (w(o),0) =0, one has
sec(0) = (R9(0),0) = (R +w)(0), 0).
Then,
RYI > 0 = strongly positive curvature = positive sectional curvature

RYI > 0 = strongly non-negative curvature => non-negative sec. curv.



On a 3-(a, 9)-Sasakian manifold the symmetric operators defined by the
Riemannian curvature and the curvature of the canonical connection:

RI: AN°M — A’ M R:A2M — A2M

are related by
1

1
R — 107= R + ZQT
with

1
(or(X ANY),ZANV):= idT(X,Y,Z, V).
M, g) is strongly non-negative with 4-form —1o if and only if
g gly g 1 y

1
R+ ZQT > 0.

Being G > 0, if R > 0 we directly have strong non-negativity.



Theorem

Let M be a homogeneous 3-(«, §)-Sasakian manifold obtained from a
generalized 3-Sasakian data.

@ Ifad <0 then R < 0.

@ If ad > 0 then
R >0 ifand only if aff > 0

Then, on a positive homogeneous 3-(a, §)-Sasaki manifold with a8 > 0:

1 1
L J— = — > .
R 107 R+4QT_0

The converse also holds, i.e.

Theorem

A positive homogeneous 3-(«, §)-Sasaki manifold is strongly non-negative
with 4-form —}IO‘T if and only if a > 0.



Strong positivity is much more restrictive than strong non-negativity.
Strong positivity implies strict positive sectional curvature.

Homogeneous manifolds with strictly positive sectional curvature have
been classified (Wallach 1972, Bérard Bergery 1976).

Only the 7-dimensional Aloff-Wallach-space W', the spheres S4"*+3 and
real projective spaces RP"3 admit homogeneous 3-(c, §)-Sasaki
structures.

Theorem

The 3-(«, 6)-Sasakian spaces
o Wl =8U(3)/S* with 4-form — (% + ¢)op for small £ > 0,
o SAnES RPES > 1, with d-form Lop|piy — (3 +2)or for
small e > 0
are strongly positive if and only if a3 > 0.



Some open questions

@ Investigate the geometry of the new homogeneous negative
3-(cv, §)-Sasakian manifolds

@ 3-Sasakian manifolds admit Riemannian Killing spinors. They
correspond to pseudo-Riemannian Killing spinors on the
non-compact duals when equipped with an indefinite metric. How
does this translate to the negative 3-Sasakian case? Are there
special spinors?
3-(cv, 9)-Sasakian manifolds are V-Einstein if (2 —n)d = 5a. How
do these geometries look like for n > 27
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