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A few classical facts

• 1960: Sasaki introduces Sasakian manifolds

• 1970: 3-Sasakian manifolds defined (Kuo, Udriste)

• Quick definition:
(M4n+3, g) is 3-Sasakian if its metric cone (R+ ×M,dr2 + r2g) has
holonomy inside Sp(n+ 1), i. e. it is hyperkähler.

- odd Betti numbers up to middle dimension are divisible by 4,
structure group is Sp(n)× Id3, it’s spin (Kuo)

- they are Einstein (Kashiwada, 1971)
- relation to quaternionic Hopf fibration S3 → S7 → S4 (Tanno, 1971)
and quaternionic Kähler manifolds (Ishihara, 1974; Salamon, 1982)

- ⇔ there exist three Killing spinors (Friedrich-Kath, 1990)
- Many examples, classification of homogeneous case (Boyer-Galicki,
≥ 1993)

• Berger’s holonomy Theorem: Does not cover any contact manifolds,
meaning that the Levi-Civita connection is not adapted for
investigating such geometries



Context: Geometry of almost 3-contact metric manifolds

Goals

Define and investigate new classes of such manifolds:

• what geometric quantities are best suited for capturing their key
geometric properties – in particular, the relative behaviour of the 3
almost contact structures?

• should admit ‘good’ metric connections with skew torsion

In particular,

• introduce ‘Reeb commutator function’ and ‘Reeb Killing function’,

• define the new class of 3-(α, δ)-Sasaki manifolds,

• introduce notion of ϕ-compatible connections,

• make them unique by a certain extra condition → canonical
connection,

• compute torsion, holonomy, curvature of this connection,

• provide lots of examples, classify the homogeneous ones, further
applications (metric cone, generalized Killing spinors. . . ),



Almost contact metric mnfds

(M2n+1, g, η, ξ, ϕ) almost contact metric
mnfd if

η: 1-form (dual to vector field ξ)

〈ξ〉⊥ admits an almost complex
structure ϕ compatible with g.
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Almost contact metric mnfds

(M2n+1, g, η, ξ, ϕ) almost contact metric
mnfd if

η: 1-form (dual to vector field ξ)

〈ξ〉⊥ admits an almost complex
structure ϕ compatible with g.

Then,

the structure group is reducible to
U(n)× {1},

the fundamental 2-form is defined
by

Φ(X,Y ) = g(X,ϕY ),

it is called normal if
Nϕ := [ϕ, ϕ] + dη ⊗ ξ ≡ 0,

α-Sasakian, α ∈ R
∗, if

dη = 2αΦ, Nϕ ≡ 0 (⇒ ξ Killing)

Sasakian if 1-Sasakian.

ξ

ϕ

TxM

〈ξ〉⊥



Special geometries via connections with (skew) torsion

Given a mnfd Mn with G-structure (G ⊂ SO(n)), replace ∇g by a
metric connection ∇ with torsion that preserves the geometric structure!

torsion: T (X,Y, Z) := g(∇XY −∇YX − [X,Y ], Z)

Special case: require T ∈ Λ3(Mn) (⇔ same geodesics as ∇g)

⇒ g(∇XY, Z) = g(∇g
XY, Z) +

1
2 T (X,Y, Z)

If existent and unique it is called ’characteristic connection’.

Theorem (Friedrich-Ivanov, 2002)

An almost contact metric manifold (M,φ, ξ, η, g) admits a unique metric
connection ∇ with skew torsion satisfying ∇η = ∇ξ = ∇ϕ = 0 iff

1. the tensor Nϕ := [ϕ, ϕ] + dη ⊗ ξ is totally skew-symmetric,

2. ξ is a Killing vector field.

In particular, it exists for α-Sasaki mnfds and its torsion T = η ∧ dη is
parallel. [Kowalski-Wegrzynowski, 1987]



Almost 3-contact metric mnfds

(M4n+3, g, ηi, ξi, ϕi), i = 1, 2, 3
almost 3-contact metric mnfd if

• each triple (ηi, ξi, ϕi)
defines an a.c.m. str. on
M4n+3

• TM = H⊕ V with
H :=

⋂3
i=1 ker ηi,

V := 〈ξ1, ξ2, ξ3〉

• Compatibility conditions:
ξ1 × ξ2 = ξ3 on V
ϕ1 ◦ ϕ2 = ϕ3 in H
ϕ1(ξ2) = ξ3 + cyclic perm.

• structure group reducible to
Sp(n)× {13}

ξ1

ξ2

ξ3

V 〈ξ1〉
⊥

〈ξ2〉
⊥

〈ξ3〉
⊥



The manifold is said to be hypernormal if Nϕi
≡ 0, i = 1, 2, 3.

Some remarkable classes:

∀i = 1, 2, 3 :

3-α-Sasakian (ϕi, ξi, ηi, g) is α-Sasakian

(3-Sasakian) (α = 1)

3-cosymplectic (ϕi, ξi, ηi, g) is cosymplectic

3-quasi-Sasakian (ϕi, ξi, ηi, g) is quasi Sasakian

}⇒ Einstein!

Observe: No new conditions on the relative ‘behaviour’ of the three
single a.c.m. structures, just for each single structure!

Theorem (Kashiwada, 2001)

If dηi = 2Φi, i = 1, 2, 3, then the manifold is hypernormal (and thus
3-Sasakian).



The associated sphere of a.c.m. structures ΣM

Any almost 3-contact metric mnfd (M4n+3, g, ηi, ξi, ϕi)
comes with a sphere ΣM

∼= S2 of almost contact metric
structures:

∀a = (a1, a2, a3) ∈ S2 ⊂ R3 put

ϕa =
3∑

i=1

aiϕi, ξa =
3∑

i=1

aiξi, ηa =
3∑

i=1

aiηi.

ξ1

ξ2

ξ3

ξ

ΣM

Then (ϕa, ξa, ηa, g) defines an almost contact metric structure on
M4n+3.

Theorem (Cappelletti Montano - De Nicola - Yudin, 2016)

If Nϕi
= 0 for all i = 1, 2, 3, then Nϕ = 0 for all ϕ ∈ ΣM .

Theorem

If each Nϕi
is skew symmetric on H (resp. on TM), then for all ϕ ∈ ΣM ,

Nϕ is skew symmetric on H (resp. on TM).



Proposition

Let (M,ϕi, ξi, ηi, g) be a almost 3-contact metric manifold. If each
(ϕi, ξi, ηi, g), i = 1, 2, 3 admits a characteristic connection, the same
holds for every structure in the sphere.



Proposition

Let (M,ϕi, ξi, ηi, g) be a almost 3-contact metric manifold. If each
(ϕi, ξi, ηi, g), i = 1, 2, 3 admits a characteristic connection, the same
holds for every structure in the sphere.

Do these connections coincide?

Is it possible to find a metric connection with skew torsion
parallelizing ALL the structure tensor fields?



Proposition

Let (M,ϕi, ξi, ηi, g) be a almost 3-contact metric manifold. If each
(ϕi, ξi, ηi, g), i = 1, 2, 3 admits a characteristic connection, the same
holds for every structure in the sphere.

Do these connections coincide?

Is it possible to find a metric connection with skew torsion
parallelizing ALL the structure tensor fields?

! For a 3-Sasakian manifold the characteristic connection of the
structure (ϕi, ξi, ηi, g) is

∇i = ∇g +
1

2
Ti, Ti = ηi ∧ dηi.

For i 6= j, Ti 6= Tj and thus ∇i 6= ∇j

⇒ No characteristic connection for 3-Sasakian manifolds!



Canonical connection for 7-dimensional 3-Sasaki manifolds
(Agricola-Friedrich, 2010)

Let (M,ϕi, ξi, ηi, g) be a 7-dimensional 3-Sasakian manifold.

The 3-form

ω :=
1

2

∑

i

ηi ∧ dηi + 4 η123 η123 := η1 ∧ η2 ∧ η3

defines a cocalibrated G2-structure and hence admits a characteristic
connection ∇; its torsion is

T =

3∑

i=1

ηi ∧ dηi

∇ is called the canonical connection, and verifies the following:

it preserves H and V ,

∇T = 0,

∇ admits a parallel spinor ψ, called canonical spinor, such that the
Clifford products ξi · ψ are exactly the 3 Riemannian Killing spinors.



Canonical connection for quaternionic Heisenberg groups

Np
∼= R4p+3 connected, simply connected Lie group, with commutators

depending on a parameter λ > 0.

Np admits an almost 3-contact metric structure (ϕi, ξi, ηi, gλ) which is
hypernormal but not 3-quasi-Sasakian. None of the metrics gλ is Einstein.

The canonical connection is the metric connection ∇ with skew torsion
(Agricola-Ferreira-Storm, 2015)

T =
3∑

i=1

ηi ∧ dηi −4λ η123

It satisfies:

∇T = ∇R = 0  naturally reductive homogeneous space,

hol(∇) ≃ su(2), acting irreducibly on V and H.



Canonical connection for quaternionic Heisenberg groups

Np
∼= R4p+3 connected, simply connected Lie group, with commutators

depending on a parameter λ > 0.

Np admits an almost 3-contact metric structure (ϕi, ξi, ηi, gλ) which is
hypernormal but not 3-quasi-Sasakian. None of the metrics gλ is Einstein.

The canonical connection is the metric connection ∇ with skew torsion
(Agricola-Ferreira-Storm, 2015)

T =
3∑

i=1

ηi ∧ dηi −4λ η123

It satisfies:

∇T = ∇R = 0  naturally reductive homogeneous space,

hol(∇) ≃ su(2), acting irreducibly on V and H.

In the 7-dim. case, ∇ is the characteristic connection of a cocalibrated
G2 structure ⇒ ∃ parallel spinor field ψ and ψi := ξi · ψ, i = 1, 2, 3, are
generalised Killing spinors:

∇
g

ξi
ψi =

λ

2
ξi · ψi, ∇

g

ξj
ψi = −

λ

2
ξj ·ψi (i 6= j), ∇

g

Xψi =
5λ

4
X ·ψi, X ∈ H



Well-known:

• the metric cone of a 3-Sasakian manifold is hyper-Kähler

• the metric cone of the quaternionic Heisenberg group is a
hyper-Kähler manifold with torsion (‘HKT manifold’)

Agricola-Höll, 2015: Criterion when the metric cone (for suitable a > 0)

(M̄, ḡ) = (M × R
+, a2r2g + dr2)

of an almost 3-contact metric manifold M admits a hyper-Hermitian
structure, and when it is a HKT manifold (but unclear what a ‘good’ large

class of manifolds satisfying the criterion could be)



Well-known:

• the metric cone of a 3-Sasakian manifold is hyper-Kähler

• the metric cone of the quaternionic Heisenberg group is a
hyper-Kähler manifold with torsion (‘HKT manifold’)

Agricola-Höll, 2015: Criterion when the metric cone (for suitable a > 0)

(M̄, ḡ) = (M × R
+, a2r2g + dr2)

of an almost 3-contact metric manifold M admits a hyper-Hermitian
structure, and when it is a HKT manifold (but unclear what a ‘good’ large

class of manifolds satisfying the criterion could be)

Is it possible to find a larger class of
almost 3-contact metric manifolds

with similar properties?



3-(α, δ)-Sasaki manifolds

Definition

A 3-(α, δ)-Sasaki manifold is an almost 3-contact metric manifold
(M,ϕi, ξi, ηi, g) such that

dηi = 2αΦi + 2(α− δ)ηj ∧ ηk,

α ∈ R
∗, δ ∈ R, (i, j, k) even permutation of (1, 2, 3).
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3-(α, δ)-Sasaki manifolds

Definition

A 3-(α, δ)-Sasaki manifold is an almost 3-contact metric manifold
(M,ϕi, ξi, ηi, g) such that

dηi = 2αΦi + 2(α− δ)ηj ∧ ηk,

α ∈ R
∗, δ ∈ R, (i, j, k) even permutation of (1, 2, 3).

3-α-Sasakian manifolds: dηi = 2αΦi  α = δ

quat. Heisenberg groups: dηi = λ(Φi + ηj ∧ ηk)  2α = λ, δ = 0

We call the structure degenerate if δ = 0 and nondegenerate otherwise.

Theorem

For every 3-(α, δ)-Sasaki manifold:

the structure is hypernormal (generalization of Kashiwada’s thm),

the distribution V is integrable with totally geodesic leaves,

each ξi is a Killing vector field, and [ξi, ξj ] = 2δξk.



Definition
An H-homothetic deformation of an almost 3-contact metric strucure
(ϕi, ξi, ηi, g) is given by

η′i = cηi, ξ′i =
1

c
ξi, ϕ′

i = ϕi, g′ = ag + b

3∑

i=1

ηi ⊗ ηi,

a, b, c ∈ R, a > 0, c2 = a+ b > 0.

If (ϕi, ξi, ηi, g) is 3-(α, δ)-Sasaki, then (ϕ′
i, ξ

′
i, η

′
i, g

′) is 3-(α′, δ′)-Sasaki
with

α′ = α
c

a
, δ′ =

δ

c
.

the class of degenerate 3-(α, δ)-Sasaki structures is preserved
in the non-degenerate case, the sign of αδ is preserved.

Definition

We say that a 3-(α, δ)-Sasaki manifold is positive (resp. negative) if
αδ > 0 (resp. αδ < 0).

Proposition

αδ > 0 ⇐⇒ M is H-homothetic to a 3-Sasakian manifold (α = δ = 1)
αδ < 0 ⇐⇒ M is H-homothetic to one with α = −1, δ = 1.



Do there exist 3-(α, δ)-Sasaki manifolds with αδ < 0?

YES – here is a construction:

Definition
A negative 3-Sasakian manifold is a normal almost 3-contact manifold
(M,ϕi, ξi, ηi) endowed with a compatible semi-Riemannian metric g̃ of
signature (3, 4n) and s. t. dηi(X,Y ) = 2g̃(X,ϕiY ).

Proposition

If (M,ϕi, ξi, ηi, g̃) is a negative 3-Sasakian manifold, take

g = −g̃ + 2

3∑

i=1

ηi ⊗ ηi.

Then (ϕi, ξi, ηi, g) is a 3-(α, δ)-Sasaki structure with α = −1 and δ = 1.

It is known that quat. Kähler (not hK) mnfds with neg. scalar curvature
admit a canonically associated principal SO(3)-bundle which is endowed
with a negative 3-Sasakian structure (Konishi, 1975/Tanno, 1996).



Overview: Hierarchy of ‘good’ connections

ϕ

ΣM

ϕ-compatible connections ⊃

• depend only on ϕ ∈ ΣM

• main defining condition:
(∇Xϕ)Y = 0 ∀X,Y ∈ Γ(H)

• not unique: depends on a
parameter function γ

• exist under very weak
assumptions

V

canonical connection

• depends on the whole a.
3-contact m. str.
(β := 2(δ − 2α))

• main defining condition:
∇Xϕi = β(ηk(X)ϕj −

ηj(X)ϕk) ∀X ∈ X(M)

• unique: corresponds to
γ = 2(β − δ)

• exists on all 3-(α, δ)-Sasaki
manifolds (and again some
weaker assumptions)



ϕ-compatible connections

Definition

Let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold, ϕ a
structure in the associated sphere ΣM . Let ∇ be a metric connection
with skew torsion on M . We say that ∇ is a ϕ-compatible connection if

1) ∇ preserves the splitting TM = H⊕ V ,

2) (∇Xϕ)Y = 0 ∀X,Y ∈ Γ(H).
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2) (∇Xϕ)Y = 0 ∀X,Y ∈ Γ(H).

Theorem
M admits a ϕ-compatible connection if

1) Nϕ is skew-symmetric on H,

2) each ξi is Killing.

Remark This is a special case of an iff criterion. ϕ-compatible
connections are parametrized by their parameter function

γ := T (ξ1, ξ2, ξ3) ∈ C∞(M).



ϕ-compatible connections

Definition

Let (M,ϕi, ξi, ηi, g) be an almost 3-contact metric manifold, ϕ a
structure in the associated sphere ΣM . Let ∇ be a metric connection
with skew torsion on M . We say that ∇ is a ϕ-compatible connection if

1) ∇ preserves the splitting TM = H⊕ V ,

2) (∇Xϕ)Y = 0 ∀X,Y ∈ Γ(H).

Theorem
M admits a ϕ-compatible connection if

1) Nϕ is skew-symmetric on H,

2) each ξi is Killing.

Remark This is a special case of an iff criterion. ϕ-compatible
connections are parametrized by their parameter function

γ := T (ξ1, ξ2, ξ3) ∈ C∞(M).



The canonical connection

∇ϕi ≡ 0 is too strong  suppose ∇ preserves the 3-dim. distribution in
End(TM) spanned by ϕi as do quaternionic connections (qK case):

∇Xϕi = β(ηk(X)ϕj − ηj(X)ϕk) ∀X ∈ X(M)



The canonical connection

Theorem

Let (M,ϕi, ξi, ηi, g) be a 3-(α, δ)-Sasakian manifold. Then M admits a
metric connection ∇ with skew torsion such that for a smooth function β,

∇Xϕi = β(ηk(X)ϕj − ηj(X)ϕk) ∀X ∈ X(M)

for every even permutation (i, j, k) of (1, 2, 3).

Such a connection ∇ is unique, preserves the splitting TM = V ⊕H and
the ϕi are parallel along H.

∇ is called the canonical connection of M . The function β is a constant
given by

β = 2(δ − 2α).



The canonical connection ∇ satisfies

∇Xϕi = β(ηk(X)ϕj − ηj(X)ϕk),

∇Xξi = β(ηk(X)ξj − ηj(X)ξk),

∇Xηi = β(ηk(X)ηj − ηj(X)ηk),

and also
∇Ψ = 0, ∇η123 = 0,

Ψ := Φ1 ∧ Φ1 +Φ2 ∧ Φ2 +Φ3 ∧ Φ3, fundamental 4-form. In particular

hol(∇) ⊂ (sp(n)⊕ sp(1))⊕ so(3) ⊂ so(4n)⊕ so(3).

For parallel canonical manifolds (β = 0):

∇ϕi = 0, ∇ξi = 0, ∇ηi = 0, and hol(∇) ⊂ sp(n)

⇒ canonical conn. = characteristic conn. of all 3 a.c.m. str.
[first known examples where this happens!]
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The metric cone

Given an almost 3-contact metric manifold (M,ϕi, ξi, ηi, g), on the
metric cone

(M̄, ḡ) = (M × R
+, a2r2g + dr2), a > 0,

one can define an almost hyperHermitian structure (ḡ, J1, J2, J3)
(Agricola-Höll, 2015).

Theorem

If (M,ϕi, ξi, ηi, g) is 3-(α, δ)-Sasakian, the metric cone is hyper-Kähler
with torsion (HKT manifold).



Overview: 3-(α, δ)-Sasakian structures

degenerate
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δ
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3-Sasaki manifolds

1

1

negative 3-(α, δ)-Sas. (αδ < 0)



The canonical connection of 3-(α, δ)-Sasaki manifolds

Theorem

The canonical connection of a 3-(α, δ)-Sasaki manifold has torsion

T =

3∑

i=1

ηi ∧ dηi + 8(δ − α) η123

and satisfies ∇T = 0.

Moreover, every 3-(α, δ)-Sasakian manifold admits an underlying
quaternionic contact structure, and the canonical connection turns out to
be a quaternionic contact connection. In fact, it is qc-Einstein (Ivanov -
Minchev - Vassilev, 2016) and this allows to determine the Riemannian
Ricci curvature:



Theorem

The Riemannian Ricci curvature of a 3-(α, δ)-Sasaki manifold is

Ricg = 2α
(
2δ(n+ 2)− 3α

)
g + 2(α− δ)

(
(2n+ 3)α− δ

)
3∑

i=1

ηi ⊗ ηi



Theorem

The Riemannian Ricci curvature of a 3-(α, δ)-Sasaki manifold is

Ricg = 2α
(
2δ(n+ 2)− 3α

)
g + 2(α− δ)

(
(2n+ 3)α− δ

)
3∑

i=1

ηi ⊗ ηi

The ∇-Ricci curvature is

Ric = 4α{δ(n+ 2)− 3α} g + 4α{δ(2− n)− 5α}

3∑

i=1

ηi ⊗ ηi.

The property of being symmetric follows for Ric from ∇T = 0.



Theorem

The Riemannian Ricci curvature of a 3-(α, δ)-Sasaki manifold is

Ricg = 2α
(
2δ(n+ 2)− 3α

)
g + 2(α− δ)

(
(2n+ 3)α− δ

)
3∑

i=1

ηi ⊗ ηi

The ∇-Ricci curvature is

Ric = 4α{δ(n+ 2)− 3α} g + 4α{δ(2− n)− 5α}

3∑

i=1

ηi ⊗ ηi.

The property of being symmetric follows for Ric from ∇T = 0.

M is Riemannian Einstein iff α = δ or δ = (2n+ 3)α.

The manifold is ∇-Einstein iff δ(2− n) = 5α.

The manifold is both Riemannian Einstein and ∇-Einstein if and
only if dimM = 7 and δ = 5α (happens for example for ‘compatible’

nearly parallel G2-str., see next result).



Spinors on 7-dimensional 3-(α, δ)-Sasaki manifolds

Theorem

Any 7-dimensional 3-(α, δ)-Sasaki manifold admits a a cocalibrated
G2-structure (Fernandez-Gray type W1 ⊕W3) such that its characteristic
connection ∇ coincides with the canonical connection.

Because G2 is the stabilizer of a generic spinor in dim. 7, this
G2-structure defines a unique parallel spinor field ψ0, called the canonical
spinor field.

Theorem

1) The canonical spinor field ψ0 is a generalized Killing spinor, Killing iff
δ = 5α (nearly parallel G2-structure).

2) The Clifford products ψi := ξi · ψ0, i = 1, 2, 3, are generalized Killing
spinors; any two of the generalized Killing numbers coincide iff α = δ,
i. e. if M7 is 3-α-Sasakian.



Homogeneous 3-Sasakian manifolds

Theorem (Boyer, Galicki, Mann, 1994)

Let (M, g, ηi, ξi, ϕi) be a homogeneous 3-Sasakian manifold. Then M is
one of the following homogeneous spaces:

Sp(n+ 1)

Sp(n)
,

Sp(n+ 1)

Sp(n)× Z2
,

SU(m+ 2)

S(U(m)×U(1))
,

SO(k + 4)

SO(k)× Sp(1)
,

G2

Sp(1)
,

F4

Sp(3)
,

E6

SU(6)
,

E7

Spin(12)
,

E8

E7
.

Here n ≥ 0, m ≥ 1 and k ≥ 3.

They are all simply connected except for RP 4n+3 ≃ Sp(n+1)
Sp(n)×Z2

1-1 correspondence between simply connected 3-Sasakian
homogeneous manifolds and compact simple Lie algebras



Uniform description of homogeneous 3-Sasakian manifolds
(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple (G,G0, H) of Lie groups such that

G is a compact, simple Lie Group

H ⊂ G0 ⊂ G connected Lie subgroups
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g0 = h⊕ sp(1) with sp(1) and h commuting subalgebras,

(g, g0) form a symmetric pair, g = g0 ⊕ g1,
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Uniform description of homogeneous 3-Sasakian manifolds
(Draper, Ortega, Palomo, 2018)

Definition

A 3-Sasakian data is a triple (G,G0, H) of Lie groups such that

G is a compact, simple Lie Group

H ⊂ G0 ⊂ G connected Lie subgroups

and the Lie algebras h ⊂ g0 ⊂ g satisfy:

g0 = h⊕ sp(1) with sp(1) and h commuting subalgebras,

(g, g0) form a symmetric pair, g = g0 ⊕ g1,

the complexification gC1 = C2 ⊗C W for some hC-module of
dimCW = 2n,

hC, sp(1)C ⊂ gC0 act on gC1 by their action on W and C2.

Remark In total the Lie algebra decomposes as

g =

g0

︷ ︸︸ ︷

h⊕ sp(1)h⊕ sp(1)⊕ g1
︸ ︷︷ ︸

m

(m is a reductive complement for M = G/H)



g =

g0

︷ ︸︸ ︷

h⊕ sp(1)⊕g1

The subspaces sp(1) and g1 will play the role of the vertical and
horizontal subspace V ,H of the 3-(α, δ)-Sasakian structure on
M = G/H

M fibers over the compact quaternion Kähler symmetric space
G/G0



Homogeneous 3-Sasakian model

Theorem (Draper, Ortega, Palomo, 2018)

Let (G,G0, H) be 3-Sasakian data. On M = G/H consider the
G-invariant structure defined by the Ad(H)-invariant tensors on m:

the inner product g

g
∣
∣
sp(1)

=
−κ

4(n+ 2)
, g

∣
∣
g1

=
−κ

8(n+ 2)
, g

∣
∣
sp(1)×g1

= 0

κ the Killing form on G.

ξi = σi, i = 1, 2, 3, σi standard basis of sp(1)=V⊂g0, ηi = g(ξi, ·)

the endomorphisms ϕi as

ϕi

∣
∣
sp(1)

=
1

2
ad(ξi), ϕi

∣
∣
g1

= ad(ξi).

Then (M,ϕi, ξi, ηi, g) defines a homogeneous 3-Sasakian manifold.

Conversely every homogeneous 3-Sasakian manifold M 6= RP 4n+3 is
obtained by this construction.
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Homogeneous positive 3-(α, δ)-Sasakian model

Idea: Use H-homothetic deformation to obtain 3-(α, δ)-Sasakian mnfds
for αδ > 0

Theorem

Let (G,G0, H) be 3-Sasakian data, αδ > 0. On M = G/H consider the
G-invariant structure by the Ad(H)-invariant tensors on m:

g
∣
∣
sp(1)

=
−κ

4δ2(n+ 2)
, g

∣
∣
g1

=
−κ

8αδ(n+ 2)
, g

∣
∣
sp(1)×g1

= 0

ξi = δσi, ηi = g(ξi, ·)

ϕi

∣
∣
sp(1)

=
1

2δ
ad(ξi), ϕi

∣
∣
g1

=
1

δ
ad(ξi).

Then (M,ϕi, ξi, ηi, g) defines a homogeneous 3-(α, δ)-Sasakian mnfd.

Conversely every homogeneous 3-(α, δ)-Sasakian manifold M 6= RP 4n+3

with αδ > 0 is obtained by this construction.

Remark: (G/H, g) is naturally reductive ⇔ δ = 2α ⇔ parallel 3-(α, δ).
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Generalized setup

Definition

A generalized 3-Sasakian data is a triple (G,G0, H) of Lie groups such
that

G is a real simple Lie Group

H ⊂ G0 ⊂ G connected Lie subgroups

and the Lie algebras h ⊂ g0 ⊂ g satisfy:

g0 = h⊕ sp(1) with sp(1) and h commuting subalgebras,

(g, g0) form a symmetric pair, g = g0 ⊕ g1,

the complexification gC1 = C2 ⊗C W for some hC-module of
dimCW = 2n,

hC, sp(1)C ⊂ gC0 act on gC1 by their action on W and C2.

If (g, g0) is a compact symmetric pair such that (G,G0, H) is 3-Sasakian
data, then (G∗, G0, H) is generalized 3-Sasakian data, where (g∗, g0) is
the dual non-compact symmetric pair.



Negative homogeneous 3-(α, δ)-Sasakian manifolds

Theorem

Let (G∗, G0, H) be non-compact generalized 3-Sasakian data, αδ < 0.

On M = G∗/H consider the G∗-invariant structure defined by the
Ad(H)-invariant tensors on m

g
∣
∣
sp(1)

=
−κ

4δ2(n+ 2)
, g

∣
∣
g1

=
−κ

8αδ(n+ 2)
, g

∣
∣
sp(1)×g1

= 0,

ξi = δσi, ηi = g(ξi, ·),

ϕi

∣
∣
sp(1)

=
1

2δ
ad(ξi), ϕi

∣
∣
g1

=
1

δ
ad(ξi),

κ the Killing form on G∗, σi standard basis sp(1) = V ⊂ g0.

Then (M, g, ξi, ηi, ϕi) defines a homogeneous 3-(α, δ)-Sasakian manifold.



In total we obtain homogeneous 3-(α, δ)-Sasakian structures on the
following list of homogeneous spaces (G/H compact, G∗/H
non-compact):

G G∗ H G0 dim
Sp(n+ 1) Sp(n, 1) Sp(n) Sp(n)Sp(1) 4n+ 3
SU(n+ 2) SU(n, 2) S(U(n)×U(1)) S(U(n)U(2)) 4n+ 3
SO(n+ 4) SO(n, 4) SO(n)× Sp(1) SO(n)SO(4) 4n+ 3

G2 G2
2 Sp(1) SO(4) 11

F4 F−20
4 Sp(3) Sp(3)Sp(1) 31

E6 E2
6 SU(6) SU(6)Sp(1) 43

E7 E−5
7 Spin(12) Spin(12)Sp(1) 67

E8 E−24
8 E7 E7Sp(1) 115

.

Remark: RP 4n+3 = Sp(n+1)
Sp(n)×Z2

and non compact dual Sp(n,1)
Sp(n)×Z2

also

admit 3-(α, δ)-Sasaki structures, as the quotient of S4n+3 = Sp(n+1)
Sp(n) ,

resp. Sp(n,1)
Sp(n) by Z2 inside the fiber.
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Question: Are these all homogenous negative 3-(α, δ)-Sasaki manifolds?

NO!

Idea: Start with V. Cortes, A New Construction of Homogeneous
Quaternionic Manifolds and Related Geometric Structures, Mem.AMS
147 (2000) and previous work of ⊂ {Alekseevsky, Cortes}

The construction is highly algebraic!

Obtain examples over bases not included in previous construction
(for example, Alekseevsky spaces of negative scalar curvature)

First such example not covered by previous theorem: dimension
n = 19 = 4 · 4 + 3

Difficulty: Pick the positive definite examples, discard redundancies, give
a more geometric description. . .



Definiteness of curvature operators

Consider the Riemannian curvature as a symmetric operator

Rg : Λ2M → Λ2M 〈Rg(X ∧ Y ), Z ∧ V 〉 = −g(Rg(X,Y )Z, V ).

Definition

A Riemannian manifold (M, g) is said to have strongly positive curvature
if there exists a 4-form ω such that Rg + ω is positive-definite at every
point x ∈M (Thorpe, 1971).

For every 2-plane σ, being 〈ω(σ), σ〉 = 0, one has

sec(σ) = 〈Rg(σ), σ〉 = 〈(Rg + ω)(σ), σ〉.

Then,

Rg > 0 =⇒ strongly positive curvature =⇒ positive sectional curvature

Rg ≥ 0 =⇒ strongly non-negative curvature =⇒ non-negative sec. curv.



On a 3-(α, δ)-Sasakian manifold the symmetric operators defined by the
Riemannian curvature and the curvature of the canonical connection:

Rg : Λ2M → Λ2M R : Λ2M → Λ2M

are related by

Rg −
1

4
σT= R+

1

4
GT

with

〈GT (X ∧ Y ), Z ∧ V 〉 := g(T (X,Y ), T (Z, V )),

〈σT (X ∧ Y ), Z ∧ V 〉 :=
1

2
dT (X,Y, Z, V ).

(M, g) is strongly non-negative with 4-form − 1
4σT if and only if

R+
1

4
GT ≥ 0.

Being GT ≥ 0, if R ≥ 0 we directly have strong non-negativity.



Theorem

Let M be a homogeneous 3-(α, δ)-Sasakian manifold obtained from a
generalized 3-Sasakian data.

If αδ < 0 then R ≤ 0.

If αδ > 0 then
R ≥ 0 if and only if αβ ≥ 0

.

Then, on a positive homogeneous 3-(α, δ)-Sasaki manifold with αβ ≥ 0:

Rg −
1

4
σT = R+

1

4
GT ≥ 0.

The converse also holds, i.e.

Theorem

A positive homogeneous 3-(α, δ)-Sasaki manifold is strongly non-negative
with 4-form − 1

4σT if and only if αβ ≥ 0.



Strong positivity is much more restrictive than strong non-negativity.

Strong positivity implies strict positive sectional curvature.

Homogeneous manifolds with strictly positive sectional curvature have
been classified (Wallach 1972, Bérard Bergery 1976).

Only the 7-dimensional Aloff-Wallach-space W 1,1, the spheres S4n+3 and
real projective spaces RP 4n+3 admit homogeneous 3-(α, δ)-Sasaki
structures.

Theorem

The 3-(α, δ)-Sasakian spaces

W 1,1 = SU(3)/S1 with 4-form −(14 + ε)σT for small ε > 0,

S4n+3, RP 4n+3, n ≥ 1, with 4-form δ
8ασT |Λ4H − (14 + ε)σT for

small ε > 0

are strongly positive if and only if αβ > 0.



Some open questions

Investigate the geometry of the new homogeneous negative
3-(α, δ)-Sasakian manifolds

3-Sasakian manifolds admit Riemannian Killing spinors. They
correspond to pseudo-Riemannian Killing spinors on the
non-compact duals when equipped with an indefinite metric. How
does this translate to the negative 3-Sasakian case? Are there
special spinors?

3-(α, δ)-Sasakian manifolds are ∇-Einstein if (2− n)δ = 5α. How
do these geometries look like for n > 2?
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