APPENDIX B: PROOFS OF REMARKABLE IDENTITIES

MARIO KASSUBA

In this appendix to Agricola's review article The Srní lectures on non-integrable geometries with torsion, we compile the proofs of the identities cited in Appendix B as well as of the first Bianchi identity for connections with skew-symmetric and vectorial torsion (Theorem 2.6).
In definition A.1, the 4-form $\left.\left.\sigma_{T}=\frac{1}{2} \sum_{i=1}^{n}\left(e_{i}\right\lrcorner T\right) \wedge\left(e_{i}\right\lrcorner T\right)$ was introduced and said to have the alternative global expression

$$
\begin{align*}
\sigma_{T}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)= & g\left(T\left(X_{1}, X_{2}\right), T\left(X_{3}, X_{4}\right)\right)+g\left(T\left(X_{2}, X_{3}\right), T\left(X_{1}, X_{4}\right)\right) \tag{1}\\
& +g\left(T\left(X_{3}, X_{1}\right), T\left(X_{2}, X_{4}\right)\right)
\end{align*}
$$

Indeed, if X_{1}, X_{2}, X_{3} and X_{4} are vector fields, we have

$$
\begin{aligned}
\sigma_{T}\left(X_{1}, X_{2}, X_{3}, X_{4}\right) & \left.\left.=\frac{1}{2} \sum_{i=1}^{n} \frac{1}{4} \sum_{\sigma \in S_{4}} \operatorname{sgn} \sigma \cdot\left(e_{i}\right\lrcorner T\right)\left(X_{\sigma(1)}, X_{\sigma(2)}\right)\left(e_{i}\right\lrcorner T\right)\left(X_{\sigma(3)}, X_{\sigma(4)}\right) \\
& =\frac{1}{8} \sum_{i=1}^{n} \sum_{\sigma \in S_{4}} \operatorname{sgn} \sigma \cdot g\left(T\left(e_{i}, X_{\sigma(1)}\right), X_{\sigma(2)}\right) g\left(T\left(e_{i}, X_{\sigma(3)}\right), X_{\sigma(4)}\right) \\
& =\frac{1}{8} \sum_{i=1}^{n} \sum_{\sigma \in S_{4}} \operatorname{sgn} \sigma \cdot g\left(T\left(X_{\sigma(1)}, X_{\sigma(2)}\right), e_{i}\right) g\left(T\left(X_{\sigma(3)}, X_{\sigma(4)}\right), e_{i}\right)
\end{aligned}
$$

where the last identity holds because of the skew-symmetry of T. Now, we observe that

$$
\sum_{i=1}^{n} g\left(T\left(X_{\sigma(1)}, X_{\sigma(2)}\right), e_{i}\right) g\left(T\left(X_{\sigma(3)}, X_{\sigma(4)}\right), e_{i}\right)=g\left(T\left(X_{\sigma(1)}, X_{\sigma(2)}\right), T\left(X_{\sigma(3)}, X_{\sigma(4)}\right)\right)
$$

and the claim follows with an easy combinatorial argument. As a consequence, we are able to prove Corollary A.1.

Proof of Corollary A.1. We want to check this identity in every point $x \in M$. Therefore, let $X, Y, Z, V \in T_{x} M$ be four tangent vectors in x. We extend X, Y, Z and V to local vector fields by parallel transport along geodesics (with respect to ∇). Without using a new notation for these local vector fields, the torsion form T is given by $[X, Y]=$ $-T(X, Y)$. In particular, the global expression (1) for σ_{T} is reduced to

$$
\sigma_{T}(X, Y, Z, V)=g([X, Y],[Z, V])+g([Y, Z],[X, V])+g([Z, X],[Y, V])
$$

Now, we define the 4 -form Ω to be the right hand side of the equation we want to prove,

$$
\Omega(X, Y, Z, V):=\stackrel{X, Y, Z}{\mathfrak{S}}\left(\nabla_{X} T\right)(Y, Z, V)-\left(\nabla_{V} T\right)(X, Y, Z)+2 \sigma_{T}(X, Y, Z, V)
$$

Writing out the cyclic sum explicitely, we obtain

$$
\begin{aligned}
\Omega(X, Y, Z, V)= & X(T(Y, Z, V))-Y(T(X, Z, V))+Z(T(X, Y, V))-V(T(X, Y, Z)) \\
& +2 \sigma_{T}(X, Y, Z, V)
\end{aligned}
$$

Together with the previous expression for σ_{T}, this yields

$$
\begin{aligned}
\Omega(X, Y, Z, V)= & X(T(Y, Z, V))-Y(T(X, Z, V))+Z(T(X, Y, V))-V(T(X, Y, Z)) \\
& +2 g([X, Y],[Z, V])+2 g([Y, Z],[X, V])+2 g([Z, X],[Y, V])
\end{aligned}
$$

This is easily seen to be the exterior derivative $d T$, since by definition we have

$$
\begin{aligned}
d T(X, Y, Z, V)= & X(T(Y, Z, V))-Y(T(X, Z, V))+Z(T(X, Y, V))-V(T(X, Y, Z)) \\
& -T([X, Y], Z, V)+T([X, Z], Y, V)-T([X, V], Y, Z) \\
& -T([Y, Z], X, V)+T([Y, V], X, Z)-T([Z, V], X, Y) \\
= & X(T(Y, Z, V))-Y(T(X, Z, V))+Z(T(X, Y, V))-V(T(X, Y, Z)) \\
& +2 g([X, Y],[Z, V])+2 g([Y, Z],[X, V])+2 g([Z, X],[Y, V]) .
\end{aligned}
$$

We turn to the proof of the relation between the curvature tensor of a metric connection with skew-symmetric torsion and the Riemannian curvature tensor in the induced identity between Ricci tensors.
Proof of Theorem A.1. We first discuss curvature tensors. Let $x \in M$ be a fixed point and $X, Y, Z, V \in T_{x} M$ four tangent vectors that we extend to local vector fields by parallel transport along ∇-geodesics. Then we have

$$
g\left(\nabla_{X} Y, Z\right)=g\left(\nabla_{X}^{g} Y, Z\right)-\frac{1}{2} T(X, Y, Z)=-\frac{1}{2} T(X, Y, Z)
$$

and
$\mathcal{R}^{g}(X, Y, Z, V)=g\left(\mathcal{R}^{g}(X, Y) Z, V\right)=g\left(\nabla_{X}^{g} \nabla_{Y}^{g} Z-\nabla_{Y}^{g} \nabla_{Z}^{g} Z-\nabla_{[X, Y]}^{g} Z, V\right)=: A+B+C$.
We compute the terms A, B and C separately. First we have

$$
A:=g\left(\nabla_{X}^{g} \nabla_{Y}^{g} Z, V\right)=g\left(\nabla_{X} \nabla_{Y}^{g} Z, V\right)-\frac{1}{2} T\left(X, \nabla_{Y}^{g} Z, V\right)
$$

Since ∇ is a metric connection, we can write

$$
\begin{aligned}
A & =X\left(g\left(\nabla_{Y}^{g} Z, V\right)\right)-g\left(\nabla_{Y}^{g} Z, \nabla_{X} V\right)+\frac{1}{2} g\left(T(X, V), \nabla_{Y}^{g} Z\right) \\
& =X\left(g\left(\nabla_{Y} Z, V\right)\right)-\frac{1}{2} X(T(Y, Z, V))+\frac{1}{2} g\left(\nabla_{Y} Z, T(X, V)\right)-\frac{1}{4} T(Y, Z, T(X, V)) \\
& =g\left(\nabla_{X} \nabla_{Y} Z, V\right)-\frac{1}{2} X(g(T(Y, Z), V))-\frac{1}{4} T(Y, Z, T(X, V))
\end{aligned}
$$

B is obtained from A by interchanging X and Y. Finally, we have

$$
\begin{aligned}
C & :=-g\left(\nabla_{[X, Y]}^{g} Z, V\right)=-g\left(\nabla_{[X, Y]} Z, V\right)+\frac{1}{2} T([X, Y], Z, V) \\
& =-g\left(\nabla_{[X, Y]} Z, V\right)+\frac{1}{2} g(T(Z, V),[X, Y])
\end{aligned}
$$

Summing up A, B and C we obtain

$$
\begin{aligned}
A+B+C= & g\left(\mathcal{R}^{\nabla}(X, Y) Z, V\right)-\frac{1}{2} X(T(Y, Z, V))+\frac{1}{2} Y(T(X, Z, V)) \\
& -\frac{1}{4} g(T(Y, Z), T(X, V))-\frac{1}{4} g(T(Z, X), T(Y, V))+\frac{1}{2} g(T(Z, V),[X, Y]) \\
= & \mathcal{R}^{\nabla}(X, Y, Z, V)-\frac{1}{2}\left(\nabla_{X} T\right)(Y, Z, V)+\frac{1}{2}\left(\nabla_{Y} T\right)(X, Z, V) \\
& -\frac{1}{4} \sigma^{T}(X, Y, Z, V)+\frac{1}{4} g(T(X, Y), T(Z, V))+\frac{1}{2} g(T(Z, V),[X, Y])
\end{aligned}
$$

By $[X, Y]=-T(X, Y)$, the claim follows. Contracting the respective curvature tensors yields then the relation between Ricci-tensors $\operatorname{Ric}^{g}(X, Y):=\sum_{i} \mathcal{R}^{g}\left(e_{i}, X, Y, e_{i}\right)$,

$$
\begin{aligned}
\operatorname{Ric}^{g}(X, Y)= & \sum_{i=1}^{n} \mathcal{R}^{\nabla}\left(e_{i}, X, Y, e_{i}\right)-\frac{1}{2} \sum_{i=1}^{n}\left(\nabla_{e_{i}} T\right)\left(X, Y, e_{i}\right)+\frac{1}{2} \sum_{i=1}^{n} \underbrace{\left(\nabla_{X} T\right)\left(e_{i}, Y, e_{i}\right)}_{=0} \\
& -\frac{1}{4} g\left(T\left(e_{i}, X\right), T\left(Y, e_{i}\right)\right) \\
= & \left.\operatorname{Ric}^{\nabla}(X, Y)-\frac{1}{2} \sum_{i=1}^{n}\left(e_{i}\right\lrcorner \nabla_{e_{i}} T\right)(X, Y)-\frac{1}{4} g\left(T\left(e_{i}, X\right), T\left(Y, e_{i}\right)\right) \\
= & \operatorname{Ric}^{\nabla}(X, Y)+\left(\delta^{\nabla} T\right)(X, Y)-\frac{1}{4} g\left(T\left(e_{i}, X\right), T\left(Y, e_{i}\right)\right) .
\end{aligned}
$$

But on T the codifferentials δ^{g} and δ^{∇} coincide, i. e.

$$
\operatorname{Ric}^{g}(X, Y)=\operatorname{Ric}^{\nabla}(X, Y)+\left(\delta^{g} T\right)(X, Y)-\frac{1}{4} g\left(T\left(e_{i}, X\right), T\left(Y, e_{i}\right)\right)
$$

We finally prove the first Bianchi identity for vectorial torsion (1) and for skew-symmetric torsion (2).

Proof of Theorem 2.6 (1). The problem is reduced to the first Bianchi identity for the Levi-Civita connection. We pick again three tangent vectors $X, Y, Z \in T_{x} M$ and extend them locally by parallel transport along ∇^{g}-geodesics. Recall that the torsion of a metric connection ∇ with vectorial torsion is given by $T(X, Y)=g(X, Y) V-g(V, Y) X$, where V is the generating vector field. In order to express the curvature of ∇ by the curvature of ∇^{g}, we compute

$$
\begin{aligned}
& \nabla_{X} \nabla_{Y} Z= \\
&= \nabla_{X}\left(\nabla_{Y}^{g} Z+g(Y, Z) V-g(V, Z) Y\right)-\nabla_{Y}\left(\nabla_{X}^{g} Z+g(X, Z) V-g(V, Z) X\right) \\
&-\nabla_{[X, Y]}^{g} Z-g([X, Y], Z) V+g(V, Z)[X, Y] \\
&= \nabla_{X}^{g} \nabla_{Y}^{g} Z+\left[g\left(\nabla_{X}^{g} Y, Z\right)+g\left(Y, \nabla_{X}^{g} Z\right)\right] V-\left[g\left(\nabla_{X}^{g} V, Z\right)+g\left(V, \nabla_{X}^{g} Z\right)\right] Y \\
&+g(Y, Z) \nabla_{X}^{g} V-g(V, Z) \nabla_{X}^{g} Y+\left[g\left(X, \nabla_{Y}^{g} Z\right)+g(Y, Z) g(X, V)\right. \\
&-g(V, Z) g(X, Y)] V-\left[g\left(V, \nabla_{Y}^{g} Z\right)+g(V, V) g(Y, Z)-g(V, Y) g(V, Z)\right] X \\
&= \nabla_{X}^{g} \nabla_{Y}^{g} Z+g(Y, Z) \nabla_{X}^{g} V-g\left(\nabla_{X}^{g} V, Z\right) Y+[g(Y, Z) g(X, V)-g(V, Z) g(X, Y)] V \\
&-[g(V, V) g(Y, Z)-g(V, Y) g(V, Z)] X
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& \mathcal{R}(X, Y) Z= \\
&= \mathcal{R}^{g}(X, Y) Z+g(Y, Z) \nabla_{X}^{g} V-g\left(\nabla_{X}^{g} V, Z\right) Y+(g(Y, Z) g(X, V)-g(V, Z) g(X, Y)) V \\
&-[g(V, V) g(Y, Z)-g(V, Y) g(V, Z)] X-g(X, Z) \nabla_{Y}^{g} V+g\left(\nabla_{Y}^{g} V, Z\right) X \\
&-[g(X, Z) g(Y, V)-g(V, Z) g(Y, X)] V+[g(V, V) g(X, Z)-g(V, X) g(V, Z)] Y
\end{aligned}
$$

Cyclic permutation of X, Y and Z yields similar expressions for $\mathcal{R}(Y, Z) X$ and $\mathcal{R}(Z, X) Y$. Together with the first Bianchi identity for the Levi-Civita connection (and observing that most of the terms above cancel out), we obtain

$$
\begin{aligned}
\stackrel{X, Y, Z}{\mathfrak{S}} \mathcal{R}(X, Y) Z= & g\left(\nabla_{X}^{g} V, Y\right) Z-g\left(\nabla_{Y}^{g} V, X\right) Z+g\left(\nabla_{Y}^{g} V, Z\right) X-g\left(\nabla_{Z}^{g} V, Y\right) X \\
& +g\left(\nabla_{Z}^{g} V, X\right) Y-g\left(\nabla_{X}^{g} V, Z\right) Y .
\end{aligned}
$$

But the exterior derivative of V can be expressed by ∇^{g} as follows:

$$
\begin{aligned}
d V(X, Y) & =X(V(Y))-Y(V(X))-V([X, Y]) \\
& =\left\langle\nabla_{X}^{g} V, Y\right\rangle+\left\langle V, \nabla_{X}^{g} Y\right\rangle-\left\langle\nabla_{Y}^{g} V, X\right\rangle-\left\langle V, \nabla_{Y}^{g} X\right\rangle \\
& =\left\langle\nabla_{X}^{g} V, Y\right\rangle-\left\langle\nabla_{Y}^{g} V, X\right\rangle+\langle V,[X, Y]\rangle=\left\langle\nabla_{X}^{g} V, Y\right\rangle-\left\langle\nabla_{Y}^{g} V, X\right\rangle,
\end{aligned}
$$

which completes the proof.
Proof of Theorem 2.6 (2). First we set $K:=\stackrel{X, Y, Z}{\mathfrak{S}} \mathcal{R}^{\nabla}(X, Y, Z, V)$. Using Theorem A.1, we compute

$$
\begin{aligned}
K= & { }_{S, Y, Z}^{\mathrm{S}} \mathcal{R}^{g}(X, Y, Z, V)+\frac{1}{2} \stackrel{X, Y, Z}{\mathfrak{S}}\left(\nabla_{X} T\right)(Y, Z, V)-\frac{1}{2} \stackrel{X, Y, Z}{\mathfrak{S}}\left(\nabla_{Y} T\right)(X, Z, V) \\
& +\frac{1}{4} \stackrel{X, Y, Z}{\mathfrak{S}} g(T(X, Y), T(Z, V))+\frac{1}{4} \stackrel{X, Y, Z}{\mathfrak{S}} \sigma_{T}(X, Y, Z, V) .
\end{aligned}
$$

The first Bianchi identity for the Levi-Civita connection ${ }^{X, Y, Z} \mathcal{R}^{g}(X, Y, Z, V)=0$ together with Corollary A. 1 gives

$$
\begin{aligned}
& K=d T(X, Y, Z, V)-\frac{1}{2} \stackrel{X, Y, Z}{\mathfrak{S}}\left(\nabla_{X} T\right)(Y, Z, V)+\left(\nabla_{V} T\right)(X, Y, Z)-2 \sigma_{T}(X, Y, Z, V) \\
& -\frac{1}{2} \stackrel{X, Y, Z}{\mathfrak{S}}\left(\nabla_{Y} T\right)(X, Z, V)+\underbrace{\frac{1}{4}, Y, Y, Z}_{\frac{1}{4} \sigma_{T}(X, Y, Z, V)} g(T(X, Y), T(Z, V))+\underbrace{\frac{1}{4} \frac{X, Y, Z}{\mathfrak{S}} \sigma_{T}(X, Y, Z, V)}_{3 \sigma_{T}(X, Y, Z, V)} \\
& =d T(X, Y, Z, V)+\left(\nabla_{V} T\right)(X, Y, Z)-\sigma_{T}(X, Y, Z, V)
\end{aligned}
$$

To finish the proof, we set

$$
S_{1}:=X_{\mathfrak{S}}^{X, Y, Z}\left(\nabla_{X} T\right)(Y, Z, V), \quad S_{2}:=\stackrel{X, Y, Z}{\mathfrak{S}}\left(\nabla_{Y} T\right)(X, Z, V)
$$

and show that $S_{1}+S_{2}=0$. Taking the covariant derivative of T we see that

$$
\begin{aligned}
\left(\nabla_{Y} T\right)(X, Z, V) & =Y(T(X, Z, V))-T\left(\nabla_{Y} X, Z, V\right)-T\left(X, \nabla_{Y} Z, V\right)-T\left(X, Z, \nabla_{Y} V\right) \\
& =g\left(\nabla_{Y} T(X, Z), V\right)+g\left(T(X, Z), \nabla_{Y} V\right)=g\left(\nabla_{Y} T(X, Z), V\right) .
\end{aligned}
$$

This implies

$$
S_{1}=g\left(\nabla_{Y} T(X, Z), V\right)+g\left(\nabla_{Z} T(Y, X), V\right)+g\left(\nabla_{X} T(Z, Y), V\right) .
$$

Similarly, $S_{2}:=\left(\nabla_{X} T\right)(Y, Z, V)+\left(\nabla_{Y} T\right)(Z, X, V)+\left(\nabla_{Z} T\right)(X, Y, V)$ can be expressed as

$$
S_{2}=g\left(\nabla_{X} T(Y, Z), V\right)+g\left(\nabla_{Y} T(Z, X), V\right)+g\left(\nabla_{Z} T(X, Y), V\right) .
$$

The skew-symmetry of T then implies $S_{1}=-S_{2}$.

[^0]
[^0]: kassuba@mathematik.hu-berlin.de
 Institut für Mathematik
 Humboldt-Universität zu Berlin
 Unter den Linden 6
 10099 Berlin, Germany

