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Abstract. In this short note we study flat metric connections with antisymmetric
torsion T 6= 0. The result has been originally discovered by Cartan/Schouten in 1926
and we provide a new proof not depending on the classification of symmetric spaces.
Any space of that type splits and the irreducible factors are compact simple Lie group
or a special connection on S

7. The latter case is interesting from the viewpoint of
G2-structures and we discuss its type in the sense of the Fernandez-Gray classification.
Moreover, we investigate flat metric connections of vectorial type.

1. Introduction

Consider a complete Riemannian manifold (Mn, g,∇) endowed with a metric connection
∇. The torsion T of ∇, viewed as a (3, 0) tensor, is defined by

T (X,Y,Z) := g(T (X,Y ), Z) = g(∇XY −∇Y X − [X,Y ], Z).

Metric connections for which T is antisymmetric in all arguments, i. e. T ∈ Λ3(Mn) are
of particular interest, see [Agr06]. They correspond precisely to those metric connec-
tions that have the same geodesics as the Levi-Civita connection. In this note we will
investigate flat connections of that type.

The observation that any simple Lie group carries in fact two flat connections, usu-
ally called the (+)- and the (−)-connection, with torsion T (X,Y ) = ±[X,Y ] is due to

É. Cartan and J.A. Schouten [CSch26a] and is explained in detail in [KN69, p. 198-199].
If one then chooses a biinvariant metric, these connections are metric and the torsion
becomes a 3-form, as desired. Hence, the question is whether there are any further
examples of flat metric connections with antisymmetric torsion beside products of Lie
groups.

The answer can be found in Cartan’s work. In fact, É. Cartan and J.A. Schouten
published a second joint paper very shortly after the one mentioned above, [CSch26b].
There is only one additional such geometry, realized on S7. Their proof that no more
cases can occur is by diligent inspection of some defining tensor fields.

Motivated from the problem when the Laplacian of a Riemannian manifold can at
least locally be written as a sum ∆ = −

∑

Xi ◦ Xi, d’Atri and Nickerson investigated
in 1968 manifolds which admit an orthonormal frame consisting of Killing vector fields.
This question is almost equivalent to the previous. In two beautiful papers, Joe Wolf
picked up the question again in the early 70ies and provided a complete classification of
all complete (reductive) pseudo-Riemannian manifolds admitting absolute parallelism,
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thus reproving the Cartan-Schouten result by other means [W72a], [W72b]. The key ob-
servation was that the Riemannian curvature of such a space must, for three ∇-parallel
vector fields, be given by R(X,Y )Z = −[[X,Y ], Z]/4, and thus defines a Lie triple sys-
tem. The proof is then reduced to an (intricate) algebraic problem about Lie triple
systems, and S7 (together with two pseudo-Riemannian siblings) appears because of the
outer automorphism inherited from triality.

The main topic of this paper is to understand this very interesting result in terms of
special geometries with torsion. We will give a new and elementary proof of the result
not using the classification of symmetric spaces. Moreover, we describe explicitely the
family of flat metric connections with antisymmetric torsion on S7 and make the link to
G2 geometry apparent.

2. The case of skew symmetric torsion

Let (Mn, g,∇) be a connected Riemannian manifold endowed with a flat metric connec-
tion ∇. The parallel transport of any orthonormal frame in a point will define a local
orthonormal frame e1, . . . .en in all other points. In the sequel, no distinction will be made
between vector fields and 1-forms. The standard formula for the exterior derivative of a
1-form yields

dei(ej , ek) = ej〈ei, ek〉 − ek〈ei, ej〉 − 〈ei, [ej , ek]〉 = −〈ei, [ej , ek]〉

= −〈ei,∇ej
ek −∇ek

ej − T (ej , ek)〉 = 〈ei, T (ej , ek)〉.

Hence, the torsion can be computed from the frame ei and their differentials. As was
shown by Cartan 1925, the torsion T of ∇ can basically be of 3 possible types—a 3-form,
a vector, and a more difficult type that has no geometric interpretation [TV83], [Agr06].
We shall first study the case that the torsion is a 3-form. We state the explicit formula
for the torsion and draw some first conclusions from the identities relating the curvatures
of ∇ and ∇g, the Levi-Civita connection. Let the flat connection ∇ be given by

∇XY = ∇g
XY +

1

2
T (X,Y,−)

for a 3-form T . The general relation between Ricg and Ric∇ [Agr06, Thm A.1] yields
for any orthonormal frame e1, . . . , en that the Riemannian Ricci tensor can be computed
directly from T ,

Ricg(X,Y ) =
1

4

n
∑

i=1

〈T (X, ei), T (Y, ei)〉, Scalg =
3

2
‖T‖2.

In particular, Ricg is non-negative, Ricg(X,X) ≥ 0 for all X, and Ricg(X,X) = 0 if and
only if X T = 0. The torsion form T is coclosed, δT = 0, because it coincides with the
skew-symmetric part of Ric∇ = 0. We define the 4-form σT by the formula

σT :=
1

2

n
∑

i=1

(ei T ) ∧ (ei T ) ,

or equivalently by the formula

σT (X,Y,Z, V ) := 〈T (X,Y ), T (Z, V )〉 + 〈T (Y,Z), T (X,V )〉 + 〈T (Z,X), T (Y, V )〉 .

Denote by ∇1/3 the metric connection with torsion T/3. Then we can formulate some
properties of the Riemannian manifold and the torsion form.
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Proposition 2.1. Let ∇ be a flat metric connection with torsion T ∈ Λ3(Mn). Then

3 dT = 2σT , ∇1/3T = 0 , ∇1/3σT = 0 .

The covariant derivative ∇T is a 4-form and given by

(∇V T )(X,Y,Z) =
1

3
σT (X,Y,Z, V ) or ∇V T = −

1

3
(V σT ) ,

(∇g
V T )(X,Y,Z) = −

1

6
σT (X,Y,Z, V ) or ∇g

V T =
1

6
(V σT ) .

In particular, the length ||T || and the scalar curvature are constant. The full Riemann
curvature tensor is given by

Rg(X,Y,Z, V ) = −
1

6
〈T (X,Y ), T (Z, V )〉+

1

12
〈T (Y,Z), T (X,V )〉+

1

12
〈T (Z,X), T (Y, V )〉,

and is ∇1/3-parallel, ∇1/3Rg = 0. Finally, the sectional curvature is non-negative,

K(X,Y ) =
‖T (X,Y )‖2

4[‖X‖2‖Y ‖2 − 〈X,Y 〉2]
≥ 0.

Proof. The first Bianchi identity [Agr06, Thm 2.6], [FrI02] states for flat ∇

(1) dT (X,Y,Z, V ) − σT (X,Y,Z, V ) + (∇V T )(X,Y,Z) = 0.

By the general formula [FrI02, Cor. 3.2] we have 3dT = 2σT for any flat connection with
skew-symmetric torsion. Together with equation (1), this shows the first and second
formula. The expression for the curvature follows from this and the general identity
[Agr06, Thm A.1], [FrI02]

Rg(X,Y,Z, V ) = R∇(X,Y,Z, V ) −
1

2
(∇XT )(Y,Z, V )

+
1

2
(∇Y T )(X,Z, V ) −

1

4
〈T (X,Y ), T (Z, V )〉 −

1

4
σT (X,Y,Z, V ).

Since ∇−∇1/3 = 1
3T , we obtain

(∇V T )(X,Y,Z) − (∇
1/3
V T )(X,Y,Z) =

1

3
T (V,−,−)[T ](X,Y,Z),

where T (V,−,−)[T ] denotes the action of the 2-form T (V,−,−) on the 3-form T . Com-
puting this action, we obtain

T (V,−,−)[T ](X,Y,Z) = σT (X,Y,Z, V ).

∇1/3T = 0 follows now directly from the formula for ∇T . In a similar way we compute
∇gT ,

∇g
V T = ∇V T −

1

2
(V T )[T ] = −

1

3
(V σT ) +

1

2
(V σT ) =

1

6
(V σT ). �

Observe that the curvature identity of the last proposition is nothing than formula (6)
in [CSch26b] and the formula for ∇gT is formula (7) in the Cartan/Schouten paper.

Corollary 2.1. Consider a tensor field T being a polynomial of the torsion form T .
Then we have

∇T = − 2∇gT .

In particular, T is ∇-parallel if and only if it is ∇g-parallel.

We derive the following splitting principle, which can again be found in [CSch26b].
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Proposition 2.2. If Mn = Mn1

1 ×Mn2

2 is the Riemannian product and T is the torsion
form of a flat metric connection, then T splits into T = T1 + T2, where Ti ∈ Λ3(Mni

i )
are 3-forms on Mni

i . Moreover, the connection splits,

(Mn, g,∇) = (Mn1 , g1,∇
1) × (Mn2 , g2,∇

2)

Proof. Consider two vectors X ∈ T (Mn1), Y ∈ T (Mn2). Then the sectional curvature
of the {X,Y }-plane vanishes, Rg(X,Y, Y,X) = 0. Consequently, we conclude that
X (Y T ) = 0 holds. �

In the simply connected and complete case we can decompose our flat metric structure
into a product of irreducible ones (de Rham decomposition Theorem). Consequently we
assume from now on that Mn is a complete, simply connected and irreducible Riemann-
ian manifold and that T 6= 0 is non-trivial. The ∇-parallel vector fields e1, . . . , en are
Killing and we immediately obtain the formulas

∇g
ek

el = −∇g
el
ek, [ek, el] = 2∇g

ek
el = −T (ek, el)

and

ek

(

〈[ei, ej ], el〉
)

= −(∇ek
T )(ei, ej , el) = −

1

3
σT (ei, ej , el, ek).

In particular, ek

(

〈[ei, ej ], el〉
)

is totally skew-symmetric and the function 〈[ei, ej ], el〉 is
constant if and only if the torsion form is ∇-parallel, ∇T = 0 (see [D’AN68], Lemma 3.3
and Proposition 3.7).

Proposition 2.3 (see [D’AN68], Lemma 3.4). The Riemannian curvature tensor in the
frame e1, . . . , en is given by the formula

Rg(ei, ej)ek = −
1

4

[

[ei, ej ], ek

]

.

In particular, Rg(ei, ej)ek is a Killing vector field.

Proof. We compute

〈[ei, ej ], [ek, el]〉 = 2 〈[ei, ej ],∇
g
ek

el〉 = − 2 〈∇g
ek

[ei, ej ], el〉 + 2ek

(

〈[ei, ej ], el〉
)

= −2
〈

∇g
[ei,ej ]

ek +
[

ek, [ei, ej ]
]

, el

〉

+ 2 ek

(

〈[ei, ej ], el〉
)

= 2 〈∇g
el

ek, [ei, ej ]〉 + 2 〈
[

[ei, ej ], ek

]

, el〉 + 2 ek

(

〈[ei, ej ], el〉
)

= 〈[el, ek], [ei, ej ]〉 + 2 〈
[

[ei, ej ], ek

]

, el〉 + 2 ek

(

〈[ei, ej ], el〉
)

and we obtain the following formula

〈[ei, ej ], [ek, el]〉 = 〈
[

[ei, ej ], ek

]

, el〉 + ek

(

〈[ei, ej ], el〉
)

.

The required formula follows now from the Jacobi identity and the fact, that ek

(

〈[ei, ej ], el〉
)

is totally skew-symmetric,

Rg(ei, ej , ek, el) = −
1

6
〈[ei, ej ], [ek, el]〉 +

1

12
〈[ej , ek], [ei, el]〉 +

1

12
〈[ek, ei], [ej , el]〉

= −
1

6
〈
[

[ei, ej ], ek

]

, el〉 −
1

6
ek

(

〈[ei, ej ], el〉
)

+
1

12
〈
[

[ej , ek], ei

]

, el〉

+
1

12
ei

(

〈[ej , ek], el〉
)

+
1

12
〈
[

[ek, ei], ej

]

, el〉 +
1

12
ej

(

〈[ek, ei], el〉
)

= −
1

4
〈
[

[ei, ej ], ek

]

, el〉. �
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Lemma 2.1. Let X,Y be a pair of Killing vector fields such that 〈X,Y 〉 is constant and
let Z be a third Killing vector field. Then

X
(

〈Y,Z〉
)

= −Y
(

〈X,Z〉
)

.

is skew-symmetric in X,Y .

Proof. For any vector field W , we obtain

〈∇g
XY,W 〉 = −〈∇g

W Y,X〉 = −W
(

〈X,Y 〉
)

+ 〈Y,∇g
W X〉 = −〈∇g

Y X,W 〉,

i. e., ∇g
XY = −∇g

Y X. Then the result follows,

X
(

〈Y,Z〉
)

= 〈∇g
XY,Z〉 + 〈Y,∇g

XZ〉 = −〈∇g
Y X,Z〉 − 〈X,∇g

Y Z〉 = −Y
(

〈X,Z〉
)

. �

Denote by Rijkl = Rg(ei, ej , ek, el) the coefficients of the Riemannian curvature with
respect to the ∇-parallel frame e1, . . . , en. Since

[

[ei, ej ], ek

]

is a Killing vector field,
the latter Lemma reads as em(Rijkl) = − el(Rijkm) . If m is one of the indices i, j, k, l,
we obtain em(Rijkl) = 0 immediately. Otherwise we use in addition the symmetry
properties of the curvature tensor,

e1(R2345) = − e5(R2341) = − e5(R1432) = e2(R1435) = − e2(R3541)

= e1(R3542) = e1(R4235).

Similarly one derives e1(R4235) = e1(R3425) and the Bianchi identity R2345 + R4235 +
R3425 = 0 yields the result, e1(R2345) = 0. Consequently, the coefficients are constant
and we proved the following

Theorem 2.1 (see [CSch26b], formula (25), [D’AN68], Theorem 3.6). The Riemannian
curvature tensor Rg is ∇- and ∇g-parallel. In particular,

[

X T , Rg
]

= 0

holds for any vector X ∈ T (Mn).

Proof. Rg is a polynomial depending on T . Consequently, ∇gRg = 0 implies ∇Rg = 0,
see Corollary 2.1. Hence, the difference

0 = (∇X − ∇g
X)Rg =

[

X T , Rg
]

vanishes, too. �

Corollary 2.2. Let (Mn, g,∇, T ) be a simply connected, complete and irreducible Rie-
mannian manifold equipped with a flat metric connection and totally skew-symmetric
torsion T 6= 0. Then Mn is a compact, irreducible symmetric space. Its Ricci tensor is
given by

Ricg(X,Y ) =
1

4

n
∑

i=1

〈T (X, ei), T (Y, ei)〉 =
Scalg

n
〈X,Y 〉 , Scalg =

3

2
‖T‖2.

Since σT is ∇1/3-parallel, there are two cases. If σT ≡ 0, then the scalar products
〈[ei, ej ], ek〉 are constant, i.e., the vector fields e1, , . . . , en are a basis of a n-dimensional
Lie algebra. The corresponding simply connected Lie group is a simple, compact Lie
group and isometric to Mn. The torsion form of the flat connection is defined by
T (ek, el) = − [ek, el] (see [KN69], chapter X).

The case σT 6≡ 0 is more complicated. Since σT is a 4-form, the dimension of the mani-
fold is at least four. Cartan/Schouten (1926) proved that only the 7-dimensional round
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sphere is possible. A different argument has been used by D’Atri/Nickerson (1968) and
Wolf (1972), namely the classification of irreducible, compact symmetric spaces with
vanishing Euler characteristic. This list is very short. Except the compact, simple Lie
groups most of them do not admit Killing vector field of constant length.

We provide now a new proof that does not use the classification of symmetric spaces.
Consider, at any point m ∈ Mn, the Lie algebra

ĝT (m) := Lie
{

X T : X ∈ Tm(Mn)
}

⊂ so(Tm(Mn)),

that was introduced in [AF04] for the systematic investigation of algebraic holonomy
algebras. Since T is ∇1/3-parallel, the algebras ĝT (m) are ∇1/3-parallel, too.

Proposition 2.4. Let (Mn, g,∇, T ) be a simply connected, complete and irreducible
Riemannian manifold equipped with a flat metric connection and totally skew-symmetric
torsion T 6= 0. Then the representation (ĝT (m), Tm(Mn)) is irreducible.

Proof. Suppose that the tangent space splits at some point. Then any tangent space
splits and we obtain a ∇1/3-parallel decomposition T (Mn) = V1 ⊕ V2 of the tangent

bundle into two subbundles. Moreover, the torsion form T = T1 + T2 splits into ∇1/3-
parallel forms T1 ∈ Λ3(V1) and T2 ∈ Λ3(V2), see [AF04]. The subbundles V1, V2 are
involutive and their leaves are totally geodesic submanifolds of (Mn, g). This contradicts
the assumption that Mn is an irreducible Riemannian manifold. �

If the Lie algebra ĝT ⊂ so(n) of a 3-form acts irreducibly on the euclidian space, then
there are two possibilities. Either the 3-form of the euclidian space satisfies the Jacobi
identity or the Lie algebra coincides with the full algebra, ĝT = so(n) (see [AF04], [Na07],
[OR08]). The first case again yields the result that the manifold Mn is a simple Lie group
(we recover the case of σT = 0). Otherwise the Lie algebra ĝT coincides with so(n) and
Theorem 2.1 implies that Mn is a space of positive constant curvature, Rg = c · Id. The
formula for the sectional curvature

K = K(X,Y ) =
‖T (X,Y )‖2

4[‖X‖2‖Y ‖2 − 〈X,Y 〉2]

means that the 3-form T defines a metric vector cross product. Consequently, the
dimension of the sphere is seven.

Theorem 2.2 (see [CSch26b]). Let (Mn, g,∇, T ) be a simply connected, complete and
irreducible Riemannian manifold equipped with a flat metric connection and totally skew-
symmetric torsion T 6= 0. If σT = 0, then Mn is isometric to a compact simple Lie group.
Otherwise (σT 6= 0) Mn is isometric to S7.

3. The case of vectorial torsion

By definition, such a connection ∇ is given by

∇XY = ∇g
XY + 〈X,Y 〉V − 〈V, Y 〉X

for some vector field V . The general relation between the curvature transformations for
∇ and ∇g [Agr06, App. B, proof of Thm 2.6(1)] reduces to

Rg(X,Y )Z = 〈X,Z〉∇Y V −〈Y,Z〉∇XV +Y 〈∇XV +‖V ‖2X,Z〉−X〈∇Y V +‖V ‖2Y,Z〉.

Hence, the curvature depends not only on V , but also on ∇V . This remains true when
considering the Ricci tensor, which does not simplify much. However, the following claim
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may be read off immediately: If ∇V = 0, then Mn is a non-compact space of constant
negative sectional curvature −‖V ‖2 and the divergence of the vector field V is constant,
δg(V ) = (n − 1)‖V ‖2 = const > 0. Moreover, the integral curves of the vector field V
are geodesics in Mn, ∇g

V V = 0. In [TV83], this case is discussed in detail; in particular,
a flat metric connection with vectorial torsion is explicitely constructed.

For the general case (∇V 6= 0), the first Bianchi identity [Agr06, Thm 2.6] for a flat
connection

0 =
X,Y,Z

S R(X,Y )Z =
X,Y,Z

S dV (X,Y )Z.

yields and interesting consequence: For dimM ≥ 3, X,Y,Z can be chosen linearly
independent, hence dV = 0 and V is locally a gradient field. Observe that a routine
calculation shows that dV (X,Y ) = 0 for all X and Y is equivalent to 〈∇g

XV, Y 〉 =
〈∇g

Y V,X〉, and one checks that the same property holds for ∇g replaced by ∇. The
triple (Mn, g, V ) defines a Weyl structure, i.e., a conformal class of Riemannian metrics
and a torsion free connection ∇w preserving the conformal class. In general , the Weyl
connection and its curvature tensor are given by the formulas

∇w
XY = ∇g

XY + g〈X , V 〉Y + 〈Y , V 〉X − 〈X , Y 〉V ,

R∇(X,Y )Z = Rw(X,Y )Z − dV (X,Y )Z .

The connection ∇ with vectorial torsion is flat if and only if dV = 0 and the Weyl
connection is flat, Rw = 0.

Proposition 3.1. There is a correspondence between triples (Mn, g,∇), n ≥ 3, of Rie-
mannian manifolds and flat metric connections ∇ with vectorial torsion and closed, flat
Weyl structures.

In particular, if a Riemannian manifold (Mn, g) , n ≥ 3, admits a flat metric connection
with vectorial torsion, then it is locally conformal flat (the Weyl tensor vanishes). More-
over, we can apply Theorem 2.1. and Proposition 2.2. of the paper [AF06]. If Mn is
compact, then its universal covering splits and is conformally equivalent to Sn−1 × R

1.

Let us discuss the exceptional dimension two. In this case, the curvature R∇ is com-
pletely defined by one function, namely 〈R∇(e1, e2)e1, e2〉. Using the formula for the
Riemannian curvature tensor we compute this function and then we obtain immediately

Proposition 3.2. Let (M2, g) be a 2-dimensional Riemannian manifold with Gaussian
curvature G. A metric connection with vectorial torsion is flat if and only if

G = divg(V )

holds. In particular, if M2 is compact, then M2 diffeomorphic to the torus or the Klein
bottle.

4. A family of flat connections on S7

4.1. Construction. In dimension 7, the complex Spin(7)-representation ∆C
7 is the com-

plexification of a real 8-dimensional representation κ : Spin(7) → End(∆7), since the
real Clifford algebra C(7) is isomorphic to M(8) ⊕ M(8). Thus, we may identify R

8

with the vector space ∆7 and embed therein the sphere S7 as the set of all spinors of
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length one. Fix your favorite explicit realization of the spin representation by skew ma-
trices, κi := κ(ei) ∈ so(8) ⊂ End(R8), i = 1, . . . , 7. We shall use it to define an explicit
parallelization of S7 by Killing vector fields. Define vector fields V1, . . . , V7 on S7 by

Vi(x) = κi · x for x ∈ S7 ⊂ ∆7.

From the antisymmetry of κ1, . . . , κ7, we easily deduce the following properties for these
vector fields:

(1) They are indeed tangential to S7, 〈Vi(x), x〉 = 0.
(2) They are of constant length one,

〈Vi(x), Vi(x)〉 = 〈κix, κix〉 = −〈κ2
i x, x〉 = −〈(−1) · x, x〉 = 1.

(3) They are pairwise orthogonal (i 6= j).

The commutator of vector fields is inherited from the ambient space, hence [Vi(x), Vj(x)] =
[κi, κj ](x) = 2κiκjx for i 6= j. In particular, one checks immediately that [Vi(x), Vj(x)] is
again tangential to S7, as it should be. Furthermore, the vector fields Vi(x) are Killing.
We now define a connection ∇ on TS7 by ∇Vi(x) = 0; observe that this implies that all
tensor fields with constant coefficients are parallel as well. This connection is trivially
flat and metric, and its torsion is given by (i 6= j)

T (Vi, Vj , Vk)(x) = −〈[Vi, Vj ], Vk〉 = −2〈κiκjx, κkx〉 = 2〈κiκjκkx, x〉.

If k is equal to i or j, this quantity vanishes, otherwise the laws of Clifford multiplication
imply that it is antisymmetric in all three indices. Observe that this final expression is
also valid for i = j, though the intermediate calculation is not. Thus, the torsion lies in
Λ3(S7) as wished, and can be written as

(∗) T (x) = 2
∑

i<j<k

〈κiκjκkx, x〉(Vi ∧ Vj ∧ Vk)(x) .

Since in general ∇XY = ∇g
XY + T (X,Y,−)/2, the definition of ∇ can equivalently be

described for the Levi-Civita connection ∇g by

∇g
Vi

Vj =

{

κiκjx for i 6= j
0 for i = j

.

T is not ∇-parallel, as it does not have constant coefficients. Of course, the choice
of the vector fields V1(x), . . . , V7(x) is arbitrary: they can be replaced by any other
orthonormal frame Wi(x) := A · Vi(x) for a transformation A ∈ SO(7). However, any
A ∈ Stab T ∼= G2 ⊂ SO(7) will yield the same torsion and hence connection, thus we
obtain a family of connections with 7 = dim SO(7) − dimG2 parameters.

4.2. ∇ as a G2 connection. The connection ∇ is best understood from the point of
view of G2 geometry. Recall (see [FrI02, Thm 4.8]) that a 7-dimensional Riemannian
manifold (M7, g) with a fixed G2 structure ω ∈ Λ3(M7) admits a ‘characteristic’ con-
nection ∇c (i. e., a metric G2 connection with antisymmetric torsion) if and only if it is
of Fernandez-Gray type X1 ⊕ X3 ⊕ X4 (see [FG82] and [Agr06, p. 53] for this notation).
Furthermore, if existent, ∇c is unique, the torsion of ∇c is given by

(∗∗) T c = − ∗ dω −
1

6
〈dω, ∗ω〉ω + ∗(θ ∧ ω),

where θ is the 1-form that describes the X4-component defined by δg(ω) = − (θ ω).
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Now, any generic 3-form ω ∈ Λ3(S7) that is parallel with respect to our connection ∇
admits ∇ as its characteristic connection, and is related to the torsion T given in (∗)
by the general formula (∗∗). Thus, there is a large family of G2 structures ω (namely,
all generic 3-forms with constant coefficients) that induce the flat connection ∇ as their
G2 connection. Let us discuss the possible type of the G2 structures ω inducing ∇.
One sees immediately that none of these G2 structures can be nearly parallel (type X1),
since T fails to be parallel. A more elaborate argument shows that they cannot even
be cocalibrated (type X1 ⊕ X3): by [FrI02, Thm 5.4], a cocalibrated G2 structure on
a 7-dimensional manifold is Ric∇-flat if and only if its torsion T is harmonic. Since
H3(S7, R) = 0, the assertion follows. Finally, we show that the underlying G2 structures
can also not be locally conformally parallel (type X4): in [AF06, Example 3.1], we

showed that such a structure always satisfies 12 δθ = 6‖T‖2 − Scal∇. Since ∇ is flat, the
divergence theorem implies

0 = 2

∫

S7

δθ dS7 =

∫

S7

‖T‖2 dS7,

a contradiction to T 6= 0. To summarize: There exists a multitude of G2 structures
ω ∈ Λ3(S7) that admit the flat metric connection ∇ as their characteristic connection;
all these G2 structures are of general type X1 ⊕ X3 ⊕ X4.
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