
CONNECTIONS ON NATURALLY REDUCTIVE SPACES, THEIR DIRACOPERATOR AND HOMOGENEOUS MODELS IN STRING THEORYILKA AGRICOLAAbstrat. Given a redutive homogeneous spae M = G=H endowed with a naturally redutivemetri, we study the one-parameter family of onnetions rt joining the anonial and the Levi-Civita onnetion (t = 0; 1=2). We show that the Dira operator Dt orresponding to t = 1=3 isthe so-alled \ubi" Dira operator reently introdued by B. Kostant, and derive the formula forits square for any t, thus generalizing the lassial Parthasarathy formula on symmetri spaes.Appliations inlude the existene of a new G-invariant �rst order di�erential operator D on spinorsand an eigenvalue estimate for the �rst eigenvalue of D1=3. This geometri situation an be usedfor onstruting Riemannian manifolds whih are Rii at and admit a parallel spinor with respetto some metri onnetion r whose torsion T 6= 0 is a 3-form, the geometri model for the ommonsetor of string theories. We present some results about solutions to the string equations and givea detailed disussion of some 5-dimensional example.Contents1. Introdution 12. A family of onnetions on naturally redutive spaes 33. The Dira operator of the family of onnetions rt 63.1. General remarks and formal self adjointness 63.2. The ubi element H , its square and the Casimir operator 83.3. A Kostant-Parthasarathy type formula for (Dt)2 114. The equations of type II string theory on naturally redutive spaes 174.1. The �eld equations 174.2. Some partiular spinor �elds 184.3. Vanishing theorems 195. Examples 215.1. The Jensen metri on V4;2 215.2. The ontat geometry approah 215.3. The naturally redutive spae approah 23Referenes 251. IntrodutionThis paper proposes a di�erential geometri approah to some reent results from B. Kostant onan algebrai objet alled "ubi Dira operator" ([Kos99℄). The key observation is that one anintrodue a metri onnetion on ertain homogeneous spaes whose torsion (viewed as a (0; 3)-tensor)is 3-form suh that the assoiated Dira operator has Kostant's algebrai objet as its symbol. At thesame time, there has been reently a growing interest in onnetions with totally skew symmetriReeived by the editors 14th February 2002.2000 Mathematis Subjet Classi�ation. Primary 53 C 27; Seondary 53 C 30.Key words and phrases. Kostant's Dira operator, naturally redutive spae, invariant onnetion, vanishing the-orems, string equations.This work was supported by the SFB 288 "Di�erential geometry and quantum physis" of the DeutsheForshungsgemeinshaft. 1



2 ILKA AGRICOLAtorsion for onstruting models in string theory and supergravity. We show that the mentionedlass of homogeneous spaes yields interesting andidates for suh solutions and use Dira operatortehniques to prove some vanishing theorems.In a �rst part of this paper, we onsider a redutive homogeneous spae M = G=H endowed witha Riemannian metri that indues a naturally redutive metri h ; i on m, where we set g = h�m.The one-parameter family of G-invariant onnetions de�ned byrtXY = r0XY + t [X;Y ℄mjoins the anonial (t = 0) and the Levi-Civita (t = 1=2) onnetion. Its torsion T (X;Y; Z) =(2t � 1) � h[X;Y ℄m; Zi is a 3-form. For an orthonormal basis Z1; : : : ; Zn of m, it indues the thirddegree element H := 32 Xi<j<k h[Zi; Zj ℄m; ZkiZi � Zj � Zkinside the Cli�ord algebra C(m) of m. The fat that the Dira operator assoiated with the onnetionrt may then be written as Dt = Xi Zi � Zi( ) + t �H �  suggested the name "ubi Dira operator" to B. Kostant. We will show that the main ahievementin [Kos99℄ was to realize that, for the parameter value t = 1=3, the square of Dt may be expressed in avery simple way in terms of Casimir operators and salars only ([Kos99, Thm 2.13℄, [Ste99, 10.18℄). Itis a remarkable generalization of the well-known Parthasarathy formula for D2 on symmetri spaes(Theorem 3.1 in this artile, see [Par72℄). In fat, S. Slebarski has already notied independentlythat the parameter value t = 1=3 has distinguished properties (see Theorem 1 and the introdutionin [Sle87a℄). He uses it to prove a "vanishing theorem" for the kernel of the twisted Dira operator,whih an be easily reovered from Kostant's formula (see [Lan00, Thm 4℄). His artiles [Sle87a℄ and[Sle87b℄ ontain several formulas of Weitzenb�ok type for D2, but none of them is of Parthasarathytype. We shall ompute the general expression for (Dt)2 in Theorem 3.2 and show how it an besimpli�ed for this partiular parameter value in Theorem 3.3. We emphasize one di�erene betweenour work and [Kos99℄. While Kostant studies the algebrai ation ofD1=3 as an element of U(g)
C(m)on L2-funtions G ! �m (the spinor representation), we restrit our attention to spinors, i. e., L2-setions of the spinor bundle S = G �eAd �m. In partiular, this implies that one of the terms inthe formula for (Dt)2 (the "diagonally" embedded Casimir operator of h) vanishes independentlyof t. An immediate onsequene of Theorem 3.2 is the existene of a new G-invariant �rst orderdi�erential operator D := Xi;j;k h[Zi; Zj ℄m; ZkiZi � Zj � Zk( )on spinors (Remark 3.5) that has no analogue on symmetri spaes. Furthermore, under someadditional hypotheses (the lifted Casimir operator 
g has to be non negative) Theorem 3.3 yieldsan eigenvalue estimate, whih is disussed in Corollary 3.1.In the seond part of this paper, we use the preeding approah for studying the string equationson naturally redutive spaes. Stated in a di�erential geometri way, one wants to onstrut aRiemannian manifold (M; g) with a metri onnetion r suh that its torsion T 6= 0 is a 3-form andsuh that there exists at least one spinor �eld  satisfying the oupled systemRir = 0; Æ(T ) = 0; r	 = 0; T �	 = 0 :The number of preserved supersymmetries depends essentially on the number of r-parallel spinors.For a general bakground on these equations, we refer to the artile by A. Strominger [Str86℄,where they appeared for the �rst time. Thus, if one looks for homogeneous solutions, the familyof onnetions rt yields anonial andidates for the desired onnetion r, and the results on theassoiated Dira operator an be used to disuss the solution spae to these equations. We disussthe signi�ane of onstant spinors (whih do not always exist) in Theorem 4.2 and show that thelast two string equations annot have any solutions at all if the lifted Casimir operator 
g is non



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 3negative (Theorem 4.3). In order to disuss the �rst equation, we present a representation theoretialexpression for the Rii tensor of the onnetion rt, whih generalizes previous results by Wang andZiller (Theorem 4.4). The artile ends with a thourough disussion of an example, namely, thenaturally redutive metris on the 5-dimensional Stiefel manifold.Although we rarely refer to it, this paper is in spirit very lose (and in some sense omplementary)to a reent artile by Friedrih and Ivanov ([FI01℄). There, the authors study metri onnetionswith totally skew symmetri torsion preserving a given geometry.Thanks. I am grateful to Thomas Friedrih (Humboldt-Universit�at zu Berlin) for many valuabledisussions on the topi of this paper. My thanks are also due to the Erwin-Shr�odinger Institute inVienna and the Max-Plank Institute for Mathematis in the Natural Sienes in Leipzig for theirhospitality. 2. A family of onnetions on naturally redutive spaesConsider a Riemannian homogeneous spae M = G=H . We suppose that M is redutive, i. e., theLie algebra g of G may be deomposed into a vetor spae diret sum of the Lie algebra h of H andan Ad (H)-invariant subspae m suh that g = h�m and Ad (H)m � m. We identify m with T0M bythe map X 7! X�0 , where X� is the Killing vetor �eld on M generated by the one parameter groupexp(tX) ating on M . We pull bak the Riemannian metri h ; i0 on T0M to an inner produt h ; ion m. Let Ad : H ! SO(m) be the isotropy representation of M . By a theorem of Wang ([KN96,Ch. X, Thm 2.1℄), there is a one-to-one orrespondene between the set of G-invariant metri aÆneonnetions and the set of linear mappings �m : m! so(m) suh that�m(hXh�1) = Ad (h)�m(X)Ad (h)�1 for X 2 m and h 2 H :Its torsion and urvature are then given for X;Y 2 m by ([KN96, Ch. X, Prop. 2.3℄)T (X;Y ) = �m(X)Y � �m(Y )X � [X;Y ℄m;R(X;Y ) = [�m(X);�m(Y )℄� �m([X;Y ℄m)�Ad ([X;Y ℄h) ;where the Lie braket is split into its m and h part, [X;Y ℄ = [X;Y ℄m + [X;Y ℄h.Lemma 2.1. The (0; 3)-tensor orresponding to the torsion (X;Y; Z 2 m)T (X;Y; Z) := hT (X;Y ); Ziis totally skew symmetri if and only if the map �m satis�es for all X;Y; Z 2 m the invarianeondition h�m(X)Y; Zi+ h�m(Z)Y;Xi = h[X;Y ℄m; Zi+ h[Z; Y ℄m; Xi :Proof. The antisymmetry of T (X;Y; Z) in X and Z is equivalent toh�m(X)Y; Zi+ h�m(Z)Y;Xi � h�m(Y )X;Zi � h�m(Y )Z;Xi � h[X;Y ℄m; Zi � h[Z; Y ℄m; Xi = 0 :The third and fourth term anel out eah other by the assumption that �m(Y ) lies in so(m), sinethis means that the endomorphism �m(Y ) is skew symmetri with respet to the inner produt ofm. �For a general map �m, this is all one an say. We are interested in the one parameter family ofonnetions de�ned by �tm(X)Y := t � [X;Y ℄m :It is well known that t = 0 orresponds to the anonial onnetion r0, whih, by the Ambrose-Singer theorem, is the unique metri onnetion on M suh that its torsion and urvature areparallel, r0T 0 = r0R0 = 0. By Lemma 2.1, the torsion of r0 is a 3-form if and only if M isnaturally redutive.



4 ILKA AGRICOLADe�nition 2.1. A homogeneous Riemannian metri on M is said to be naturally redutive (withrespet to G) if the map [X;�℄m : m! m is skew symmetri,h[X;Y ℄m; Zi+ hY; [X;Z℄mi = 0 for all X;Y; Z 2 m :Note that if G1 � G2 are two transitive groups of isometries of M , then the properties of beingnaturally redutive with respet to G1 and G2 are independent of eah other.Remark 2.1. Under the assumption that M is naturally redutive, the right-hand side in theriterion of Lemma 2.1 vanishes, and the remaining ondition may be restated { using the skewsymmetry of �m(X) and �m(Z) { as hY;�m(X)Z +�m(Z)Xi = 0. Sine this equation has to holdfor all X;Y and Z in m, we obtain that the torsion is a 3-form if and only if �m(X)X = 0 for allX 2 m.If M is naturally redutive, then the torsion of the family rt of onnetions is given by the simpleexpression T t(X;Y ) = (2t� 1) [X;Y ℄m :One sees that the Levi-Civita onnetion is attained for t = 1=2. The general formula for theonnetion rt is(1) rtXY = r0XY + t [X;Y ℄m :Notie that for a symmetri spae, [m;m℄ � h, so all onnetions of this one-parameter family oinideand are equal to the Levi-Civita onnetion.Assumption 2.1. We will assume that M = G=H is naturally redutive with respet to G.We begin by omputing a few harateristi entities for this family of onnetions, whih will beneeded in the subsequent setions. We start by realling a theorem of B. Kostant.Theorem 2.1 ([Kos56℄). Suppose G ats e�etively on M = G=H. If the inner produt h ; i isnaturally redutive with respet to G, then ~g := m + [m;m℄ is an ideal in g whose orrespondingsubgroup ~G � G is transitive on M , and there exists a unique Ad ( ~G) invariant, symmetri, nondegenerate, bilinear form Q on ~g (not neessarily positive de�nite) suh thatQ(h \ ~g;m) = 0 and Qjm = h ; i ;where h \ ~g will be the isotropy algebra in ~g. Conversely, if G is onneted, then, for any Ad (G)invariant, symmetri, non degenerate, bilinear form Q on g, whih is non degenerate on h andpositive de�nite on m := h?, the metri on M de�ned by Qjm is naturally redutive. In this ase,g = ~g. �Assumption 2.2. We shall assume from now on that G ats transitively on M (thus, g = ~g) anduse the Ad (G) invariant extension Q of the inner produt h ; i as well as its restrition Qjh =: Qhto h where needed without further omment.Lemma 2.2. The urvature of the onnetion rt is given byRt(X;Y )Z = t2 [X; [Y; Z℄m℄m + t2 [Y; [Z;X ℄m℄m + t [Z; [X;Y ℄m℄m + [Z; [X;Y ℄h℄ :If Zi; : : : ; Zn is an orthonormal basis of m, the Rii tensor and the salar urvature areRit(X;Y ) = Xi (t� t2) h[X;Zi℄m; [Y; Zi℄mi+Qh([X;Zi℄; [Y; Zi℄)Salt = Xi;j (t� t2) h[Zi; Zj ℄m; [Zi; Zj ℄mi+Qh([Zi; Zj ℄; [Zi; Zj ℄) :Proof. The formula for the urvature follows immediately from the general formula given before. Inpartiular, it implies
Rt(X;Z)Z; Y � = (t� t2) h[X;Z℄m; [Y; Z℄mi+ h[Z; [X;Z℄h℄; Y i :



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 5Using the Ad (G) invariant extension Q of the inner produt h ; i and the fat that m is thenperpendiular to h, we may rewrite the latter term ash[Z; [X;Z℄h℄; Y i = Q([Z; [X;Z℄h℄; Y ) = Q([X;Z℄h; [Y; Z℄) = Qh([X;Z℄; [Y; Z℄) :Thus, we obtain 
Rt(X;Z)Z; Y � = (t� t2)Qm([X;Z℄; [Y; Z℄) +Qh([X;Z℄; [Y; Z℄)and the formula for the Rii tensor by Rit(X;Y ) = P hRt(X;Zi)Zi; Y i. The expression for thesalar urvature is obtained by ontration relative to X and Y . �At a later stage, we will give a further expression for the Rii tensor due to Wang and Ziller([WZ85℄). For the time being, we observe that the onnetion with t = 1 has also speial properties,for example, it has the same Rii tensor than the anonial onnetion. This is why we propose toall it the antianonial onnetion. We ompute the ovariant derivative of the torsion tensor.Lemma 2.3. As a map m�m! m, the ovariant derivative of T is(rtZT t)(X;Y ) = t(2t� 1)�[X; [Y; Z℄m℄m + [Y; [Z;X ℄m℄m + [Z; [X;Y ℄m℄m� :Proof. By de�nition, the ovariant derivative is given by(rtZT t)(X;Y ) = rtZ(T t(X;Y ))� T t(rtZX;Y )� T t(X;rtZY ) :We insert the expression for rt from equation (1)(rtZT t)(X;Y ) = r0Z(T t(X;Y )) + t[Z; T t(X;Y )℄m � T t(r0ZX + t[Z;X ℄m; Y )�T t(X;r0ZY + t[Z; Y ℄m)= r0Z(T t(X;Y ))� T t(r0ZX;Y )� T t(X;r0ZY )+t(2t� 1)�[X; [Y; Z℄m℄m + [Y; [Z;X ℄m℄m + [Z; [X;Y ℄m℄m� :But the third line may be rewritten as�(2t�1)(r0ZT 0)(X;Y ), whih vanishes by the Ambrose-Singertheorem. �For the �rst time we enounter here an expression that will play an important role at di�erent plaes.Let us de�ne Jam(X;Y; Z) := [X; [Y; Z℄m℄m + [Y; [Z;X ℄m℄m + [Z; [X;Y ℄m℄m ;Jah(X;Y; Z) := [X; [Y; Z℄h℄ + [Y; [Z;X ℄h℄ + [Z; [X;Y ℄h℄ :Notie that the summands of Jah(X;Y; Z) automatially lie in m by the assumption that M is re-dutive. The Jaobi identity for g implies hJam(X;Y; Z) + Jah(X;Y; Z);mi = 0. As the onnetionrt is metri, the ovariant derivatives of T viewed as a (0; 3)- resp. (1; 2)-tensor are related by(2) (rtZT t)(X;Y; V ) = 
(rtZT t)(X;Y ); V � = t(2t� 1) hJam(X;Y; Z); V i :For ompleteness, we reall the formula for the exterior derivative of a di�erential form in terms ofa onnetion with torsion.Lemma 2.4. If ! is an r-form, then(d!)(X0; : : : ; Xr) = rXi=0(�1)i(rXi!)(X0; : : : ; X̂i; : : : ; Xr)� X0�i<j�r(�1)i+j!(T (Xi; Xj); X0; : : : ; X̂i; : : : ; X̂j ; : : : ; Xr) :



6 ILKA AGRICOLAProof. We start with the general formula for the derivative of an r-form ! (see, for example, [KN91,Prop. 3.11℄),(d!)(X0; : : : ; Xr) = rXi=0(�1)iXi(!(X0; : : : ; X̂i; : : : ; Xr))+ X0�i<j�r(�1)i+j!([Xi; Xj ℄; X0; : : : ; X̂i; : : : ; X̂j ; : : : ; Xr) :In the �rst line, we express every summand in terms of the ovariant derivative of !, i. e.,Xi(!(X0; : : : ; X̂i; : : : ; ; Xr)) = (rXi!)(X1; : : : ; Xr) + !(rXiX0; : : : ; X̂i; : : : ; Xr) + : : :++ !(X0; X1; : : : ;rXiXr) :A simple rearrangement of terms together with the de�nition T (X;Y ) = rXY �rYX � [X;Y ℄ ofthe torsion yields the result. �Lemma 2.5. The odi�erential of the 3-form T t vanishes, ÆT t = 0, while its outer derivative isgiven by dT t(X;Y; Z; V ) = 2(2t� 1) � hJam(X;Y; Z); V i.Proof. For the �rst laim, one dedues from equation (2) that X rtXT t = 0. Then it follows forthe orthonormal basis Zi; : : : ; Zn of m thatÆtT t = nXi=1 Zi rtZiT t = 0 :In partiular, the divergene of T with respet to rt oinides with its Riemannian divergene (amore general fat, see [FI01℄), ÆtT t = Æ1=2T t = 0. Hene we shall drop the supersript, as we didin the statement of the lemma. The seond laim follows from Lemma 2.4 by a simple algebraiomputation. �Remark 2.2. We �nish this setion with a remark about the onnetion between the torsion andthe Lie algebra struture. If some torsion 3-form T is given as a fundamental datum and is to be thetorsion of the anonial onnetion of some spae with naturally redutive metri, then the m-partof the ommutators [m;m℄ may be reonstruted by[X;Y ℄m = �Xi T (X;Y; Zi)Zi :This formula is fundamental for the point of view taken in the artile [Kos99℄ (formula 1.23). Thefull Lie algebra struture of g an now be viewed as onsisting of the torsion 3-form, the isotropyrepresentation and the subalgebra struture of h, with some ompatibility ondition resulting fromthe Jaobi identity. This point of view will be useful in the last setion, where we will study examples.3. The Dira operator of the family of onnetions rt3.1. General remarks and formal self adjointness. Assume that there exists a homogeneousspin struture on M , i. e., a lift eAd : H ! Spin(m) of the isotropy representation suh that thediagram Spin(m)�����eAd �H Ad- SO(m)�6ommutes, where � denotes the spin overing. Moreover, we denote by ead the orresponding liftinto spin(m) of the di�erential ad : h ! so(m) of Ad . Let � : Spin(m) ! GL(�m) be the spin



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 7representation, and identify setions of the spinor bundle S = G�eAd �m with funtions  : G! �msatisfying  (gh) = �( eAd (h�1)) (g) :For any G invariant onnetion de�ned by a map �m : m ! so(m), we onsider its lift ~�m : m !spin(m), whih is given by ~�m := d��1 Æ �m. Then the the ovariant derivative on spinors may beexpressed as ([Ike75, Lemma 2℄)(3) rZ = Z( ) + ~�m(Z) and thus the Dira operator assoiated with this onnetion has the form(4) D = Xi Zi � Zi( ) + Zi � ~�m(Zi) ;where Z1; : : : ; Zn denotes any orthonormal basis of m. In the same artile, Ikeda states a riterion forthe formal self adjointness of this operator. We restate the result here, sine there is some onfusionabout the assumptions on the salar produt in the original version.Proposition 3.1. Let M = G=H be a homogeneous redutive manifold with a homogeneous spinstruture, h ; i the salar produt on m indued by the Riemannian metri on M , and r the Ginvariant metri onnetion de�ned by some map �m : m ! so(m). Then the Dira operator Dassoiated with the onnetion r is formally self adjoint if and only if for any vetor X 2 m and anyorthonormal basis Z1; : : : ; Zn of m, one has(�) Xi h�m(Zi)X;Zii = Xi h[Zi; X ℄m; Zii :In partiular, this ondition is always satis�ed if the torsion T (X;Y; Z) is totally skew symmetri.If the metri h ; i is in addition naturally redutive, ondition (�) is equivalent to P�m(Zi)Zi = 0.Proof. By a result of Friedrih and Sulanke ([FS79℄), the Dira operator Dr assoiated with anymetri onnetion r is formally self adjoint if and only if the r-divergene of any vetor X oinideswith its Riemannian divergene,divr(X) := Xi hZi;rZiXi = Xi 
Zi;rLCZi X� =: div(X) ;where rLC denotes the Levi-Civita onnetion. But for any vetor X , the ovariant derivatives arerelated by rZiX = rLCZi X + 12T (Zi; X) ;thus equality of divergenes holds if and only ifXi hT (Zi; X); Zii = 0 :Inserting the general formula for the torsion and using the fat that h�m(X)Zi; Zii = 0, one heksthat this is equivalent to ondition (�). Sine hT (Zi; X); Zii = T (Zi; X; Zi), ondition (�) is alwaysful�lled if the (0; 3)-tensor T is totally skew symmetri. Alternatively, one easily dedues equation (�)from the antisymmetry ondition in Lemma 2.1 by a ontration. Finally, if the metri is naturallyredutive, the right-hand side of (�) vanishes, and by the antisymmetry of �m(Zi) one obtainshX;P�m(Zi)Zii = 0. This �nishes the proof. �Returning to the family rt, our aim is to rewrite the onnetion term of the Dira operator inequation (4) as an element of the Cli�ord algebra C(m). Basially this amounts to the identi�ationof spin(m) with the elements of seond degree in C(m). We implement the Cli�ord relations viaZi � Zj + Zj � Zi = �Æij , in ontrast to [Kos99℄ (see [Fri00℄ for notational details). The followinglemma due to Parthasarathy expresses the lift of the isotropy representation as an element of theCli�ord algebra.



8 ILKA AGRICOLALemma 3.1 ([Par72, 2.1℄). For any element Y in h, one hasead (Y ) = 14 nXi;j=1 h[Y; Zi℄; ZjiZi � Zj : �Similarly, any skew symmetri map �m(X) : m! m may be expanded in the standard basis Eij ofso(m) as �m(X) = Xi<j h�m(X)Zi; ZjiEij :Sine Eij lifts to Zi �Zj=2 in the Cli�ord algebra, we obtain in omplete analogy to the ParthasarathyLemma:Lemma 3.2. For any map �m : m! so(m), one has~�m(X) = 12Xi<j h�m(X)Zi; ZjiZi � Zj = 14Xi;j h�m(X)Zi; ZjiZi � Zj : �In partiular, the image of �1m(Zi) = [Zi;�℄m in C(m) may be written~�1m(Zi) = 14Xj;k h[Zi; Zj ℄m; ZkiZj � Zk :Thus, by de�ning the elementH := nXi=1 Zi � ~�1m(Zi) = 14Xi;j;k h[Zi; Zj ℄m; ZkiZi � Zj � Zk = 32 Xi<j<k h[Zi; Zj ℄m; ZkiZi � Zj � Zk ;we an rewrite the Dira operator orresponding to the onnetion rt from equation (4) as(5) Dt = Xi Zi � Zi( ) + t �H �  :Remark 3.1. We identify di�erential forms with elements of the Cli�ord algebra byXi1<:::<ir !1:::r Zi1 ^ : : : ^ Zir 7�! Xi1<:::<ir !1:::r Zi1 � : : : � Zir :Thus, the torsion form T t(X;Y; Z) = (2t� 1) h[X;Y ℄m; Zi indues the elementT t = (2t� 1) Xi<j<k h[Zi; Zj ℄m; ZkiZi � Zj � Zkof the Cli�ord algebra, whih di�ers from H only by a numerial fator,T t = 2(2t� 1)3 H :The simpliity of equation (5) is the main reason why we prefer to work with the element H insteadof T t.3.2. The ubi element H, its square and the Casimir operator. It is the ubi element Hinside the Cli�ord algebra C(m) whih suggested the name "ubi Dira operator" to B. Kostant. Wesee that the fat that H is of degree 3 inside C(m) does not depend on the partiular hoie for �m.The square of H will play an eminent role in our onsiderations, both for a Kostant-Parthasarathytype formula and for general vanishing theorems. Notie that the square of any element of degree 3inside C(m) has only terms of degree zero and 4.



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 9Proposition 3.2. The terms of degree zero and 4 of H2 are given by(H2)0 = 38Xi;j h[Zi; Zj ℄m; [Zi; Zj ℄mi ;(H2)4 = �92 Xi<j<k<l hZi; Jam(Zj ; Zk; Zl)iZi � Zj � Zk � Zl :The �rst formula is valid for all n � 3, while the seond holds only for n � 5. For n = 3; 4, one has(H2)4 = 0.Proof. The ontributions of degree zero inH2 are exatly the squares of the summands ofH . Beauseof (Zi � Zj � Zk)2 = 1, we have(H2)0 = 94 Xi<j<k h[Zi; Zj ℄m; Zki2 = 924Xi;j;k h[Zi; Zj ℄m; Zki h[Zi; Zj ℄m; Zki :For �xed i; j, the sum over k is the oordinate expansion of the salar produt h[Zi; Zj ℄m; [Zi; Zj ℄mi,thus (H2)0 = 38Xi;j h[Zi; Zj ℄m; [Zi; Zj ℄mi ;as laimed. Contributions of degree 4 our if Zi �Zj �Zk is multiplied by Zi0 �Zj0 �Zk0 with exatlyone ommon index. Sine this requires at least 5 di�erent indies, it follows that there are no termsof fourth degree for n � 4. For the moment, put aside the overall fator 9=4 of H2. We explain theourrene of the term proportional to Z1234 := Z1 �Z2 �Z3 �Z4 in detail, the others are obtained ina similar way. Sine H onsists of ordered tuples proportional to Zijk := Zi � Zj � Zk, i < j < k, theonly way to obtain a term in Z1234 is to multiply Z12k by Z34k, Z13k by Z24k and Z14k by Z23k forany index k � 5. First we notie that the order of multipliation is irrelevant, sineZ12k � Z34k = Z34k � Z12k; Z13k � Z24k = Z24k � Z13k; and Z14k � Z23k = Z23k � Z14k :Every term will thus have multipliity two. In the next step, these produts have to be rearrangedin order to be proportional to Z1234:Z12k � Z34k = �Z1234; Z13k � Z24k = +Z1234; Z14k � Z23k = �Z1234 :The total ontribution oming from the produts Z12k by Z34k is thus(�) := �2Z1234Xk�5 h[Z1; Z2℄m; Zki h[Z3; Z4℄m; Zki :This is equal to the sum over all k, sine the additional terms are zero. However, it shows that thesum is preisely the expansion of the salar produt h[Z1; Z2℄m; [Z3; Z4℄mi:(�) = �2Z1234 nXk=1 h[Z1; Z2℄m; Zki h[Z3; Z4℄m; Zki = �2Z1234 h[Z1; Z2℄m; [Z3; Z4℄mi :After a similar simpli�ation of the other two ontributions, the fourth degree term in H2 propor-tional to Z1234 is �nally equal to(��) := 2 [�h[Z1; Z2℄m; [Z3; Z4℄mi+ h[Z1; Z3℄m; [Z2; Z4℄mi � h[Z1; Z4℄m; [Z2; Z3℄mi℄ � Z1234 :This, in turn, may be rewritten as(��) = �2 hZ1; Jam(Z2; Z3; Z4)i � Z1234 :Putting bak in the fator 9=4, we get the fator �9=2 as stated in the lemma. �For later referene, we ompute the antiommutator of H with an element Zl for arbitrary l.Lemma 3.3. For any l, one has H � Zl + Zl �H = � 32Xi;j hZl; [Zi; Zj ℄miZi � Zj .



10 ILKA AGRICOLAProof. By de�nition,H � Zl + Zl �H = 14Xi;j;k h[Zi; Zj ℄m; Zki �Zi � Zj � Zk � Zl + Zl � Zi � Zj � Zk) :If all four indies i; j; k; l are pairwise di�erent,Zi � Zj � Zk � Zl = �Zl � Zi � Zj � Zk;and the orresponding summand vanishes. Thus, the sum may be split into those parts where l isone of the indies i, j and k, respetively:H � Zl + Zl �H = 14Xj;k h[Zl; Zj ℄m; Zki �Zl � Zj � Zk � Zl + Zl � Zl � Zj � Zk)+ 14Xi;k h[Zi; Zl℄m; Zki �Zi � Zl � Zk � Zl + Zl � Zi � Zl � Zk)+ 14Xi;j h[Zi; Zj ℄m; Zli �Zi � Zj � Zl � Zl + Zl � Zi � Zj � Zl) :We simplify the mixed produts to getH � Zl + Zl �H = �12Xj;k h[Zl; Zj ℄m; ZkiZj � Zk + 12Xi;k h[Zi; Zl℄m; ZkiZi � Zk� 12Xi;j h[Zi; Zj ℄m; ZliZi � Zj :Using the invariane property of the salar produt and renaming the summation indies, this iseasily seen to be the desired expression. �Finally, we ompute the image of the quadrati Casimir operator of h inside the Cli�ord algebra.Sine the Ad (G) invariant extension Q of h ; i is not neessarily positive de�nite when restrited toh, it is more appropriate to work with dual rather than with orthonormal bases. So pik bases Xi; Yiof h wih are dual with respet to Qh, i. e., Qh(Xi; Yj) = Æij . The lift of the Casimir operator of his de�ned as eCh = �Xi ead (Xi) Æ ead (Yi) :By the Parthasarathy Lemma (Lemma 3.1),ead (Xi) = 14Xj;k h[Xi; Zj ℄; ZkiZj � Zkand similarly for ead (Yi). Thus,eCh = � 116Xi Xj;k;l;p h[Xi; Zj ℄; Zki h[Yi; Zl℄; ZpiZj � Zk � Zl � Zp :We may get rid of the sum over i immediately. Sine m is orthogonal to h, we an rewrite eCh aseCh = � 116Xi Xj;k;l;pQ([Xi; Zj ℄; Zk)Q([Yi; Zl℄; Zp)Zj � Zk � Zl � Zp= � 116Xi Xj;k;l;pQ(Xi; [Zj ; Zk℄)Q(Yi; [Zl; Zp℄)Zj � Zk � Zl � Zp :For �xed j; k; l and p, the sum over i is again the expansion of the h part of Q([Zj ; Zk℄; [Zl; Zp℄),yielding(6) eCh = � 116 Xj;k;l;pQh([Zj ; Zk℄; [Zl; Zp℄)Zj � Zk � Zl � Zp :



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 11This expression has the advantage that it does not ontain the dual bases Xi; Yi any more. It turnsout that eCh has no seond degree term, for suh a term would our if the two index pairs (j; k)and (l; p) had exatly one ommon index, for example, j = l. But suh a term would appear twie,namely, as Zj � Zk � Zj � Zp and as Zj � Zp � Zj � Zk, and these anel out eah other.Proposition 3.3. The terms of degree zero and 4 of eCh are given for all n � 3 by( eCh)0 = 18Xi;j Qh([Zi; Zj ℄; [Zi; Zj ℄) ;( eCh)4 = �12 Xi<j<k<l hZi; Jah(Zj ; Zk; Zl)iZi � Zj � Zk � Zl :In partiular, ( eCh)4 vanishes identially for n � 3, but not for n = 4.Proof. As the form of the result suggests, the proof is similar to the omputation of H2 (Proposi-tion 3.2). This is why we shall be brief. For the zero degree term, (j; k) = (l; p), and eah term ofthis kind appears twie, thus( eCh)0 = �18Xi;j Qh([Zi; Zj ℄; [Zi; Zj ℄)Zi � Zj � Zi � Zj :Sine Zi � Zj � Zi � Zj = �1, we obtain the �rst part of the proposition. For the fourth degreeontribution, rewrite the Casimir operator as(7) eCh = �14 Xj<k;l<pQh([Zj ; Zk℄; [Zl; Zp℄)Zj � Zk � Zl � Zp :Then the index pairs (j; k) and (l; p) have to be ompletely disjoint. Agein we look only at the termthat is proportional to Z1234 := Z1 �Z2 �Z3 �Z4. It may be obtained by multiplying Z12 by Z34, Z13by Z24 and Z14 by Z23. Again, these elements ommute, so we only need to onsider eah produtin the order of multipliation just given and ount it twie. Restoring the order of indies in theseproduts, one sees that the term in ( eCh)4 proportional to Z1234 looks like(�) := �24 [Qh([Z1; Z2℄; [Z3; Z4℄)�Qh([Z1; Z3℄; [Z2; Z4℄) +Qh([Z1; Z4℄; [Z2; Z3℄)℄ � Z1234 :By the properties of Q, the �rst salar produt may be formulated di�erently:Qh([Z1; Z2℄; [Z3; Z4℄) = Q([Z1; Z2℄; [Z3; Z4℄h) = Q(Z1; [Z2; [Z3; Z4℄h℄) :Rewriting the other two produts in a similar way, we see that(�) = �12 Q(Z1; Jah(Z2; Z3; Z4)) � Z1234 : �3.3. A Kostant-Parthasarathy type formula for (Dt)2. If M = G=H is a symmetri spae,it is well known that besides the general Shr�odinger-Lihnerowiz formula for D2, whih is validon any Riemannian manifold, there exists a formula expressing D2 in terms of Casimir operatorsdue to Parthasarathy (see also [Kos99, Remark 1.63℄). The Dira operator D is de�ned relative tothe Levi-Civita onnetion, whih oinides with our one-parameter family rt, and h ; i denotesan Ad (G) invariant salar produt on g whose restrition to m is positive de�nite. Let Sal be thesalar urvature of the symmetri spae M and 
G the Casimir operator of G, viewed as a seondorder di�erential operator.Theorem 3.1 ([Par72, Prop.3.1℄, [Fri00, Ch. 3℄). On a symmetri spae M = G=H, one hasD2 = 
G + 18Sal ;and the salar urvature may be rewritten as Sal = 8 � (h%g; %gi � h%h; %hi).



12 ILKA AGRICOLAThis formula is the starting point for vanishing theorems, the realization of disrete series representa-tions in the kernel of D, and it allows the omputation of the full spetrum of D onM . If we now gobak to the situation studied in this artile, i. e., a redutive homogeneous spae G=H endowed witha naturally redutive metri h ; i on m, then, a priori, the steps in the proof of Theorem 3.1 annotbe performed any longer. To prove a Kostant-Parthasarathy type formula in this situation, we reallthe general expression for the Dira operator assoiated with the onnetion rt from equation (5)and split it into the terms oming from the anonial onnetion and the 3-form H , respetively:(8) Dt = Xi Zi � Zi( ) + Zi � ~�tm(Zi) =: D0 +DtH :First, notie that the equivariane property of spinors implies that the ation on spinors of vetor�elds oming from m is by \true" di�erential operators, while the ation of vetor �elds in h is infat purely algebrai.Lemma 3.4. Let  be a spinor, i. e., a setion in S = G�eAd �m and X an element of h, identi�edwith the left invariant vetor �eld it indues. ThenX( ) = �ead (X) �  ;where ead (X) �  denotes the Cli�ord produt of the spinor  with the element ead (X) � spin(m) �C(m).Proof. We identify  with a map  : G ! �m suh that  (gh) = �( eAd (h�1)) (g) for all g 2 Gand h 2 H . Then one hasX (g) = dds (gesX)��s=0 = dds�( eAd (e�sX )) (g)��s=0 = ��(ead (X)) (g) :Thus, X( ) = ��(ead (X)) = �ead (X) �  , as laimed. �Remark 3.2. In [Kos99, Setion 2℄ and [Ste99, Chapter 10.5℄, the map assigning to X 2 h the sumX(�) + ead (X) � �is alled the \diagonal" map from h to U(g) 
 C(m). The assumption that the ation is on spinorsthus implies that this diagonal map is equal to zero. In partiular, the diagonal Casimir operator ofh vanishes in the formula for (Dt)2.Proposition 3.4. The square of D0, the Dira operator orresponding to the anonial onnetion,is given by (D0)2 = �Xi Z2i ( ) + 2 eCh + 12 Xi;j;k h[Zi; Zj ℄m; ZkiZi � Zj � Zk( ) :Before proeeding to the proof, let us make a short remark on how this formula is to be understood.In the �rst term, one has to take the derivative of  along all vetor �elds Zi twie, thus yieldinga seond order di�erential operator. By eCh, we mean the image of the Casimir operator of h insideC(m) as desribed in Setion 3.2. Finally, Zi �Zj � denotes the Cli�ord produt of Zi and Zj , whereasZk ats again as a derivative. Thus the last term is a �rst order di�erential operator. Notie thatCli�ord multipliation by any onstant element in C(m) ommutes with derivation along m.Proof. We ompute (D0)2 as follows:(D0)2 = Xi Zi � Zi(Xj Zj � Zj( )) = Xi;j Zi � Zj � (ZiZj( )) :We divide the sum into the diagonal (i = j) and o�-diagonal (i 6= j) terms and see that this separatesthe seond and the �rst order di�erential operator ontribution,(D0)2 = �Xi Z2i ( ) + 12Xi;j Zi � Zj � [Zi; Zj ℄( ) :



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 13We onentrate our attention on the seond term. Split the ommutator into its m and h part, thenwrite the m part again in the orthonormal basis Z1; : : : ; Zn to obtain12Xi;j Zi � Zj � [Zi; Zj ℄( ) = 12Xi;j Zi � Zj � ([Zi; Zj ℄m( ) + [Zi; Zj ℄h( ))= 12 Xi;j;k hZk; [Zi; Zj ℄miZi � Zj � Zk( ) + 12Xi;j Zi � Zj � [Zi; Zj ℄h( ) :This takes are of the last term in the formula of Proposition 3.4. Thus it remains to show that12Xi;j Zi � Zj � [Zi; Zj ℄h( ) = 2 eCh :The ation of the ommutators [Zi; Zj ℄h on the spinor  is �rst transformed into Cli�ord multi-pliation by the adjoint representation as explained in Lemma 3.4, then rewritten in terms of anorthonormal basis aording to the Parthasarathy Lemma (Lemma 3.1),12Xi;j Zi � Zj � [Zi; Zj ℄h( ) = �12Xi;j Zi � Zj � ead ([Zi; Zj ℄h) �  = �18Xi;j Zi � ZjXp;q h[[Zi; Zj ℄h; Zp℄; ZqiZp � Zq �  :But sine h[[Zi; Zj ℄h; Zp℄; Zqi = Qh([Zi; Zj ℄; [Zp; Zq℄), this is 2 eCh by equation (6). �With the preparations of Setion 3.2, the other two terms in the expression for (Dt)2 are relativelyeasy to ompute. We denote the Casimir operator of the full Lie algebra g by 
g,
g = �Xi Z2i ( ) + eCh �  :We deided to use a symbol di�erent from C in order to emphasize that 
g is a real seond orderdi�erential operator, as opposed to eCh, whih is a onstant element of the Cli�ord algebra. Inpartiular, the result of Lemma 3.4 may be restated as(9) (D0)2 = 
g + eCh + 12 Xi;j;k h[Zi; Zj ℄m; ZkiZi � Zj � Zk( ) :First we state the formula in its most general form.Theorem 3.2 (General Kostant-Parthasarathy formula). For n � 5, the square of Dt is given by(Dt)2 = 
g( ) + 12(1� 3t)Xi;j;k h[Zi; Zj ℄m; ZkiZi � Zj � Zk( )� 12 Xi<j<k<l 
Zi; Jah(Zj ; Zk; Zl) + 9t2Jam(Zj ; Zk; Zl)� � Zi � Zj � Zk � Zl �  + 18Xi;j Qh([Zi; Zj ℄; [Zi; Zj ℄) + 38t2Xi;j Qm([Zi; Zj ℄; [Zi; Zj ℄) :For n � 4, one has(Dt)2 = 
g( ) + 12(1� 3t)Xi;j;k h[Zi; Zj ℄m; ZkiZi � Zj � Zk( )� 12 Xi<j<k<l hZi; Jah(Zj ; Zk; Zl)i � Zi � Zj � Zk � Zl �  + 18Xi;j Qh([Zi; Zj ℄; [Zi; Zj ℄) + 38 t2Xi;j Qm([Zi; Zj ℄; [Zi; Zj ℄) :



14 ILKA AGRICOLAProof. The mixed term is the �rst order di�erential operator(D0DtH +DtHD0) = tXp [Zp � Zp(H �  ) +H � Zp � Zp( )℄= tXp [Zp �H +H � Zp℄ � Zp( ) :In Lemma 3.3, we omputed the antiommutator of H with the vetor Zp, whih leads us to(D0DtH +DtHD0) = �32tXp �Xi;j hZp; [Zi; Zj ℄miZi � Zj�Zp( ) :By Lemma 3.2, we have(DtH)2 = �92t2 Xi<j<k<l hZi; Jam(Zj ; Zk; Zl)iZi � Zj � Zk � Zl �  + 38 t2Xi;j h[Zi; Zj ℄m; [Zi; Zj ℄mi for n � 5 and (DtH)2 = 38t2Xi;j h[Zi; Zj ℄m; [Zi; Zj ℄mi otherwise. Together with equation (9) and the formula for eCh from Proposition 3.3, one obtains thedesired formulas. �Now it beomes lear that the partiular hoie t = 1=3 leads to substantial simpli�ations in ase ofn = 3 or n � 5. In fat, the seond part of the �rst line vanishes identially, the seond line is zeroby the Jaobi identity in g (n � 5) or for dimensional reason (n = 3), and the salar ontributionsin the last line appear in a very preise ratio, whih will allow some further simpli�ation. It is astrange e�et that no simpli�ation is possible for n = 4.Theorem 3.3 (The Kostant-Parthasarathy formula for t = 1=3). For n = 3 or n � 5 and t = 1=3,the general formula for (Dt)2 redues to(D1=3)2 = 
g( ) + 18�Xi;j Qh([Zi; Zj ℄; [Zi; Zj ℄) + 13Xi;j Qm([Zi; Zj ℄; [Zi; Zj ℄)� = 
g( ) + 18�Sal1=3 + 19Xi;j Qm([Zi; Zj ℄; [Zi; Zj ℄)� : �Remark 3.3. In partiular, one immediately reovers the lassial Parthasarathy formula for asymmetri spae (Theorem 3.1), sine then all salar urvatures oinide and [Zi; Zj ℄ 2 h.As in the lassial Parthasarathy formula, the salar term as well as the eigenvalues of 
g( ) may beexpressed in representation theoretial terms if G (and hene M) is ompat. Consider the uniqueAd (G) invariant extension Q of the salar produt h ; i on m to the full Lie algebra g, whih existsby Kostant's Theorem. Thus, Q is a multiple of the Killing form on any simple fator of g; however,Q is not neessarily positive de�nite, hene the saling fators may be of di�erent sign. If they aresuh that Q is positive de�nite, the metri h ; i is said to be normal homogeneous.We begin with a more areful analysis of the Casimir operator 
g( ). By the same arguments as inthe symmetri spae ase, 
g( ) is a G invariant di�erential operator, and this property does notdepend on the signs of Q. We sketh the argument for ompleteness: On every simple summand giof g, Qi := Qjgi is either a positive or a negative multiple of the Killing form, and Ad (g) maps giinto itself. Hene, in either ase, the adjoint ation of G transforms an orthonormal base ~Z1; : : : ; ~Zmof gi into an orthonormal base, and dual bases ~X1; ~Y1; : : : ; ~Xm; ~Ym of gi are mapped to dual bases:Qi(Ad (g) ~Zk;Ad (g) ~Zl) = Qi( ~Zk; ~Zl); Qi(Ad (g) ~Xk;Ad (g) ~Yl) = Qi( ~Xk; ~Yl) :



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 15Now onsider the Frobenius deomposition of the square integrable spinors into irreduible �nite-dimensional representations V� of G, L2(S) = X�2ĜM� 
 V�;where M� denotes the multipliity spae of V�. Let %� : G ! GL(V�) be the representation withhighest weight �, and d%� its di�erential. Then 
gi ats on V� byd%�(
gi) = � mXk=1 d%�( ~Zk)2 or d%�(
gi) = � mXk=1 d%�( ~Xk)d%�( ~Yk) :However, for any element X 2 gi, one heks immediately%�(g)d%�(X)%�(g�1) = d%�(Ad (g)X);hene 
gi ommutes with the ation of g 2 G on V�, as laimed. Furthermore, it ats by multipli-ation by the well-known eigenvalueQi(�+ %i; �+ %i)�Qi(%i; %i);whose sign, however, depends on whether Qi is a positive or a negative multiple of the Killing formon gi. Here, %i denotes the half sum of positive roots of gi, as usually. Sine the enter of G doesnot ontribute to the total eigenvalue of 
g, we onlude:Lemma 3.5. For a ompat group G, the operator 
g is non negative if the metri h ; i is normalhomogeneous or if the negative de�nite ontribution to Q omes from an abelian summand in g. �In a forthoming paper, we will disuss examples where Q has also a simple summand on whih Qis negative de�nite and show that 
g has negative eigenvalues. We use these remarks to express thesalar term in Theorem 3.3 in a di�erent way.Lemma 3.6. Let G be ompat, n = 3 or n � 5, and denote by %g and %h the half sum of the positiveroots of g and h, respetively. Then the Kostant-Parthasarathy formula for (D1=3)2 may be restatedas (D1=3)2 = 
g( ) + [Q(%g; %g)�Q(%h; %h)℄ = 
g( ) + h%g � %h; %g � %hi :In partiular, the salar term is positive independently of the properties of Q.Proof. Consider the eightfold multiple of the term under onsideration and regroup it as8((D1=3)2 � 
g) = Xi;j Qh([Zi; Zj ℄; [Zi; Zj ℄) + 13Xi;j Qm([Zi; Zj ℄; [Zi; Zj ℄)= 13�Xi;j Q([Zi; Zj ℄; [Zi; Zj ℄) + 2Xi;j Qh([Zi; Zj ℄; [Zi; Zj ℄)� :The �rst summand an easily be seen to be a trae over m,Xi;j Q([Zi; Zj ℄; [Zi; Zj ℄) = �Xi;j Q([Zi; [Zi; Zj ℄℄; Zj) = �Xj Q(Xi (adZi)2; Zj) = �trmXi (adZi)2 :For the seond term, we �rst notie that it may be rewritten by expanding and ontrating in twodi�erent ways asXi;j Qh([Zi; Zj ℄; [Zi; Zj ℄) = Xi;j;kQ(Xk; [Zi; Zj ℄)Q(Yk; [Zi; Zj ℄) = Xi;j;kQ([Xk; Zi℄; Zj)Q([Yk; Zi℄; Zj)= Xi;k Q([Xk; Zi℄; [Yk; Zi℄):This, in turn, an be identi�ed with two di�erent kinds of traes: On the one hand, this is�Xi;k Q([Zi; [Zi; Xk℄℄; Yk) = �trhXi (adZi)2 ;



16 ILKA AGRICOLAon the other hand, this reads�Xi;k Q([Xk; [Yk; Zi℄℄; Zi) = �trmXk (adXk)(adYk) = trmCh ;were Ch denotes the \unlifted" Casimir operator of h, i. e., its usual ation on g via the adjointrepresentation. Now, sine the sum we have just treated appears twie, we use eah way of writingit one to obtain8((D1=3)2 � 
g) = 13�� trmXi (adZi)2 � trhXi (adZi)2 + trmCh�= 13�� trgXi (adZi)2 + trgCh � trhCh�= 13�trgCg � trhCh� :Again, Cg is not to be onfused with the ation of the Casimir operator of g on spinors. By lookingseparately on every simple summand where Q is just a multiple of the Killing form, one easily seesthat these traes are the resaled lengths of the half sum of positive roots,trgCg = 24Q(%g; %g);and similarly for h (Proposition 1:84 in [Kos99℄). This proves the formula. To see that the salar ispositive even for non normal homogeneous metris, deompose %g = %h +R, where R 2 m. Sine mand h are orthogonal with respet to Q, one obtainsQ(%g; %g)�Q(%h; %h) = Q(%h +R; %h +R)�Q(%h; %h) = Q(R;R) = hR;Ri > 0;sine by dimensional reasons R 6= 0 and the salar produt on m is positive de�nite. �We an formulate our �rst onlusion from Theorem 3.3:Corollary 3.1. Let G be ompat. If the operator 
g is non negative, the �rst eigenvalue �1=31 ofthe Dira operator D1=3 satis�es the inequality��1=31 �2 � Q(%g; %g)�Q(%h; %h) :Equality ours if and only if there exists an algebrai spinor in �m whih is �xed under the lift�( eAdH) of the isotropy representation.Proof. By our assumption on 
g, its eigenvalue on a spinor  an be zero if and only if the Casimireigenvalue of every simple summand gi of g vanishes, hene  has to lie in the trivial G-representationand is thus onstant. �Remark 3.4. This eigenvalue estimate is remarkable for several reasons. Firstly, for homogeneousnon symmetri spaes, it is sharper than the lassial Parthasarathy formula. For a symmetrispae, one lassially obtains �21 � Sal=8. But sine the Shr�odinger-Lihnerowiz formula yieldsimmediately �21 � Sal=4, the lower bound in the lassial Parthasarathy formula is never attained,and hene of small interest. In ontrast, there exist many examples of homogeneous non symmetrispaes with onstant spinors. Seondly, it uses a lower bound wih is always stritly positive; fornaturally redutive metris where the non positive de�nite part of the metri omes from an abelianfator, the salar urvature an beome negative and hene a pure urvature bound would again be ofsmall interest. Finally, of the known formulas of Weitzenb�ok type whih generalize the Shr�odinger-Lihnerowiz formula, one does not yield an eigenvalue estimate ([FI01, Thm. 3.1℄ for any metrionnetion with skew symmetri torsion), another one yields an eigenvalue estimate whih is notsharp and applies only to the normal homogeneous ase (see [Goe99, Lemma 1.17℄). The example ofSetion 5 illustrates the situation desribed here.



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 17Remark 3.5. Sine Dt is a G-invariant di�erential operator on M by onstrution, Theorem 3.2implies that the linear ombination of the �rst order di�erential operator and the multipliation bythe element of degree four in the Cli�ord algebra appearing in the formula for (Dt)2 is again Ginvariant for all t. Hene, the �rst order di�erential operatorD := Xi;j;k h[Zi; Zj ℄m; ZkiZi � Zj � Zk( )has to be a G invariant di�erential operator, a fat that annot be seen diretly by any simple argu-ments. It has no analogue on symmetri spaes and ertainly deserves further separate investigations.4. The equations of type II string theory on naturally redutive spaes4.1. The �eld equations. The ommon setor of type II string theories may be geometriallydesribed as a tuple (Mn; h ; i ; H;�;	) onsisting of a manifold Mn with a Riemannian metri h ; i,a 3-form H , a so-alled dilaton funtion � and a spinor �eld 	 satisfying the oupled system of �eldequationsRiLCij � 14HimnHjmn +2rLCi �j� = 0; Æ(e�2�H) = 0; (rLCX + 14X H)	 = 0; (d�� 12H)	 = 0:The �rst equation generalizes the Einstein equation, the seond is a onservation law, while the �rstof the spinorial �eld equations suggests that the 3-form H should be the torsion of some metrionnetion r with totally skew-symmetri torsion tensor T = H . Then the equations may berewritten in terms of r:Rir + 12Æ(T ) + 2rLCd� = 0; Æ(T ) = 2 � d�# T; r	 = 0; (d�� 12T ) �	 = 0 :If the dilaton � is onstant, the equations may be simpli�ed even further,Rir = 0; Æ(T ) = 0; r	 = 0; T �	 = 0 :In partiular, the last equation beomes a purely algebrai ondition. The number of preservedsupersymmetries depends essentially on the number of r-parallel spinors. For a general bakgroundon these equations, we refer to the artile by A. Strominger where they appeared �rst [Str86℄. Aroutine alulation shows that Æ(T ) is the skew symmetri part of the Rii urvature, hene the �rstequation implies the seond (see [FI01℄). In any event, for the family of onnetions rt, the seondequation is always satis�ed by Lemma 2.5.Before proeeding further, we add a general observation whih follows easily from the formulas in[FI01℄ and whih was pointed out to us by Bogdan Alexandrov.Theorem 4.1. Let Mn be a ompat Riemannian manifold with metri h ; i and a metri onnetionr with totally skew symmetri torsion T . Suppose that there exists a spinor �eld  suh that all theequations Rir = 0; r	 = 0; T �	 = 0hold. Then T = 0 and r is the Levi-Civita onnetion.Proof. If  is r-parallel, the Riemannian Dira operator DLC ats on  by DLC = �3T � =4. Thelast equation thus implies DLC = 0. By the lassial Shr�odinger-Lihnerowiz formula,0 = ZMn jjrLC jj2dMn + 14 ZMn SalLCjj jj2dMn :On the other hand, the two Rii tensors are related by the equationRiLC(X;Y ) = Rir(X;Y ) + 12(ÆT )(X;Y ) + 14 nXi=1 hT (X; ei); T (Y; ei)i ;



18 ILKA AGRICOLAwhere e1; : : : ; en denotes an orthonormal basis. If Rir = 0, then ÆT = 0 (see above), and thisimplies that the Riemannian salar urvature is non negative and given by4 SalLC = nXi;j=1 hT (ei; ej); T (ei; ej)i :Consequently, the salar urvature SalLC has to vanish identially, and the torsion form T is zero,too. �Hene, ompat solutions to all equations have to be Calabi-Yau manifolds in dimensions 4 and 6,Joye manifolds in dimensions 7 and 8 et.4.2. Some partiular spinor �elds. Consider the situation that the lift of the isotropy represen-tation �( eAdH) ontains the trivial representation, i. e., an algebrai spinor  that is �xed under theation of H . Any suh spinor indues a setion of the spinor bundle S = G ��(eAd ) �m if viewed asa onstant map G! �m and is thus of partiular interest.Theorem 4.2.(1) Any onstant spinor �eld  satis�es the equationrtZ = t3(Z H) :In partiular, it is parallel with respet to the anonial onnetion (t = 0). Conversely, anyspinor �eld  satisfying r0 = 0 is neessarily onstant.(2) Any onstant spinor �eld  is an eigenspinor of the square of the Dira operator (Dt)2, andits eigenvalue does not depend of the speial hoie of  :(Dt)2 = 9t2�Q(%g; %g)�Q(%h; %h)� :In partiular, H �  6= 0 and hene the last string equation an never hold for a onstantspinor.Proof. For a onstant spinor �eld, the formula for the ovariant derivative of a spinor �eld (equation3) redues tortZ = 0+~�tm(Z) . By Lemma 3.2, ~�t(Z) may be expressed in terms of an orthonormalbasis as rtZ = t2Xj<k h[Z;Zj ℄m; ZkiZj � Zk �  :By the de�nition of H , this is easily seen to be t(Z H)=3. Conversely, assume that  is parallelwith respet to the anonial onnetion, i. e. Zi( ) = 0 for all i. Then [Zi; Zj ℄( ) = 0, and theommutator [Zi; Zj ℄ may be split into its m and h part. But the m part ats again trivially on  ,hene we obtain [Zi; Zj ℄h( ) = 0 :By Assumption 2.2, [m;m℄ spans all of h, hene h also ats trivially on  , whih �nishes the argument.For the seond part of the Theorem, we use that the Dira operator on a onstant spinor is given byDt = tH � for any t. Sine any onstant spinor lies in the trivial G-representation in the Frobeniusdeomposition of �(S), the eigenvalue of 
g on  is zero. For t = 1=3, the Kostant-Parthasarathyformula (Theorem 3.3) thus yields(D1=3)2 = �Q(%g; %g)�Q(%h; %h)� = 19H2 :This may be understood as a formula forH2 , from whih we immediately derive the general formulathrough (Dt)2 = t2H2 . In partiular, H �  annot vanish. �Remark 4.1. Easy examples show that  might not be an eigenspinor of Dt itself, sine not allonstant spinors are eigenspinors of H . For the anonial onnetion, r0T 0 = 0 implies that thespae of parallel spinors is invariant under T 0, hene there exists a basis of the spae of parallelspinors onsisting of eigenspinors.



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 194.3. Vanishing theorems. This setion is devoted to non-existene theorems for solutions in ertaingeometri on�gurations. It allows us to draw quite a preise piture of what a promising naturallyredutive metri should look like. First, the Kostant-Parthasarathy formula yields that we shouldbe interested in preisely those metris where 
g is not non negative.Theorem 4.3. If the operator 
g is non negative and rt is not the Levi-Civita onnetion, theredo not exist any non trivial solutions to the system of equationsrt = 0; T t �  = 0 :Proof. If the spinor  is rt-parallel, then it lies in the kernel of Dt = D0+ tH . Sine rt is assumednot to be the Levi-Civita onnetion, T t does not vanish and hene T t �  = 0 implies H �  = 0.Thus  is also in the kernel of D0. For the Dira operator to the parameter t = 1=3, we obtainD1=3 = D0 + 13H �  = 0 ;whih ontradits Corollary 3.1. �For the Levi-Civita onnetion, it is well known that the existene of a parallel spinor implies van-ishing Rii urvature. By repetition of the same argument, one sees that this onlusion does nolonger hold for a metri onnetion with torsion. Rather, we get restritions on the algebrai typeof the derivatives of the torsion.Proposition 4.1. If the anonial onnetion r0 is Rii at and admits a parallel spinor, then theexterior derivative of its torsion T 0 satis�es (X dT 0) �  = 0 for all vetors X in m.Proof. In [FI01, Cor. 3.2℄, Friedrih and Ivanov showed that a spin manifold with some onnetionr whose torsion T is totally skew symmetri and a r-parallel spinor  satis�es�12X dT +rXT� �  = Rir(X) �  :Sine the anonial onnetion satis�es r0T 0 = 0, the laim follows. �These onditions are independent of the equation T 0 �  = 0. If dT 0 6= 0 and the dimension issuÆiently small, it an happen that the intersetion of all kernels of X dT 0 is already empty, thusshowing the non-existene of solutions. Models with dT 0 = 0 are of partiular interest and are alledlosed in string theory.For further investigations of the Rii tensorRit(X;Y ) = Xi (t� t2) h[X;Zi℄m; [Y; Zi℄mi+Qh([X;Zi℄; [Y; Zi℄) ;it is useful to desribe it from a more representation theoretial point of view. Wang and Ziller derivedthe general formula we shall present for t = 1=2 in [WZ85℄. Their proof may easily be generalizedto the ase of arbitrary t, hene we omit it here. The main idea is to use a more elaborate versionof the ore omputation in the proof of Lemma 3.6. Reall that Ch denotes the (unlifted) Casimiroperator of h, i. e., Ch = �Xi adXiadYi :It de�nes a symmetri endomorphism A : m�m! m by A(X;Y ) := hChX;Y i. Similarly, we denoteby �(X;Y ) = �trgadXadY the Killing form of the full Lie algebra g. We make no notationaldi�erene between � itself and its restrition to m.Theorem 4.4. The endomorphisms A and � satisfy the identitiesA(X;Y ) = Xi Qh([X;Zi℄; [Y; Zi℄); �(X;Y ) = Xi h[X;Zi℄m; [Y; Zi℄mi+ 2A(X;Y ) :



20 ILKA AGRICOLAdimG=H 5 6 7 8Hmax SU(2) SU(3) G2 Spin(7)Table 1. Maximal holonomy groups for the existene of a parallel spinorThus, the Rii tensor is given byRit(X;Y ) = (t� t2)�(X;Y ) + (2t2 � 2t+ 1)A(X;Y ) : �Remark 4.2. We observe that the oeÆient of � vanishes for t = 0 and t = 1, and is positive be-tween these parameter values, whereas the oeÆient of A is always positive and attains its minimumfor the Levi-Civita onnetion (t = 1=2).The endomorphism A has blok diagonal struture, with every blok orresponding to an irreduiblesummand of the isotropy representation. In partiular, the blok of the trivial representation van-ishes, sine its Casimir eigenvalue is zero. Sine � is positive de�nite for G ompat, we an dedue:Proposition 4.2. Assume that G is ompat. If the isotropy representation Ad : H ! SO(m) has�xed vetors, only the onnetions t = 0 and t = 1 an be Rii at. �Typially, the eigenvalues of Ch are linear funtions of some deformation parameters, hene, theyan vanish for some partiular parameter hoies without belonging to a trivial h-summand of m.This makes it diÆult to make more preise preditions for the vanishing of the Rii tensor.Proposition 4.3. If the anonial onnetion has vanishing salar urvature, H annot be simpleand the metri annot be normal homogeneous.Proof. The salar urvature for the anonial onnetion isXi;j Qh([Zi; Zj ℄; [Zi; Zj ℄) :By Assumption 2.2, not all vetors [Zi; Zj ℄h an be zero. Sine Qh is non degenerate, we onludethat Qh an be neither positive nor negative de�nite. However, on every simple fator of h, Qh hasto be a multiple of the Killing form; hene h annot be simple. �This fat, as elementary as its proof might be, has far reahing onsequenes for the geometryof homogeneous models of string theory. The existene of a parallel spinor severely restrits theholonomy group of r. In fat, it needs to be a subgroup of the isotropy subgroup of a spinor insideSO(n), and these subgroups are well-known. By a theorem of Wang ([KN96, Ch.X, Cor. 4.2℄), theLie algebra of the holonomy group is spanned bym0 + [�m(m);m0℄ + [�m(m); [�m(m);m0℄℄ + : : : ;where the subspae m0 is de�ned asm0 = f[�m(X);�m(Y )℄� �m([X;Y ℄m)� ad ([X;Y ℄h) : X;Y 2 m g :For the anonial onnetion and using our assumption that [m;m℄h spans all of h, we onlude thatits holonomy Lie algebra is preisely h. For t 6= 0, the holonomy an only inrease, hene we obtainTable 1 for the maximally possible subgroups Hmax. If we restrit our attention to the anonialonnetion, Proposition 4.3 implies that H annot be equal to Hmax itself, but rather has to be anon simple subgroup of it. This exludes many homogeneous spaes that would naturally ome toone's mind. Of ourse, they might yield models for other onnetions than the anonial one, butsuh an analysis an only be performed on a ase by ase basis.



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 215. Examples5.1. The Jensen metri on V4;2. The 5-dimensional Stiefel manifold V4;2 = SO(4)=SO(2) arries aone-parameter family of metris onstruted by G. Jensen [Jen75℄ with many remarkable properties.Embed H = SO(2) into G = SO(4) as the lower diagonal 2 � 2 blok. Then the Lie algebra so(4)splits into so(2)�m, where m is given bym =8>><>>:2664 0 �aa 0 �XtX 0 00 0 3775 =: (a;X) : a 2 R; X 2M2;2(R)9>>=>>; :Denote by �(X;Y ) := tr(XtY ) the Killing form of so(4). Then the Jensen metri on m to theparameter s 2 R is de�ned byh(a;X); (b; Y )i = 12�(X;Y ) + s�(a; b) = 12�(X;Y ) + 2s � ab :For s = 2=3, G. Jensen proved that this metri is Einstein, and Th. Friedrih showed that it admitstwo Riemannian Killing spinors [Fri80℄ and thus realizes the equality ase in his estimate for the�rst eigenvalue of the Dira operator. A more areful analysis shows that V4;2 arries three di�erentontat strutures, one of whih is Sasakian, one quasi-Sasakian but not Sasakian, and the third onehas no speial name, although speial properties. It will beome lear in the disussion that thismetri is only naturally redutive with respet to G = SO(4) for s = 1=2. In the following setions,we shall desribe the Jensen metris on V4;2 �rst from the point of view of ontat geometry andthen from the point of view of naturally redutive spaes.5.2. The ontat geometry approah. Denote by Eij the standard basis of so(4). Then theelements Z1 := E13; Z2 := E14; Z3 = E23; Z4 = E24; Z5 = 1p2s E12form an orthonormal base of m. To start with, we ompute all nonvanishing ommutators in m.These are(�) [Z1; Z3℄m = p2sZ5; [Z1; Z5℄m = � 1p2s Z3; [Z2; Z4℄m = p2sZ5;[Z2; Z5℄m = � 1p2s Z4; [Z3; Z5℄m = 1p2s Z1; [Z4; Z5℄m = 1p2s Z2:Notie that all these ommutators have no h-ontribution. Identifying m with R5 via the hosenbasis, the isotropy representation of an element g(�) = � os � � sin �sin � os � � 2 H = SO(2) may bewritten as follows: Ad g(�) = 266664 os � � sin � 0 0 0sin � os � 0 0 00 0 os � � sin � 00 0 sin � os � 00 0 0 0 1 377775 :In partiular, Z5 is invariant under the isotropy ation. As in [Fri80℄, we use a suitable basis 1; : : : ;  4 for the 4-dimensional spinor representation � : Spin(R5 ) ! GL(�5). One derives theexpression for the lift of the isotropy representation,�� eAd g(�)� = 2664 os � + i sin � 0 0 00 os � � i sin � 0 00 0 1 00 0 0 1 3775 :Thus, the elements  3 and  4 de�ne setions of the spinor bundle S = G ��(eAd ) �5 if viewed asonstant maps G ! �5. In fat, for s = 2=3,  � :=  3 � i 3 are exatly the Riemannian Killing



22 ILKA AGRICOLAspinors from [Fri80℄ as we will see below. The setions indued by  1 and  2 are not onstant andthus more diÆult to treat. We will not onsider them in our disussion. In [Jen75, Prop. 3℄, theauthor omputed the map �LCm : m �= R5 ! so(5) (see Wang's Theorem in Setion 2) de�ning theLevi-Civita onnetion:�LCm (Z�)Z� = 12[Z�; Z�℄; �LCm (Z5)Z� = (1�s)[Z5; Z�℄; �LCm (Z�)Z5 = s[Z�; Z5℄ for �; � = 1; : : : ; 4:Indeed, one easily veri�es that this is the unique map �m verifying the onditionsh�m(X)Y; Zi+ hY;�m(X)Zi = 0 and �m(X)Y � �m(Y )X = [X;Y ℄m :Thus, one sees that for s 6= 1=2, �m(X)Y is not globally proportional to the ommutator [X;Y ℄m,and both h�m(X)Y; Zi and �h[X;Y ℄m; Zi (the torsion of the anonial onnetion) fail to de�ne a3-form: The �rst is not skew symmetri in X and Y , the seond is not skew symmetri in X andZ. In any ase, by using the ommutator relations (�), the Levi-Civita onnetion an be identi�edwith an endomorphism of R5 as follows:�LCm (Z1) = rs2E35; �LCm (Z2) = rs2E45; �LCm (Z3) = �rs2E15; �LCm (Z4) = �rs2E25;�LCm (Z5) = 1� sp2s (E13 +E24) :The lift into the spin representation yields a global fator 1=2 and replaes Eij by Zi^Zj . By setting~T := (Z1 ^ Z3 + Z2 ^ Z4) ^ Z5;the Levi-Civita onnetion may be rewritten in a uni�ed way as(10) ~�LCm (Z5) = 14 2(1� s)p2s (Z5 ~T ); ~�LCm (Z�) = 14p2s(Z� ~T ) for � = 1; : : : ; 4 :Now we disuss the three di�erent metri almost ontat strutures existing on V4;2. The spae mhas a preferred diretion, namely � = Z5, whih is �xed under the isotropy representation. Denoteits dual 1-form, �(X) = hZ5; Xi by �. The following operators'S = 266664 0 0 1 0 00 0 0 1 0�1 0 0 0 00 �1 0 0 00 0 0 0 0 377775 ; 'qS = 266664 0 1 0 0 0�1 0 0 0 00 0 0 1 00 0 �1 0 00 0 0 0 0 377775 ; '� = 266664 0 1 0 0 0�1 0 0 0 00 0 0 �1 00 0 1 0 00 0 0 0 0 377775intertwine the isotropy representation, and thus de�ne ompatible omplex strutures on the linearspan of Z1; : : : ; Z4. Then one heks for all three hoies for ' that the ompatibility onditionsde�ning a metri almost ontat struture hold:'2 = �Id + � 
 �; h'(X); '(Y )i = hX;Y i � �(X) � �(Y ); '(�) = 0 :The fundamental form of the struture is de�ned by F (X;Y ) = hX;'(Y )i, thus yieldingFS = Z1 ^ Z3 + Z2 ^ Z4; FqS = Z1 ^ Z2 + Z3 ^ Z4; F� = Z1 ^ Z2 � Z3 ^ Z4 ;respetively. Sine Z5 is onstant under the isotropy ation, its exterior derivative may be omputedusing the general formula as stated at the beginning of the proof of Lemma 2.4,d!1(X0; X1) = X0(!1(X1))�X1(!1(X0))� !1([X0; X1℄) :For the onstant vetor �eld Z5, we thus obtain dZ5(Zi; Zj) = �hZ5; [Zi; Zj ℄i. Applying again theommutator relations implies dZ5 = �p2s (Z1 ^ Z3 + Z2 ^ Z4) :In partiular, dZ5 is proportional to FS , turning it into a Sasaki struture (up to resaling) andimplying immediately dFS = 0. For the other two strutures, remark that Z1 ^ Z2 and Z3 ^ Z4 arealso invariant forms under the isotropy ation, thus their exterior di�erential may be omputed in a



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 23similar way. One gets that dFqS = 0, turning it into a non Sasakian quasi-Sasakian struture, anddF� is proportional to Z2 ^ Z3 ^ Z5, whih implies dF'�� = 0. We an then ompute the Nijenhuistensor N(X;Y ) := ['(X); '(Y )℄ + '2([X;Y ℄)� '(['(X); Y ℄)� '([X;'(Y )℄) + d�(X;Y ) � �and see that it vanishes for all three metri almost ontat strutures. By [FI01, Thm. 8.2℄, theStiefel manifold V4;2 admits a unique almost ontat onnetion r with torsionT = � ^ d� = �p2s (Z1 ^ Z3 + Z2 ^ Z4) ^ Z5 :Next we disuss the existene of spinors that are parallel with respet to the onnetion r as wellas the existene of Killing spinors, sine we onsider the analogy and di�erenes to the previous aseto be instrutive.Theorem 5.1.(1) The onstant spinors are parallel with respet to the ontat onnetion r if and only ifs = 1=2;(2) The onstant spinors  � are Riemannian Killing spinors if and only if s = 2=3.Proof. In equation (10), we gave the general formula for the Levi-Civita onnetion in diretion Zias the inner produt of Zi and the 3-form ~T . If a onstant spinor  is to be parallel with respet tor, 0 = rX = (~�LCm (X) + 14X T ) ;then the oeÆients of ~�LCm as in equation (10) have to be equal for all Zi, hene, 2(1�s)=p2s = p2s,whih means that s = 1=2. For this value, the ombination ~�LC(X) + 14X T vanishes, so bothonstant spinors are parallel indeed. For the disussion of Riemannian Killing spinors, we use thefollowing realization of the spin representation:e1 = 2664 0 0 0 i0 0 i 00 i 0 0i 0 0 0 3775 ; e2 = 2664 0 0 0 �10 0 1 00 �1 0 01 0 0 0 3775 ; e3 = 2664 0 0 �i 00 0 0 i�i 0 0 00 i 0 0 3775 ;e4 = 2664 0 0 1 00 0 0 1�1 0 0 00 �1 0 0 3775 ; e5 = 2664 i 0 0 00 i 0 00 0 �i 00 0 0 �i 3775 :Then one heks that(Z5 ~T ) �  � = �2Z5 �  �; (Z� ~T ) �  � = �Z� �  � for � = 1; : : : ; 4:Looking at Z5, we onlude that the Killing equation rLCX  = �X �  implies that the oeÆientsin equation (10) have to satisfy 2(1� s)=p2s = p2s=2. The solution is now s = 2=3, and one heksthat  � are Killing spinors indeed. �In [FI01a℄, Friedrih and Ivanov studied the 5-dimensional ontat ase in more detail.5.3. The naturally redutive spae approah. We would like to interpret the metri h ; i as anaturally redutive metri with respet to some other group �G, and the onnetion with the torsionT = �p2s (Z1 ^ Z3 + Z2 ^ Z4) ^ Z5as its anonial onnetion. So write M = �G= �H with the Lie algebra deomposition �g = �h � �m,and assume that the original isotropy representation is a subrepresentation of the new isotropyrepresentation, i. e., the ation of h � �h on m �= �m remains unhanged. This point of view neessarilyenlarges the holonomy group H already for dimensional reasons. In fat, we an dedue a lot ofinformation about the new isotropy representation from the formula for T . In Remark 2.2, we



24 ILKA AGRICOLAexplained the relation between m-ommutators and the torsion. For example, the formula aboveimplies [Z1; Z3℄�m = p2sZ5; [Z4; Z5℄�m = p2sZ2; [Z1; Z4℄�m = [Z3; Z4℄�m = 0 :Then we an ompute Ja�m(Z1; Z3; Z4) = 2sZ2 :On the other hand,Ja�h(Z1; Z3; Z4) = �Z2 + [Z4; [Z1; Z3℄�h℄ + [Z3; [Z4; Z1℄�h℄ != �Ja�m(Z1; Z3; Z4) :Thus, there must be two elements H1 := [Z1; Z3℄�h and H2 := [Z4; Z1℄�h in �h, not both zero, suh that[H1; Z4℄ + [H2; Z3℄ = (2s� 1)Z2 :By some more areful analysis, one obtains H2 = 0, H1 = [Z2; Z4℄�h and the ation of H1 on the othervetors Zi. The systemati desription of h ; i as a naturally redutive metri an be given using adeformation onstrution due to Chavel and Ziller ([Cha70℄, [Zil77℄). It is based on the remark thatfor s = 1=2, m splits into an orthogonal diret sum of m1 := f(0; X)g and m2 := f(a; 0)g suh that[h;m2℄ = 0 and [m2;m2℄ � m2 :Let M2 � G be the subgroup of G with Lie algebra m2, and set �G = G �M2, �H = H � M2.An element (k;m) of �G ats on M = G=H by (k;m)gH = kgHm�1, and then �H an indeed beidenti�ed with the isotropy group of this ation. We endow �g = g � m2 with the diret sum Liealgebra struture. The trik is now to hoose a realization of �m that depends on the deformationparameter s of the metri. Writing all elements of �g as 4-tuples (H;U;X; Y ) with H 2 h, U 2 m1and X;Y 2 m2, we an realize the Lie algebra of �H as�h = f(H; 0; X;X) � �g : H 2 h; X 2 m2gand hoose m = f(0; X; 2s Y; (2s� 1)Y ) : X 2 m1; Y 2 m2gas an orthogonal omplement. Here, (0; 0; 2s Y; (2s� 1)Y ) will be identi�ed with Y 2 m2. Sine m2is abelian in this example, the Lie algebra struture of �g is partiularly simple. �h is a Lie algebrawith ommutator [(H; 0; X;X); (H 0; 0; X 0; X 0)℄ = ([H;H 0℄; 0; 0; 0) ;the full isotropy representation is[(H; 0; X;X); (0; U; 2sY; (2s� 1)Y )℄ = (0; [H +X;U ℄; 0; 0)and the ommutator of two elements in �m splits into its �h and �m part as follows:[(0; U; 2sX; (2s� 1)X); (0; V; 2s Y; (2s� 1)Y )℄ = ([U; V ℄h; 0;�(2s� 1)[U; V ℄m2 ;�(2s� 1)[U; V ℄m2)+(0; [U; V ℄m1 + 2s([U; Y ℄ + [X;V ℄); 2s[U; V ℄m2 ; (2s� 1)[U; V ℄m2) :With these hoies for �h and �m, the metri h ; i is naturally redutive with respet to �G, the torsionof its anonial onnetion is preisely T and the Rii tensor is given byRi0 = 2(1� s)diag(1; 1; 1; 1; 0) :For s = 1, the anonial onnetion is thus Rii at, and by Proposition 4.2, we know that no otheronnetion an have this property. However, the holonomy �H �= SO(2)�SO(2) is too large to admitparallel spinors. For s = 1=2, we have two parallel spinors for the anonial onnetion as seen inthe preeding setion, but the Rii urvature does not vanish. In this ase, one an ask the questionwhether some other onnetion of the family rt admits parallel spinors. But using Wang's Theorem([KN96, Ch.X, Cor. 4.2℄) for omputing the holonomy, one sees that rt has full holonomy SO(m)for t 6= 0, exluding again the existene of parallel spinors.We lose this setion with a look at the eigenvalue estimate for (D1=3)2. Sine the extensionof H is by the abelian group SO(2), the Casimir operator 
g is non negative by Lemma 3.5 and
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