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t. Given a redu
tive homogeneous spa
e M = G=H endowed with a naturally redu
tivemetri
, we study the one-parameter family of 
onne
tions rt joining the 
anoni
al and the Levi-Civita 
onne
tion (t = 0; 1=2). We show that the Dira
 operator Dt 
orresponding to t = 1=3 isthe so-
alled \
ubi
" Dira
 operator re
ently introdu
ed by B. Kostant, and derive the formula forits square for any t, thus generalizing the 
lassi
al Parthasarathy formula on symmetri
 spa
es.Appli
ations in
lude the existen
e of a new G-invariant �rst order di�erential operator D on spinorsand an eigenvalue estimate for the �rst eigenvalue of D1=3. This geometri
 situation 
an be usedfor 
onstru
ting Riemannian manifolds whi
h are Ri

i 
at and admit a parallel spinor with respe
tto some metri
 
onne
tion r whose torsion T 6= 0 is a 3-form, the geometri
 model for the 
ommonse
tor of string theories. We present some results about solutions to the string equations and givea detailed dis
ussion of some 5-dimensional example.Contents1. Introdu
tion 12. A family of 
onne
tions on naturally redu
tive spa
es 33. The Dira
 operator of the family of 
onne
tions rt 63.1. General remarks and formal self adjointness 63.2. The 
ubi
 element H , its square and the Casimir operator 83.3. A Kostant-Parthasarathy type formula for (Dt)2 114. The equations of type II string theory on naturally redu
tive spa
es 174.1. The �eld equations 174.2. Some parti
ular spinor �elds 184.3. Vanishing theorems 195. Examples 215.1. The Jensen metri
 on V4;2 215.2. The 
onta
t geometry approa
h 215.3. The naturally redu
tive spa
e approa
h 23Referen
es 251. Introdu
tionThis paper proposes a di�erential geometri
 approa
h to some re
ent results from B. Kostant onan algebrai
 obje
t 
alled "
ubi
 Dira
 operator" ([Kos99℄). The key observation is that one 
anintrodu
e a metri
 
onne
tion on 
ertain homogeneous spa
es whose torsion (viewed as a (0; 3)-tensor)is 3-form su
h that the asso
iated Dira
 operator has Kostant's algebrai
 obje
t as its symbol. At thesame time, there has been re
ently a growing interest in 
onne
tions with totally skew symmetri
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2 ILKA AGRICOLAtorsion for 
onstru
ting models in string theory and supergravity. We show that the mentioned
lass of homogeneous spa
es yields interesting 
andidates for su
h solutions and use Dira
 operatorte
hniques to prove some vanishing theorems.In a �rst part of this paper, we 
onsider a redu
tive homogeneous spa
e M = G=H endowed witha Riemannian metri
 that indu
es a naturally redu
tive metri
 h ; i on m, where we set g = h�m.The one-parameter family of G-invariant 
onne
tions de�ned byrtXY = r0XY + t [X;Y ℄mjoins the 
anoni
al (t = 0) and the Levi-Civita (t = 1=2) 
onne
tion. Its torsion T (X;Y; Z) =(2t � 1) � h[X;Y ℄m; Zi is a 3-form. For an orthonormal basis Z1; : : : ; Zn of m, it indu
es the thirddegree element H := 32 Xi<j<k h[Zi; Zj ℄m; ZkiZi � Zj � Zkinside the Cli�ord algebra C(m) of m. The fa
t that the Dira
 operator asso
iated with the 
onne
tionrt may then be written as Dt = Xi Zi � Zi( ) + t �H �  suggested the name "
ubi
 Dira
 operator" to B. Kostant. We will show that the main a
hievementin [Kos99℄ was to realize that, for the parameter value t = 1=3, the square of Dt may be expressed in avery simple way in terms of Casimir operators and s
alars only ([Kos99, Thm 2.13℄, [Ste99, 10.18℄). Itis a remarkable generalization of the well-known Parthasarathy formula for D2 on symmetri
 spa
es(Theorem 3.1 in this arti
le, see [Par72℄). In fa
t, S. Slebarski has already noti
ed independentlythat the parameter value t = 1=3 has distinguished properties (see Theorem 1 and the introdu
tionin [Sle87a℄). He uses it to prove a "vanishing theorem" for the kernel of the twisted Dira
 operator,whi
h 
an be easily re
overed from Kostant's formula (see [Lan00, Thm 4℄). His arti
les [Sle87a℄ and[Sle87b℄ 
ontain several formulas of Weitzenb�o
k type for D2, but none of them is of Parthasarathytype. We shall 
ompute the general expression for (Dt)2 in Theorem 3.2 and show how it 
an besimpli�ed for this parti
ular parameter value in Theorem 3.3. We emphasize one di�eren
e betweenour work and [Kos99℄. While Kostant studies the algebrai
 a
tion ofD1=3 as an element of U(g)
C(m)on L2-fun
tions G ! �m (the spinor representation), we restri
t our attention to spinors, i. e., L2-se
tions of the spinor bundle S = G �eAd �m. In parti
ular, this implies that one of the terms inthe formula for (Dt)2 (the "diagonally" embedded Casimir operator of h) vanishes independentlyof t. An immediate 
onsequen
e of Theorem 3.2 is the existen
e of a new G-invariant �rst orderdi�erential operator D := Xi;j;k h[Zi; Zj ℄m; ZkiZi � Zj � Zk( )on spinors (Remark 3.5) that has no analogue on symmetri
 spa
es. Furthermore, under someadditional hypotheses (the lifted Casimir operator 
g has to be non negative) Theorem 3.3 yieldsan eigenvalue estimate, whi
h is dis
ussed in Corollary 3.1.In the se
ond part of this paper, we use the pre
eding approa
h for studying the string equationson naturally redu
tive spa
es. Stated in a di�erential geometri
 way, one wants to 
onstru
t aRiemannian manifold (M; g) with a metri
 
onne
tion r su
h that its torsion T 6= 0 is a 3-form andsu
h that there exists at least one spinor �eld  satisfying the 
oupled systemRi
r = 0; Æ(T ) = 0; r	 = 0; T �	 = 0 :The number of preserved supersymmetries depends essentially on the number of r-parallel spinors.For a general ba
kground on these equations, we refer to the arti
le by A. Strominger [Str86℄,where they appeared for the �rst time. Thus, if one looks for homogeneous solutions, the familyof 
onne
tions rt yields 
anoni
al 
andidates for the desired 
onne
tion r, and the results on theasso
iated Dira
 operator 
an be used to dis
uss the solution spa
e to these equations. We dis
ussthe signi�
an
e of 
onstant spinors (whi
h do not always exist) in Theorem 4.2 and show that thelast two string equations 
annot have any solutions at all if the lifted Casimir operator 
g is non



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 3negative (Theorem 4.3). In order to dis
uss the �rst equation, we present a representation theoreti
alexpression for the Ri

i tensor of the 
onne
tion rt, whi
h generalizes previous results by Wang andZiller (Theorem 4.4). The arti
le ends with a thourough dis
ussion of an example, namely, thenaturally redu
tive metri
s on the 5-dimensional Stiefel manifold.Although we rarely refer to it, this paper is in spirit very 
lose (and in some sense 
omplementary)to a re
ent arti
le by Friedri
h and Ivanov ([FI01℄). There, the authors study metri
 
onne
tionswith totally skew symmetri
 torsion preserving a given geometry.Thanks. I am grateful to Thomas Friedri
h (Humboldt-Universit�at zu Berlin) for many valuabledis
ussions on the topi
 of this paper. My thanks are also due to the Erwin-S
hr�odinger Institute inVienna and the Max-Plan
k Institute for Mathemati
s in the Natural S
ien
es in Leipzig for theirhospitality. 2. A family of 
onne
tions on naturally redu
tive spa
esConsider a Riemannian homogeneous spa
e M = G=H . We suppose that M is redu
tive, i. e., theLie algebra g of G may be de
omposed into a ve
tor spa
e dire
t sum of the Lie algebra h of H andan Ad (H)-invariant subspa
e m su
h that g = h�m and Ad (H)m � m. We identify m with T0M bythe map X 7! X�0 , where X� is the Killing ve
tor �eld on M generated by the one parameter groupexp(tX) a
ting on M . We pull ba
k the Riemannian metri
 h ; i0 on T0M to an inner produ
t h ; ion m. Let Ad : H ! SO(m) be the isotropy representation of M . By a theorem of Wang ([KN96,Ch. X, Thm 2.1℄), there is a one-to-one 
orresponden
e between the set of G-invariant metri
 aÆne
onne
tions and the set of linear mappings �m : m! so(m) su
h that�m(hXh�1) = Ad (h)�m(X)Ad (h)�1 for X 2 m and h 2 H :Its torsion and 
urvature are then given for X;Y 2 m by ([KN96, Ch. X, Prop. 2.3℄)T (X;Y ) = �m(X)Y � �m(Y )X � [X;Y ℄m;R(X;Y ) = [�m(X);�m(Y )℄� �m([X;Y ℄m)�Ad ([X;Y ℄h) ;where the Lie bra
ket is split into its m and h part, [X;Y ℄ = [X;Y ℄m + [X;Y ℄h.Lemma 2.1. The (0; 3)-tensor 
orresponding to the torsion (X;Y; Z 2 m)T (X;Y; Z) := hT (X;Y ); Ziis totally skew symmetri
 if and only if the map �m satis�es for all X;Y; Z 2 m the invarian
e
ondition h�m(X)Y; Zi+ h�m(Z)Y;Xi = h[X;Y ℄m; Zi+ h[Z; Y ℄m; Xi :Proof. The antisymmetry of T (X;Y; Z) in X and Z is equivalent toh�m(X)Y; Zi+ h�m(Z)Y;Xi � h�m(Y )X;Zi � h�m(Y )Z;Xi � h[X;Y ℄m; Zi � h[Z; Y ℄m; Xi = 0 :The third and fourth term 
an
el out ea
h other by the assumption that �m(Y ) lies in so(m), sin
ethis means that the endomorphism �m(Y ) is skew symmetri
 with respe
t to the inner produ
t ofm. �For a general map �m, this is all one 
an say. We are interested in the one parameter family of
onne
tions de�ned by �tm(X)Y := t � [X;Y ℄m :It is well known that t = 0 
orresponds to the 
anoni
al 
onne
tion r0, whi
h, by the Ambrose-Singer theorem, is the unique metri
 
onne
tion on M su
h that its torsion and 
urvature areparallel, r0T 0 = r0R0 = 0. By Lemma 2.1, the torsion of r0 is a 3-form if and only if M isnaturally redu
tive.



4 ILKA AGRICOLADe�nition 2.1. A homogeneous Riemannian metri
 on M is said to be naturally redu
tive (withrespe
t to G) if the map [X;�℄m : m! m is skew symmetri
,h[X;Y ℄m; Zi+ hY; [X;Z℄mi = 0 for all X;Y; Z 2 m :Note that if G1 � G2 are two transitive groups of isometries of M , then the properties of beingnaturally redu
tive with respe
t to G1 and G2 are independent of ea
h other.Remark 2.1. Under the assumption that M is naturally redu
tive, the right-hand side in the
riterion of Lemma 2.1 vanishes, and the remaining 
ondition may be restated { using the skewsymmetry of �m(X) and �m(Z) { as hY;�m(X)Z +�m(Z)Xi = 0. Sin
e this equation has to holdfor all X;Y and Z in m, we obtain that the torsion is a 3-form if and only if �m(X)X = 0 for allX 2 m.If M is naturally redu
tive, then the torsion of the family rt of 
onne
tions is given by the simpleexpression T t(X;Y ) = (2t� 1) [X;Y ℄m :One sees that the Levi-Civita 
onne
tion is attained for t = 1=2. The general formula for the
onne
tion rt is(1) rtXY = r0XY + t [X;Y ℄m :Noti
e that for a symmetri
 spa
e, [m;m℄ � h, so all 
onne
tions of this one-parameter family 
oin
ideand are equal to the Levi-Civita 
onne
tion.Assumption 2.1. We will assume that M = G=H is naturally redu
tive with respe
t to G.We begin by 
omputing a few 
hara
teristi
 entities for this family of 
onne
tions, whi
h will beneeded in the subsequent se
tions. We start by re
alling a theorem of B. Kostant.Theorem 2.1 ([Kos56℄). Suppose G a
ts e�e
tively on M = G=H. If the inner produ
t h ; i isnaturally redu
tive with respe
t to G, then ~g := m + [m;m℄ is an ideal in g whose 
orrespondingsubgroup ~G � G is transitive on M , and there exists a unique Ad ( ~G) invariant, symmetri
, nondegenerate, bilinear form Q on ~g (not ne
essarily positive de�nite) su
h thatQ(h \ ~g;m) = 0 and Qjm = h ; i ;where h \ ~g will be the isotropy algebra in ~g. Conversely, if G is 
onne
ted, then, for any Ad (G)invariant, symmetri
, non degenerate, bilinear form Q on g, whi
h is non degenerate on h andpositive de�nite on m := h?, the metri
 on M de�ned by Qjm is naturally redu
tive. In this 
ase,g = ~g. �Assumption 2.2. We shall assume from now on that G a
ts transitively on M (thus, g = ~g) anduse the Ad (G) invariant extension Q of the inner produ
t h ; i as well as its restri
tion Qjh =: Qhto h where needed without further 
omment.Lemma 2.2. The 
urvature of the 
onne
tion rt is given byRt(X;Y )Z = t2 [X; [Y; Z℄m℄m + t2 [Y; [Z;X ℄m℄m + t [Z; [X;Y ℄m℄m + [Z; [X;Y ℄h℄ :If Zi; : : : ; Zn is an orthonormal basis of m, the Ri

i tensor and the s
alar 
urvature areRi
t(X;Y ) = Xi (t� t2) h[X;Zi℄m; [Y; Zi℄mi+Qh([X;Zi℄; [Y; Zi℄)S
alt = Xi;j (t� t2) h[Zi; Zj ℄m; [Zi; Zj ℄mi+Qh([Zi; Zj ℄; [Zi; Zj ℄) :Proof. The formula for the 
urvature follows immediately from the general formula given before. Inparti
ular, it implies
Rt(X;Z)Z; Y � = (t� t2) h[X;Z℄m; [Y; Z℄mi+ h[Z; [X;Z℄h℄; Y i :



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 5Using the Ad (G) invariant extension Q of the inner produ
t h ; i and the fa
t that m is thenperpendi
ular to h, we may rewrite the latter term ash[Z; [X;Z℄h℄; Y i = Q([Z; [X;Z℄h℄; Y ) = Q([X;Z℄h; [Y; Z℄) = Qh([X;Z℄; [Y; Z℄) :Thus, we obtain 
Rt(X;Z)Z; Y � = (t� t2)Qm([X;Z℄; [Y; Z℄) +Qh([X;Z℄; [Y; Z℄)and the formula for the Ri

i tensor by Ri
t(X;Y ) = P hRt(X;Zi)Zi; Y i. The expression for thes
alar 
urvature is obtained by 
ontra
tion relative to X and Y . �At a later stage, we will give a further expression for the Ri

i tensor due to Wang and Ziller([WZ85℄). For the time being, we observe that the 
onne
tion with t = 1 has also spe
ial properties,for example, it has the same Ri

i tensor than the 
anoni
al 
onne
tion. This is why we propose to
all it the anti
anoni
al 
onne
tion. We 
ompute the 
ovariant derivative of the torsion tensor.Lemma 2.3. As a map m�m! m, the 
ovariant derivative of T is(rtZT t)(X;Y ) = t(2t� 1)�[X; [Y; Z℄m℄m + [Y; [Z;X ℄m℄m + [Z; [X;Y ℄m℄m� :Proof. By de�nition, the 
ovariant derivative is given by(rtZT t)(X;Y ) = rtZ(T t(X;Y ))� T t(rtZX;Y )� T t(X;rtZY ) :We insert the expression for rt from equation (1)(rtZT t)(X;Y ) = r0Z(T t(X;Y )) + t[Z; T t(X;Y )℄m � T t(r0ZX + t[Z;X ℄m; Y )�T t(X;r0ZY + t[Z; Y ℄m)= r0Z(T t(X;Y ))� T t(r0ZX;Y )� T t(X;r0ZY )+t(2t� 1)�[X; [Y; Z℄m℄m + [Y; [Z;X ℄m℄m + [Z; [X;Y ℄m℄m� :But the third line may be rewritten as�(2t�1)(r0ZT 0)(X;Y ), whi
h vanishes by the Ambrose-Singertheorem. �For the �rst time we en
ounter here an expression that will play an important role at di�erent pla
es.Let us de�ne Ja
m(X;Y; Z) := [X; [Y; Z℄m℄m + [Y; [Z;X ℄m℄m + [Z; [X;Y ℄m℄m ;Ja
h(X;Y; Z) := [X; [Y; Z℄h℄ + [Y; [Z;X ℄h℄ + [Z; [X;Y ℄h℄ :Noti
e that the summands of Ja
h(X;Y; Z) automati
ally lie in m by the assumption that M is re-du
tive. The Ja
obi identity for g implies hJa
m(X;Y; Z) + Ja
h(X;Y; Z);mi = 0. As the 
onne
tionrt is metri
, the 
ovariant derivatives of T viewed as a (0; 3)- resp. (1; 2)-tensor are related by(2) (rtZT t)(X;Y; V ) = 
(rtZT t)(X;Y ); V � = t(2t� 1) hJa
m(X;Y; Z); V i :For 
ompleteness, we re
all the formula for the exterior derivative of a di�erential form in terms ofa 
onne
tion with torsion.Lemma 2.4. If ! is an r-form, then(d!)(X0; : : : ; Xr) = rXi=0(�1)i(rXi!)(X0; : : : ; X̂i; : : : ; Xr)� X0�i<j�r(�1)i+j!(T (Xi; Xj); X0; : : : ; X̂i; : : : ; X̂j ; : : : ; Xr) :



6 ILKA AGRICOLAProof. We start with the general formula for the derivative of an r-form ! (see, for example, [KN91,Prop. 3.11℄),(d!)(X0; : : : ; Xr) = rXi=0(�1)iXi(!(X0; : : : ; X̂i; : : : ; Xr))+ X0�i<j�r(�1)i+j!([Xi; Xj ℄; X0; : : : ; X̂i; : : : ; X̂j ; : : : ; Xr) :In the �rst line, we express every summand in terms of the 
ovariant derivative of !, i. e.,Xi(!(X0; : : : ; X̂i; : : : ; ; Xr)) = (rXi!)(X1; : : : ; Xr) + !(rXiX0; : : : ; X̂i; : : : ; Xr) + : : :++ !(X0; X1; : : : ;rXiXr) :A simple rearrangement of terms together with the de�nition T (X;Y ) = rXY �rYX � [X;Y ℄ ofthe torsion yields the result. �Lemma 2.5. The 
odi�erential of the 3-form T t vanishes, ÆT t = 0, while its outer derivative isgiven by dT t(X;Y; Z; V ) = 2(2t� 1) � hJa
m(X;Y; Z); V i.Proof. For the �rst 
laim, one dedu
es from equation (2) that X rtXT t = 0. Then it follows forthe orthonormal basis Zi; : : : ; Zn of m thatÆtT t = nXi=1 Zi rtZiT t = 0 :In parti
ular, the divergen
e of T with respe
t to rt 
oin
ides with its Riemannian divergen
e (amore general fa
t, see [FI01℄), ÆtT t = Æ1=2T t = 0. Hen
e we shall drop the supers
ript, as we didin the statement of the lemma. The se
ond 
laim follows from Lemma 2.4 by a simple algebrai

omputation. �Remark 2.2. We �nish this se
tion with a remark about the 
onne
tion between the torsion andthe Lie algebra stru
ture. If some torsion 3-form T is given as a fundamental datum and is to be thetorsion of the 
anoni
al 
onne
tion of some spa
e with naturally redu
tive metri
, then the m-partof the 
ommutators [m;m℄ may be re
onstru
ted by[X;Y ℄m = �Xi T (X;Y; Zi)Zi :This formula is fundamental for the point of view taken in the arti
le [Kos99℄ (formula 1.23). Thefull Lie algebra stru
ture of g 
an now be viewed as 
onsisting of the torsion 3-form, the isotropyrepresentation and the subalgebra stru
ture of h, with some 
ompatibility 
ondition resulting fromthe Ja
obi identity. This point of view will be useful in the last se
tion, where we will study examples.3. The Dira
 operator of the family of 
onne
tions rt3.1. General remarks and formal self adjointness. Assume that there exists a homogeneousspin stru
ture on M , i. e., a lift eAd : H ! Spin(m) of the isotropy representation su
h that thediagram Spin(m)�����eAd �H Ad- SO(m)�6
ommutes, where � denotes the spin 
overing. Moreover, we denote by ead the 
orresponding liftinto spin(m) of the di�erential ad : h ! so(m) of Ad . Let � : Spin(m) ! GL(�m) be the spin



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 7representation, and identify se
tions of the spinor bundle S = G�eAd �m with fun
tions  : G! �msatisfying  (gh) = �( eAd (h�1)) (g) :For any G invariant 
onne
tion de�ned by a map �m : m ! so(m), we 
onsider its lift ~�m : m !spin(m), whi
h is given by ~�m := d��1 Æ �m. Then the the 
ovariant derivative on spinors may beexpressed as ([Ike75, Lemma 2℄)(3) rZ = Z( ) + ~�m(Z) and thus the Dira
 operator asso
iated with this 
onne
tion has the form(4) D = Xi Zi � Zi( ) + Zi � ~�m(Zi) ;where Z1; : : : ; Zn denotes any orthonormal basis of m. In the same arti
le, Ikeda states a 
riterion forthe formal self adjointness of this operator. We restate the result here, sin
e there is some 
onfusionabout the assumptions on the s
alar produ
t in the original version.Proposition 3.1. Let M = G=H be a homogeneous redu
tive manifold with a homogeneous spinstru
ture, h ; i the s
alar produ
t on m indu
ed by the Riemannian metri
 on M , and r the Ginvariant metri
 
onne
tion de�ned by some map �m : m ! so(m). Then the Dira
 operator Dasso
iated with the 
onne
tion r is formally self adjoint if and only if for any ve
tor X 2 m and anyorthonormal basis Z1; : : : ; Zn of m, one has(�) Xi h�m(Zi)X;Zii = Xi h[Zi; X ℄m; Zii :In parti
ular, this 
ondition is always satis�ed if the torsion T (X;Y; Z) is totally skew symmetri
.If the metri
 h ; i is in addition naturally redu
tive, 
ondition (�) is equivalent to P�m(Zi)Zi = 0.Proof. By a result of Friedri
h and Sulanke ([FS79℄), the Dira
 operator Dr asso
iated with anymetri
 
onne
tion r is formally self adjoint if and only if the r-divergen
e of any ve
tor X 
oin
ideswith its Riemannian divergen
e,divr(X) := Xi hZi;rZiXi = Xi 
Zi;rLCZi X� =: div(X) ;where rLC denotes the Levi-Civita 
onne
tion. But for any ve
tor X , the 
ovariant derivatives arerelated by rZiX = rLCZi X + 12T (Zi; X) ;thus equality of divergen
es holds if and only ifXi hT (Zi; X); Zii = 0 :Inserting the general formula for the torsion and using the fa
t that h�m(X)Zi; Zii = 0, one 
he
ksthat this is equivalent to 
ondition (�). Sin
e hT (Zi; X); Zii = T (Zi; X; Zi), 
ondition (�) is alwaysful�lled if the (0; 3)-tensor T is totally skew symmetri
. Alternatively, one easily dedu
es equation (�)from the antisymmetry 
ondition in Lemma 2.1 by a 
ontra
tion. Finally, if the metri
 is naturallyredu
tive, the right-hand side of (�) vanishes, and by the antisymmetry of �m(Zi) one obtainshX;P�m(Zi)Zii = 0. This �nishes the proof. �Returning to the family rt, our aim is to rewrite the 
onne
tion term of the Dira
 operator inequation (4) as an element of the Cli�ord algebra C(m). Basi
ally this amounts to the identi�
ationof spin(m) with the elements of se
ond degree in C(m). We implement the Cli�ord relations viaZi � Zj + Zj � Zi = �Æij , in 
ontrast to [Kos99℄ (see [Fri00℄ for notational details). The followinglemma due to Parthasarathy expresses the lift of the isotropy representation as an element of theCli�ord algebra.



8 ILKA AGRICOLALemma 3.1 ([Par72, 2.1℄). For any element Y in h, one hasead (Y ) = 14 nXi;j=1 h[Y; Zi℄; ZjiZi � Zj : �Similarly, any skew symmetri
 map �m(X) : m! m may be expanded in the standard basis Eij ofso(m) as �m(X) = Xi<j h�m(X)Zi; ZjiEij :Sin
e Eij lifts to Zi �Zj=2 in the Cli�ord algebra, we obtain in 
omplete analogy to the ParthasarathyLemma:Lemma 3.2. For any map �m : m! so(m), one has~�m(X) = 12Xi<j h�m(X)Zi; ZjiZi � Zj = 14Xi;j h�m(X)Zi; ZjiZi � Zj : �In parti
ular, the image of �1m(Zi) = [Zi;�℄m in C(m) may be written~�1m(Zi) = 14Xj;k h[Zi; Zj ℄m; ZkiZj � Zk :Thus, by de�ning the elementH := nXi=1 Zi � ~�1m(Zi) = 14Xi;j;k h[Zi; Zj ℄m; ZkiZi � Zj � Zk = 32 Xi<j<k h[Zi; Zj ℄m; ZkiZi � Zj � Zk ;we 
an rewrite the Dira
 operator 
orresponding to the 
onne
tion rt from equation (4) as(5) Dt = Xi Zi � Zi( ) + t �H �  :Remark 3.1. We identify di�erential forms with elements of the Cli�ord algebra byXi1<:::<ir !1:::r Zi1 ^ : : : ^ Zir 7�! Xi1<:::<ir !1:::r Zi1 � : : : � Zir :Thus, the torsion form T t(X;Y; Z) = (2t� 1) h[X;Y ℄m; Zi indu
es the elementT t = (2t� 1) Xi<j<k h[Zi; Zj ℄m; ZkiZi � Zj � Zkof the Cli�ord algebra, whi
h di�ers from H only by a numeri
al fa
tor,T t = 2(2t� 1)3 H :The simpli
ity of equation (5) is the main reason why we prefer to work with the element H insteadof T t.3.2. The 
ubi
 element H, its square and the Casimir operator. It is the 
ubi
 element Hinside the Cli�ord algebra C(m) whi
h suggested the name "
ubi
 Dira
 operator" to B. Kostant. Wesee that the fa
t that H is of degree 3 inside C(m) does not depend on the parti
ular 
hoi
e for �m.The square of H will play an eminent role in our 
onsiderations, both for a Kostant-Parthasarathytype formula and for general vanishing theorems. Noti
e that the square of any element of degree 3inside C(m) has only terms of degree zero and 4.



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 9Proposition 3.2. The terms of degree zero and 4 of H2 are given by(H2)0 = 38Xi;j h[Zi; Zj ℄m; [Zi; Zj ℄mi ;(H2)4 = �92 Xi<j<k<l hZi; Ja
m(Zj ; Zk; Zl)iZi � Zj � Zk � Zl :The �rst formula is valid for all n � 3, while the se
ond holds only for n � 5. For n = 3; 4, one has(H2)4 = 0.Proof. The 
ontributions of degree zero inH2 are exa
tly the squares of the summands ofH . Be
auseof (Zi � Zj � Zk)2 = 1, we have(H2)0 = 94 Xi<j<k h[Zi; Zj ℄m; Zki2 = 924Xi;j;k h[Zi; Zj ℄m; Zki h[Zi; Zj ℄m; Zki :For �xed i; j, the sum over k is the 
oordinate expansion of the s
alar produ
t h[Zi; Zj ℄m; [Zi; Zj ℄mi,thus (H2)0 = 38Xi;j h[Zi; Zj ℄m; [Zi; Zj ℄mi ;as 
laimed. Contributions of degree 4 o

ur if Zi �Zj �Zk is multiplied by Zi0 �Zj0 �Zk0 with exa
tlyone 
ommon index. Sin
e this requires at least 5 di�erent indi
es, it follows that there are no termsof fourth degree for n � 4. For the moment, put aside the overall fa
tor 9=4 of H2. We explain theo

urren
e of the term proportional to Z1234 := Z1 �Z2 �Z3 �Z4 in detail, the others are obtained ina similar way. Sin
e H 
onsists of ordered tuples proportional to Zijk := Zi � Zj � Zk, i < j < k, theonly way to obtain a term in Z1234 is to multiply Z12k by Z34k, Z13k by Z24k and Z14k by Z23k forany index k � 5. First we noti
e that the order of multipli
ation is irrelevant, sin
eZ12k � Z34k = Z34k � Z12k; Z13k � Z24k = Z24k � Z13k; and Z14k � Z23k = Z23k � Z14k :Every term will thus have multipli
ity two. In the next step, these produ
ts have to be rearrangedin order to be proportional to Z1234:Z12k � Z34k = �Z1234; Z13k � Z24k = +Z1234; Z14k � Z23k = �Z1234 :The total 
ontribution 
oming from the produ
ts Z12k by Z34k is thus(�) := �2Z1234Xk�5 h[Z1; Z2℄m; Zki h[Z3; Z4℄m; Zki :This is equal to the sum over all k, sin
e the additional terms are zero. However, it shows that thesum is pre
isely the expansion of the s
alar produ
t h[Z1; Z2℄m; [Z3; Z4℄mi:(�) = �2Z1234 nXk=1 h[Z1; Z2℄m; Zki h[Z3; Z4℄m; Zki = �2Z1234 h[Z1; Z2℄m; [Z3; Z4℄mi :After a similar simpli�
ation of the other two 
ontributions, the fourth degree term in H2 propor-tional to Z1234 is �nally equal to(��) := 2 [�h[Z1; Z2℄m; [Z3; Z4℄mi+ h[Z1; Z3℄m; [Z2; Z4℄mi � h[Z1; Z4℄m; [Z2; Z3℄mi℄ � Z1234 :This, in turn, may be rewritten as(��) = �2 hZ1; Ja
m(Z2; Z3; Z4)i � Z1234 :Putting ba
k in the fa
tor 9=4, we get the fa
tor �9=2 as stated in the lemma. �For later referen
e, we 
ompute the anti
ommutator of H with an element Zl for arbitrary l.Lemma 3.3. For any l, one has H � Zl + Zl �H = � 32Xi;j hZl; [Zi; Zj ℄miZi � Zj .



10 ILKA AGRICOLAProof. By de�nition,H � Zl + Zl �H = 14Xi;j;k h[Zi; Zj ℄m; Zki �Zi � Zj � Zk � Zl + Zl � Zi � Zj � Zk) :If all four indi
es i; j; k; l are pairwise di�erent,Zi � Zj � Zk � Zl = �Zl � Zi � Zj � Zk;and the 
orresponding summand vanishes. Thus, the sum may be split into those parts where l isone of the indi
es i, j and k, respe
tively:H � Zl + Zl �H = 14Xj;k h[Zl; Zj ℄m; Zki �Zl � Zj � Zk � Zl + Zl � Zl � Zj � Zk)+ 14Xi;k h[Zi; Zl℄m; Zki �Zi � Zl � Zk � Zl + Zl � Zi � Zl � Zk)+ 14Xi;j h[Zi; Zj ℄m; Zli �Zi � Zj � Zl � Zl + Zl � Zi � Zj � Zl) :We simplify the mixed produ
ts to getH � Zl + Zl �H = �12Xj;k h[Zl; Zj ℄m; ZkiZj � Zk + 12Xi;k h[Zi; Zl℄m; ZkiZi � Zk� 12Xi;j h[Zi; Zj ℄m; ZliZi � Zj :Using the invarian
e property of the s
alar produ
t and renaming the summation indi
es, this iseasily seen to be the desired expression. �Finally, we 
ompute the image of the quadrati
 Casimir operator of h inside the Cli�ord algebra.Sin
e the Ad (G) invariant extension Q of h ; i is not ne
essarily positive de�nite when restri
ted toh, it is more appropriate to work with dual rather than with orthonormal bases. So pi
k bases Xi; Yiof h wi
h are dual with respe
t to Qh, i. e., Qh(Xi; Yj) = Æij . The lift of the Casimir operator of his de�ned as eCh = �Xi ead (Xi) Æ ead (Yi) :By the Parthasarathy Lemma (Lemma 3.1),ead (Xi) = 14Xj;k h[Xi; Zj ℄; ZkiZj � Zkand similarly for ead (Yi). Thus,eCh = � 116Xi Xj;k;l;p h[Xi; Zj ℄; Zki h[Yi; Zl℄; ZpiZj � Zk � Zl � Zp :We may get rid of the sum over i immediately. Sin
e m is orthogonal to h, we 
an rewrite eCh aseCh = � 116Xi Xj;k;l;pQ([Xi; Zj ℄; Zk)Q([Yi; Zl℄; Zp)Zj � Zk � Zl � Zp= � 116Xi Xj;k;l;pQ(Xi; [Zj ; Zk℄)Q(Yi; [Zl; Zp℄)Zj � Zk � Zl � Zp :For �xed j; k; l and p, the sum over i is again the expansion of the h part of Q([Zj ; Zk℄; [Zl; Zp℄),yielding(6) eCh = � 116 Xj;k;l;pQh([Zj ; Zk℄; [Zl; Zp℄)Zj � Zk � Zl � Zp :



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 11This expression has the advantage that it does not 
ontain the dual bases Xi; Yi any more. It turnsout that eCh has no se
ond degree term, for su
h a term would o

ur if the two index pairs (j; k)and (l; p) had exa
tly one 
ommon index, for example, j = l. But su
h a term would appear twi
e,namely, as Zj � Zk � Zj � Zp and as Zj � Zp � Zj � Zk, and these 
an
el out ea
h other.Proposition 3.3. The terms of degree zero and 4 of eCh are given for all n � 3 by( eCh)0 = 18Xi;j Qh([Zi; Zj ℄; [Zi; Zj ℄) ;( eCh)4 = �12 Xi<j<k<l hZi; Ja
h(Zj ; Zk; Zl)iZi � Zj � Zk � Zl :In parti
ular, ( eCh)4 vanishes identi
ally for n � 3, but not for n = 4.Proof. As the form of the result suggests, the proof is similar to the 
omputation of H2 (Proposi-tion 3.2). This is why we shall be brief. For the zero degree term, (j; k) = (l; p), and ea
h term ofthis kind appears twi
e, thus( eCh)0 = �18Xi;j Qh([Zi; Zj ℄; [Zi; Zj ℄)Zi � Zj � Zi � Zj :Sin
e Zi � Zj � Zi � Zj = �1, we obtain the �rst part of the proposition. For the fourth degree
ontribution, rewrite the Casimir operator as(7) eCh = �14 Xj<k;l<pQh([Zj ; Zk℄; [Zl; Zp℄)Zj � Zk � Zl � Zp :Then the index pairs (j; k) and (l; p) have to be 
ompletely disjoint. Agein we look only at the termthat is proportional to Z1234 := Z1 �Z2 �Z3 �Z4. It may be obtained by multiplying Z12 by Z34, Z13by Z24 and Z14 by Z23. Again, these elements 
ommute, so we only need to 
onsider ea
h produ
tin the order of multipli
ation just given and 
ount it twi
e. Restoring the order of indi
es in theseprodu
ts, one sees that the term in ( eCh)4 proportional to Z1234 looks like(�) := �24 [Qh([Z1; Z2℄; [Z3; Z4℄)�Qh([Z1; Z3℄; [Z2; Z4℄) +Qh([Z1; Z4℄; [Z2; Z3℄)℄ � Z1234 :By the properties of Q, the �rst s
alar produ
t may be formulated di�erently:Qh([Z1; Z2℄; [Z3; Z4℄) = Q([Z1; Z2℄; [Z3; Z4℄h) = Q(Z1; [Z2; [Z3; Z4℄h℄) :Rewriting the other two produ
ts in a similar way, we see that(�) = �12 Q(Z1; Ja
h(Z2; Z3; Z4)) � Z1234 : �3.3. A Kostant-Parthasarathy type formula for (Dt)2. If M = G=H is a symmetri
 spa
e,it is well known that besides the general S
hr�odinger-Li
hnerowi
z formula for D2, whi
h is validon any Riemannian manifold, there exists a formula expressing D2 in terms of Casimir operatorsdue to Parthasarathy (see also [Kos99, Remark 1.63℄). The Dira
 operator D is de�ned relative tothe Levi-Civita 
onne
tion, whi
h 
oin
ides with our one-parameter family rt, and h ; i denotesan Ad (G) invariant s
alar produ
t on g whose restri
tion to m is positive de�nite. Let S
al be thes
alar 
urvature of the symmetri
 spa
e M and 
G the Casimir operator of G, viewed as a se
ondorder di�erential operator.Theorem 3.1 ([Par72, Prop.3.1℄, [Fri00, Ch. 3℄). On a symmetri
 spa
e M = G=H, one hasD2 = 
G + 18S
al ;and the s
alar 
urvature may be rewritten as S
al = 8 � (h%g; %gi � h%h; %hi).



12 ILKA AGRICOLAThis formula is the starting point for vanishing theorems, the realization of dis
rete series representa-tions in the kernel of D, and it allows the 
omputation of the full spe
trum of D onM . If we now goba
k to the situation studied in this arti
le, i. e., a redu
tive homogeneous spa
e G=H endowed witha naturally redu
tive metri
 h ; i on m, then, a priori, the steps in the proof of Theorem 3.1 
annotbe performed any longer. To prove a Kostant-Parthasarathy type formula in this situation, we re
allthe general expression for the Dira
 operator asso
iated with the 
onne
tion rt from equation (5)and split it into the terms 
oming from the 
anoni
al 
onne
tion and the 3-form H , respe
tively:(8) Dt = Xi Zi � Zi( ) + Zi � ~�tm(Zi) =: D0 +DtH :First, noti
e that the equivarian
e property of spinors implies that the a
tion on spinors of ve
tor�elds 
oming from m is by \true" di�erential operators, while the a
tion of ve
tor �elds in h is infa
t purely algebrai
.Lemma 3.4. Let  be a spinor, i. e., a se
tion in S = G�eAd �m and X an element of h, identi�edwith the left invariant ve
tor �eld it indu
es. ThenX( ) = �ead (X) �  ;where ead (X) �  denotes the Cli�ord produ
t of the spinor  with the element ead (X) � spin(m) �C(m).Proof. We identify  with a map  : G ! �m su
h that  (gh) = �( eAd (h�1)) (g) for all g 2 Gand h 2 H . Then one hasX (g) = dds (gesX)��s=0 = dds�( eAd (e�sX )) (g)��s=0 = ��(ead (X)) (g) :Thus, X( ) = ��(ead (X)) = �ead (X) �  , as 
laimed. �Remark 3.2. In [Kos99, Se
tion 2℄ and [Ste99, Chapter 10.5℄, the map assigning to X 2 h the sumX(�) + ead (X) � �is 
alled the \diagonal" map from h to U(g) 
 C(m). The assumption that the a
tion is on spinorsthus implies that this diagonal map is equal to zero. In parti
ular, the diagonal Casimir operator ofh vanishes in the formula for (Dt)2.Proposition 3.4. The square of D0, the Dira
 operator 
orresponding to the 
anoni
al 
onne
tion,is given by (D0)2 = �Xi Z2i ( ) + 2 eCh + 12 Xi;j;k h[Zi; Zj ℄m; ZkiZi � Zj � Zk( ) :Before pro
eeding to the proof, let us make a short remark on how this formula is to be understood.In the �rst term, one has to take the derivative of  along all ve
tor �elds Zi twi
e, thus yieldinga se
ond order di�erential operator. By eCh, we mean the image of the Casimir operator of h insideC(m) as des
ribed in Se
tion 3.2. Finally, Zi �Zj � denotes the Cli�ord produ
t of Zi and Zj , whereasZk a
ts again as a derivative. Thus the last term is a �rst order di�erential operator. Noti
e thatCli�ord multipli
ation by any 
onstant element in C(m) 
ommutes with derivation along m.Proof. We 
ompute (D0)2 as follows:(D0)2 = Xi Zi � Zi(Xj Zj � Zj( )) = Xi;j Zi � Zj � (ZiZj( )) :We divide the sum into the diagonal (i = j) and o�-diagonal (i 6= j) terms and see that this separatesthe se
ond and the �rst order di�erential operator 
ontribution,(D0)2 = �Xi Z2i ( ) + 12Xi;j Zi � Zj � [Zi; Zj ℄( ) :



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 13We 
on
entrate our attention on the se
ond term. Split the 
ommutator into its m and h part, thenwrite the m part again in the orthonormal basis Z1; : : : ; Zn to obtain12Xi;j Zi � Zj � [Zi; Zj ℄( ) = 12Xi;j Zi � Zj � ([Zi; Zj ℄m( ) + [Zi; Zj ℄h( ))= 12 Xi;j;k hZk; [Zi; Zj ℄miZi � Zj � Zk( ) + 12Xi;j Zi � Zj � [Zi; Zj ℄h( ) :This takes 
are of the last term in the formula of Proposition 3.4. Thus it remains to show that12Xi;j Zi � Zj � [Zi; Zj ℄h( ) = 2 eCh :The a
tion of the 
ommutators [Zi; Zj ℄h on the spinor  is �rst transformed into Cli�ord multi-pli
ation by the adjoint representation as explained in Lemma 3.4, then rewritten in terms of anorthonormal basis a

ording to the Parthasarathy Lemma (Lemma 3.1),12Xi;j Zi � Zj � [Zi; Zj ℄h( ) = �12Xi;j Zi � Zj � ead ([Zi; Zj ℄h) �  = �18Xi;j Zi � ZjXp;q h[[Zi; Zj ℄h; Zp℄; ZqiZp � Zq �  :But sin
e h[[Zi; Zj ℄h; Zp℄; Zqi = Qh([Zi; Zj ℄; [Zp; Zq℄), this is 2 eCh by equation (6). �With the preparations of Se
tion 3.2, the other two terms in the expression for (Dt)2 are relativelyeasy to 
ompute. We denote the Casimir operator of the full Lie algebra g by 
g,
g = �Xi Z2i ( ) + eCh �  :We de
ided to use a symbol di�erent from C in order to emphasize that 
g is a real se
ond orderdi�erential operator, as opposed to eCh, whi
h is a 
onstant element of the Cli�ord algebra. Inparti
ular, the result of Lemma 3.4 may be restated as(9) (D0)2 = 
g + eCh + 12 Xi;j;k h[Zi; Zj ℄m; ZkiZi � Zj � Zk( ) :First we state the formula in its most general form.Theorem 3.2 (General Kostant-Parthasarathy formula). For n � 5, the square of Dt is given by(Dt)2 = 
g( ) + 12(1� 3t)Xi;j;k h[Zi; Zj ℄m; ZkiZi � Zj � Zk( )� 12 Xi<j<k<l 
Zi; Ja
h(Zj ; Zk; Zl) + 9t2Ja
m(Zj ; Zk; Zl)� � Zi � Zj � Zk � Zl �  + 18Xi;j Qh([Zi; Zj ℄; [Zi; Zj ℄) + 38t2Xi;j Qm([Zi; Zj ℄; [Zi; Zj ℄) :For n � 4, one has(Dt)2 = 
g( ) + 12(1� 3t)Xi;j;k h[Zi; Zj ℄m; ZkiZi � Zj � Zk( )� 12 Xi<j<k<l hZi; Ja
h(Zj ; Zk; Zl)i � Zi � Zj � Zk � Zl �  + 18Xi;j Qh([Zi; Zj ℄; [Zi; Zj ℄) + 38 t2Xi;j Qm([Zi; Zj ℄; [Zi; Zj ℄) :



14 ILKA AGRICOLAProof. The mixed term is the �rst order di�erential operator(D0DtH +DtHD0) = tXp [Zp � Zp(H �  ) +H � Zp � Zp( )℄= tXp [Zp �H +H � Zp℄ � Zp( ) :In Lemma 3.3, we 
omputed the anti
ommutator of H with the ve
tor Zp, whi
h leads us to(D0DtH +DtHD0) = �32tXp �Xi;j hZp; [Zi; Zj ℄miZi � Zj�Zp( ) :By Lemma 3.2, we have(DtH)2 = �92t2 Xi<j<k<l hZi; Ja
m(Zj ; Zk; Zl)iZi � Zj � Zk � Zl �  + 38 t2Xi;j h[Zi; Zj ℄m; [Zi; Zj ℄mi for n � 5 and (DtH)2 = 38t2Xi;j h[Zi; Zj ℄m; [Zi; Zj ℄mi otherwise. Together with equation (9) and the formula for eCh from Proposition 3.3, one obtains thedesired formulas. �Now it be
omes 
lear that the parti
ular 
hoi
e t = 1=3 leads to substantial simpli�
ations in 
ase ofn = 3 or n � 5. In fa
t, the se
ond part of the �rst line vanishes identi
ally, the se
ond line is zeroby the Ja
obi identity in g (n � 5) or for dimensional reason (n = 3), and the s
alar 
ontributionsin the last line appear in a very pre
ise ratio, whi
h will allow some further simpli�
ation. It is astrange e�e
t that no simpli�
ation is possible for n = 4.Theorem 3.3 (The Kostant-Parthasarathy formula for t = 1=3). For n = 3 or n � 5 and t = 1=3,the general formula for (Dt)2 redu
es to(D1=3)2 = 
g( ) + 18�Xi;j Qh([Zi; Zj ℄; [Zi; Zj ℄) + 13Xi;j Qm([Zi; Zj ℄; [Zi; Zj ℄)� = 
g( ) + 18�S
al1=3 + 19Xi;j Qm([Zi; Zj ℄; [Zi; Zj ℄)� : �Remark 3.3. In parti
ular, one immediately re
overs the 
lassi
al Parthasarathy formula for asymmetri
 spa
e (Theorem 3.1), sin
e then all s
alar 
urvatures 
oin
ide and [Zi; Zj ℄ 2 h.As in the 
lassi
al Parthasarathy formula, the s
alar term as well as the eigenvalues of 
g( ) may beexpressed in representation theoreti
al terms if G (and hen
e M) is 
ompa
t. Consider the uniqueAd (G) invariant extension Q of the s
alar produ
t h ; i on m to the full Lie algebra g, whi
h existsby Kostant's Theorem. Thus, Q is a multiple of the Killing form on any simple fa
tor of g; however,Q is not ne
essarily positive de�nite, hen
e the s
aling fa
tors may be of di�erent sign. If they aresu
h that Q is positive de�nite, the metri
 h ; i is said to be normal homogeneous.We begin with a more 
areful analysis of the Casimir operator 
g( ). By the same arguments as inthe symmetri
 spa
e 
ase, 
g( ) is a G invariant di�erential operator, and this property does notdepend on the signs of Q. We sket
h the argument for 
ompleteness: On every simple summand giof g, Qi := Qjgi is either a positive or a negative multiple of the Killing form, and Ad (g) maps giinto itself. Hen
e, in either 
ase, the adjoint a
tion of G transforms an orthonormal base ~Z1; : : : ; ~Zmof gi into an orthonormal base, and dual bases ~X1; ~Y1; : : : ; ~Xm; ~Ym of gi are mapped to dual bases:Qi(Ad (g) ~Zk;Ad (g) ~Zl) = Qi( ~Zk; ~Zl); Qi(Ad (g) ~Xk;Ad (g) ~Yl) = Qi( ~Xk; ~Yl) :



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 15Now 
onsider the Frobenius de
omposition of the square integrable spinors into irredu
ible �nite-dimensional representations V� of G, L2(S) = X�2ĜM� 
 V�;where M� denotes the multipli
ity spa
e of V�. Let %� : G ! GL(V�) be the representation withhighest weight �, and d%� its di�erential. Then 
gi a
ts on V� byd%�(
gi) = � mXk=1 d%�( ~Zk)2 or d%�(
gi) = � mXk=1 d%�( ~Xk)d%�( ~Yk) :However, for any element X 2 gi, one 
he
ks immediately%�(g)d%�(X)%�(g�1) = d%�(Ad (g)X);hen
e 
gi 
ommutes with the a
tion of g 2 G on V�, as 
laimed. Furthermore, it a
ts by multipli-
ation by the well-known eigenvalueQi(�+ %i; �+ %i)�Qi(%i; %i);whose sign, however, depends on whether Qi is a positive or a negative multiple of the Killing formon gi. Here, %i denotes the half sum of positive roots of gi, as usually. Sin
e the 
enter of G doesnot 
ontribute to the total eigenvalue of 
g, we 
on
lude:Lemma 3.5. For a 
ompa
t group G, the operator 
g is non negative if the metri
 h ; i is normalhomogeneous or if the negative de�nite 
ontribution to Q 
omes from an abelian summand in g. �In a forth
oming paper, we will dis
uss examples where Q has also a simple summand on whi
h Qis negative de�nite and show that 
g has negative eigenvalues. We use these remarks to express thes
alar term in Theorem 3.3 in a di�erent way.Lemma 3.6. Let G be 
ompa
t, n = 3 or n � 5, and denote by %g and %h the half sum of the positiveroots of g and h, respe
tively. Then the Kostant-Parthasarathy formula for (D1=3)2 may be restatedas (D1=3)2 = 
g( ) + [Q(%g; %g)�Q(%h; %h)℄ = 
g( ) + h%g � %h; %g � %hi :In parti
ular, the s
alar term is positive independently of the properties of Q.Proof. Consider the eightfold multiple of the term under 
onsideration and regroup it as8((D1=3)2 � 
g) = Xi;j Qh([Zi; Zj ℄; [Zi; Zj ℄) + 13Xi;j Qm([Zi; Zj ℄; [Zi; Zj ℄)= 13�Xi;j Q([Zi; Zj ℄; [Zi; Zj ℄) + 2Xi;j Qh([Zi; Zj ℄; [Zi; Zj ℄)� :The �rst summand 
an easily be seen to be a tra
e over m,Xi;j Q([Zi; Zj ℄; [Zi; Zj ℄) = �Xi;j Q([Zi; [Zi; Zj ℄℄; Zj) = �Xj Q(Xi (adZi)2; Zj) = �trmXi (adZi)2 :For the se
ond term, we �rst noti
e that it may be rewritten by expanding and 
ontra
ting in twodi�erent ways asXi;j Qh([Zi; Zj ℄; [Zi; Zj ℄) = Xi;j;kQ(Xk; [Zi; Zj ℄)Q(Yk; [Zi; Zj ℄) = Xi;j;kQ([Xk; Zi℄; Zj)Q([Yk; Zi℄; Zj)= Xi;k Q([Xk; Zi℄; [Yk; Zi℄):This, in turn, 
an be identi�ed with two di�erent kinds of tra
es: On the one hand, this is�Xi;k Q([Zi; [Zi; Xk℄℄; Yk) = �trhXi (adZi)2 ;



16 ILKA AGRICOLAon the other hand, this reads�Xi;k Q([Xk; [Yk; Zi℄℄; Zi) = �trmXk (adXk)(adYk) = trmCh ;were Ch denotes the \unlifted" Casimir operator of h, i. e., its usual a
tion on g via the adjointrepresentation. Now, sin
e the sum we have just treated appears twi
e, we use ea
h way of writingit on
e to obtain8((D1=3)2 � 
g) = 13�� trmXi (adZi)2 � trhXi (adZi)2 + trmCh�= 13�� trgXi (adZi)2 + trgCh � trhCh�= 13�trgCg � trhCh� :Again, Cg is not to be 
onfused with the a
tion of the Casimir operator of g on spinors. By lookingseparately on every simple summand where Q is just a multiple of the Killing form, one easily seesthat these tra
es are the res
aled lengths of the half sum of positive roots,trgCg = 24Q(%g; %g);and similarly for h (Proposition 1:84 in [Kos99℄). This proves the formula. To see that the s
alar ispositive even for non normal homogeneous metri
s, de
ompose %g = %h +R, where R 2 m. Sin
e mand h are orthogonal with respe
t to Q, one obtainsQ(%g; %g)�Q(%h; %h) = Q(%h +R; %h +R)�Q(%h; %h) = Q(R;R) = hR;Ri > 0;sin
e by dimensional reasons R 6= 0 and the s
alar produ
t on m is positive de�nite. �We 
an formulate our �rst 
on
lusion from Theorem 3.3:Corollary 3.1. Let G be 
ompa
t. If the operator 
g is non negative, the �rst eigenvalue �1=31 ofthe Dira
 operator D1=3 satis�es the inequality��1=31 �2 � Q(%g; %g)�Q(%h; %h) :Equality o

urs if and only if there exists an algebrai
 spinor in �m whi
h is �xed under the lift�( eAdH) of the isotropy representation.Proof. By our assumption on 
g, its eigenvalue on a spinor  
an be zero if and only if the Casimireigenvalue of every simple summand gi of g vanishes, hen
e  has to lie in the trivial G-representationand is thus 
onstant. �Remark 3.4. This eigenvalue estimate is remarkable for several reasons. Firstly, for homogeneousnon symmetri
 spa
es, it is sharper than the 
lassi
al Parthasarathy formula. For a symmetri
spa
e, one 
lassi
ally obtains �21 � S
al=8. But sin
e the S
hr�odinger-Li
hnerowi
z formula yieldsimmediately �21 � S
al=4, the lower bound in the 
lassi
al Parthasarathy formula is never attained,and hen
e of small interest. In 
ontrast, there exist many examples of homogeneous non symmetri
spa
es with 
onstant spinors. Se
ondly, it uses a lower bound wi
h is always stri
tly positive; fornaturally redu
tive metri
s where the non positive de�nite part of the metri
 
omes from an abelianfa
tor, the s
alar 
urvature 
an be
ome negative and hen
e a pure 
urvature bound would again be ofsmall interest. Finally, of the known formulas of Weitzenb�o
k type whi
h generalize the S
hr�odinger-Li
hnerowi
z formula, one does not yield an eigenvalue estimate ([FI01, Thm. 3.1℄ for any metri

onne
tion with skew symmetri
 torsion), another one yields an eigenvalue estimate whi
h is notsharp and applies only to the normal homogeneous 
ase (see [Goe99, Lemma 1.17℄). The example ofSe
tion 5 illustrates the situation des
ribed here.



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 17Remark 3.5. Sin
e Dt is a G-invariant di�erential operator on M by 
onstru
tion, Theorem 3.2implies that the linear 
ombination of the �rst order di�erential operator and the multipli
ation bythe element of degree four in the Cli�ord algebra appearing in the formula for (Dt)2 is again Ginvariant for all t. Hen
e, the �rst order di�erential operatorD := Xi;j;k h[Zi; Zj ℄m; ZkiZi � Zj � Zk( )has to be a G invariant di�erential operator, a fa
t that 
annot be seen dire
tly by any simple argu-ments. It has no analogue on symmetri
 spa
es and 
ertainly deserves further separate investigations.4. The equations of type II string theory on naturally redu
tive spa
es4.1. The �eld equations. The 
ommon se
tor of type II string theories may be geometri
allydes
ribed as a tuple (Mn; h ; i ; H;�;	) 
onsisting of a manifold Mn with a Riemannian metri
 h ; i,a 3-form H , a so-
alled dilaton fun
tion � and a spinor �eld 	 satisfying the 
oupled system of �eldequationsRi
LCij � 14HimnHjmn +2rLCi �j� = 0; Æ(e�2�H) = 0; (rLCX + 14X H)	 = 0; (d�� 12H)	 = 0:The �rst equation generalizes the Einstein equation, the se
ond is a 
onservation law, while the �rstof the spinorial �eld equations suggests that the 3-form H should be the torsion of some metri

onne
tion r with totally skew-symmetri
 torsion tensor T = H . Then the equations may berewritten in terms of r:Ri
r + 12Æ(T ) + 2rLCd� = 0; Æ(T ) = 2 � d�# T; r	 = 0; (d�� 12T ) �	 = 0 :If the dilaton � is 
onstant, the equations may be simpli�ed even further,Ri
r = 0; Æ(T ) = 0; r	 = 0; T �	 = 0 :In parti
ular, the last equation be
omes a purely algebrai
 
ondition. The number of preservedsupersymmetries depends essentially on the number of r-parallel spinors. For a general ba
kgroundon these equations, we refer to the arti
le by A. Strominger where they appeared �rst [Str86℄. Aroutine 
al
ulation shows that Æ(T ) is the skew symmetri
 part of the Ri

i 
urvature, hen
e the �rstequation implies the se
ond (see [FI01℄). In any event, for the family of 
onne
tions rt, the se
ondequation is always satis�ed by Lemma 2.5.Before pro
eeding further, we add a general observation whi
h follows easily from the formulas in[FI01℄ and whi
h was pointed out to us by Bogdan Alexandrov.Theorem 4.1. Let Mn be a 
ompa
t Riemannian manifold with metri
 h ; i and a metri
 
onne
tionr with totally skew symmetri
 torsion T . Suppose that there exists a spinor �eld  su
h that all theequations Ri
r = 0; r	 = 0; T �	 = 0hold. Then T = 0 and r is the Levi-Civita 
onne
tion.Proof. If  is r-parallel, the Riemannian Dira
 operator DLC a
ts on  by DLC = �3T � =4. Thelast equation thus implies DLC = 0. By the 
lassi
al S
hr�odinger-Li
hnerowi
z formula,0 = ZMn jjrLC jj2dMn + 14 ZMn S
alLCjj jj2dMn :On the other hand, the two Ri

i tensors are related by the equationRi
LC(X;Y ) = Ri
r(X;Y ) + 12(ÆT )(X;Y ) + 14 nXi=1 hT (X; ei); T (Y; ei)i ;



18 ILKA AGRICOLAwhere e1; : : : ; en denotes an orthonormal basis. If Ri
r = 0, then ÆT = 0 (see above), and thisimplies that the Riemannian s
alar 
urvature is non negative and given by4 S
alLC = nXi;j=1 hT (ei; ej); T (ei; ej)i :Consequently, the s
alar 
urvature S
alLC has to vanish identi
ally, and the torsion form T is zero,too. �Hen
e, 
ompa
t solutions to all equations have to be Calabi-Yau manifolds in dimensions 4 and 6,Joy
e manifolds in dimensions 7 and 8 et
.4.2. Some parti
ular spinor �elds. Consider the situation that the lift of the isotropy represen-tation �( eAdH) 
ontains the trivial representation, i. e., an algebrai
 spinor  that is �xed under thea
tion of H . Any su
h spinor indu
es a se
tion of the spinor bundle S = G ��(eAd ) �m if viewed asa 
onstant map G! �m and is thus of parti
ular interest.Theorem 4.2.(1) Any 
onstant spinor �eld  satis�es the equationrtZ = t3(Z H) :In parti
ular, it is parallel with respe
t to the 
anoni
al 
onne
tion (t = 0). Conversely, anyspinor �eld  satisfying r0 = 0 is ne
essarily 
onstant.(2) Any 
onstant spinor �eld  is an eigenspinor of the square of the Dira
 operator (Dt)2, andits eigenvalue does not depend of the spe
ial 
hoi
e of  :(Dt)2 = 9t2�Q(%g; %g)�Q(%h; %h)� :In parti
ular, H �  6= 0 and hen
e the last string equation 
an never hold for a 
onstantspinor.Proof. For a 
onstant spinor �eld, the formula for the 
ovariant derivative of a spinor �eld (equation3) redu
es tortZ = 0+~�tm(Z) . By Lemma 3.2, ~�t(Z) may be expressed in terms of an orthonormalbasis as rtZ = t2Xj<k h[Z;Zj ℄m; ZkiZj � Zk �  :By the de�nition of H , this is easily seen to be t(Z H)=3. Conversely, assume that  is parallelwith respe
t to the 
anoni
al 
onne
tion, i. e. Zi( ) = 0 for all i. Then [Zi; Zj ℄( ) = 0, and the
ommutator [Zi; Zj ℄ may be split into its m and h part. But the m part a
ts again trivially on  ,hen
e we obtain [Zi; Zj ℄h( ) = 0 :By Assumption 2.2, [m;m℄ spans all of h, hen
e h also a
ts trivially on  , whi
h �nishes the argument.For the se
ond part of the Theorem, we use that the Dira
 operator on a 
onstant spinor is given byDt = tH � for any t. Sin
e any 
onstant spinor lies in the trivial G-representation in the Frobeniusde
omposition of �(S), the eigenvalue of 
g on  is zero. For t = 1=3, the Kostant-Parthasarathyformula (Theorem 3.3) thus yields(D1=3)2 = �Q(%g; %g)�Q(%h; %h)� = 19H2 :This may be understood as a formula forH2 , from whi
h we immediately derive the general formulathrough (Dt)2 = t2H2 . In parti
ular, H �  
annot vanish. �Remark 4.1. Easy examples show that  might not be an eigenspinor of Dt itself, sin
e not all
onstant spinors are eigenspinors of H . For the 
anoni
al 
onne
tion, r0T 0 = 0 implies that thespa
e of parallel spinors is invariant under T 0, hen
e there exists a basis of the spa
e of parallelspinors 
onsisting of eigenspinors.



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 194.3. Vanishing theorems. This se
tion is devoted to non-existen
e theorems for solutions in 
ertaingeometri
 
on�gurations. It allows us to draw quite a pre
ise pi
ture of what a promising naturallyredu
tive metri
 should look like. First, the Kostant-Parthasarathy formula yields that we shouldbe interested in pre
isely those metri
s where 
g is not non negative.Theorem 4.3. If the operator 
g is non negative and rt is not the Levi-Civita 
onne
tion, theredo not exist any non trivial solutions to the system of equationsrt = 0; T t �  = 0 :Proof. If the spinor  is rt-parallel, then it lies in the kernel of Dt = D0+ tH . Sin
e rt is assumednot to be the Levi-Civita 
onne
tion, T t does not vanish and hen
e T t �  = 0 implies H �  = 0.Thus  is also in the kernel of D0. For the Dira
 operator to the parameter t = 1=3, we obtainD1=3 = D0 + 13H �  = 0 ;whi
h 
ontradi
ts Corollary 3.1. �For the Levi-Civita 
onne
tion, it is well known that the existen
e of a parallel spinor implies van-ishing Ri

i 
urvature. By repetition of the same argument, one sees that this 
on
lusion does nolonger hold for a metri
 
onne
tion with torsion. Rather, we get restri
tions on the algebrai
 typeof the derivatives of the torsion.Proposition 4.1. If the 
anoni
al 
onne
tion r0 is Ri

i 
at and admits a parallel spinor, then theexterior derivative of its torsion T 0 satis�es (X dT 0) �  = 0 for all ve
tors X in m.Proof. In [FI01, Cor. 3.2℄, Friedri
h and Ivanov showed that a spin manifold with some 
onne
tionr whose torsion T is totally skew symmetri
 and a r-parallel spinor  satis�es�12X dT +rXT� �  = Ri
r(X) �  :Sin
e the 
anoni
al 
onne
tion satis�es r0T 0 = 0, the 
laim follows. �These 
onditions are independent of the equation T 0 �  = 0. If dT 0 6= 0 and the dimension issuÆ
iently small, it 
an happen that the interse
tion of all kernels of X dT 0 is already empty, thusshowing the non-existen
e of solutions. Models with dT 0 = 0 are of parti
ular interest and are 
alled
losed in string theory.For further investigations of the Ri

i tensorRi
t(X;Y ) = Xi (t� t2) h[X;Zi℄m; [Y; Zi℄mi+Qh([X;Zi℄; [Y; Zi℄) ;it is useful to des
ribe it from a more representation theoreti
al point of view. Wang and Ziller derivedthe general formula we shall present for t = 1=2 in [WZ85℄. Their proof may easily be generalizedto the 
ase of arbitrary t, hen
e we omit it here. The main idea is to use a more elaborate versionof the 
ore 
omputation in the proof of Lemma 3.6. Re
all that Ch denotes the (unlifted) Casimiroperator of h, i. e., Ch = �Xi adXiadYi :It de�nes a symmetri
 endomorphism A : m�m! m by A(X;Y ) := hChX;Y i. Similarly, we denoteby �(X;Y ) = �trgadXadY the Killing form of the full Lie algebra g. We make no notationaldi�eren
e between � itself and its restri
tion to m.Theorem 4.4. The endomorphisms A and � satisfy the identitiesA(X;Y ) = Xi Qh([X;Zi℄; [Y; Zi℄); �(X;Y ) = Xi h[X;Zi℄m; [Y; Zi℄mi+ 2A(X;Y ) :



20 ILKA AGRICOLAdimG=H 5 6 7 8Hmax SU(2) SU(3) G2 Spin(7)Table 1. Maximal holonomy groups for the existen
e of a parallel spinorThus, the Ri

i tensor is given byRi
t(X;Y ) = (t� t2)�(X;Y ) + (2t2 � 2t+ 1)A(X;Y ) : �Remark 4.2. We observe that the 
oeÆ
ient of � vanishes for t = 0 and t = 1, and is positive be-tween these parameter values, whereas the 
oeÆ
ient of A is always positive and attains its minimumfor the Levi-Civita 
onne
tion (t = 1=2).The endomorphism A has blo
k diagonal stru
ture, with every blo
k 
orresponding to an irredu
iblesummand of the isotropy representation. In parti
ular, the blo
k of the trivial representation van-ishes, sin
e its Casimir eigenvalue is zero. Sin
e � is positive de�nite for G 
ompa
t, we 
an dedu
e:Proposition 4.2. Assume that G is 
ompa
t. If the isotropy representation Ad : H ! SO(m) has�xed ve
tors, only the 
onne
tions t = 0 and t = 1 
an be Ri

i 
at. �Typi
ally, the eigenvalues of Ch are linear fun
tions of some deformation parameters, hen
e, they
an vanish for some parti
ular parameter 
hoi
es without belonging to a trivial h-summand of m.This makes it diÆ
ult to make more pre
ise predi
tions for the vanishing of the Ri

i tensor.Proposition 4.3. If the 
anoni
al 
onne
tion has vanishing s
alar 
urvature, H 
annot be simpleand the metri
 
annot be normal homogeneous.Proof. The s
alar 
urvature for the 
anoni
al 
onne
tion isXi;j Qh([Zi; Zj ℄; [Zi; Zj ℄) :By Assumption 2.2, not all ve
tors [Zi; Zj ℄h 
an be zero. Sin
e Qh is non degenerate, we 
on
ludethat Qh 
an be neither positive nor negative de�nite. However, on every simple fa
tor of h, Qh hasto be a multiple of the Killing form; hen
e h 
annot be simple. �This fa
t, as elementary as its proof might be, has far rea
hing 
onsequen
es for the geometryof homogeneous models of string theory. The existen
e of a parallel spinor severely restri
ts theholonomy group of r. In fa
t, it needs to be a subgroup of the isotropy subgroup of a spinor insideSO(n), and these subgroups are well-known. By a theorem of Wang ([KN96, Ch.X, Cor. 4.2℄), theLie algebra of the holonomy group is spanned bym0 + [�m(m);m0℄ + [�m(m); [�m(m);m0℄℄ + : : : ;where the subspa
e m0 is de�ned asm0 = f[�m(X);�m(Y )℄� �m([X;Y ℄m)� ad ([X;Y ℄h) : X;Y 2 m g :For the 
anoni
al 
onne
tion and using our assumption that [m;m℄h spans all of h, we 
on
lude thatits holonomy Lie algebra is pre
isely h. For t 6= 0, the holonomy 
an only in
rease, hen
e we obtainTable 1 for the maximally possible subgroups Hmax. If we restri
t our attention to the 
anoni
al
onne
tion, Proposition 4.3 implies that H 
annot be equal to Hmax itself, but rather has to be anon simple subgroup of it. This ex
ludes many homogeneous spa
es that would naturally 
ome toone's mind. Of 
ourse, they might yield models for other 
onne
tions than the 
anoni
al one, butsu
h an analysis 
an only be performed on a 
ase by 
ase basis.



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 215. Examples5.1. The Jensen metri
 on V4;2. The 5-dimensional Stiefel manifold V4;2 = SO(4)=SO(2) 
arries aone-parameter family of metri
s 
onstru
ted by G. Jensen [Jen75℄ with many remarkable properties.Embed H = SO(2) into G = SO(4) as the lower diagonal 2 � 2 blo
k. Then the Lie algebra so(4)splits into so(2)�m, where m is given bym =8>><>>:2664 0 �aa 0 �XtX 0 00 0 3775 =: (a;X) : a 2 R; X 2M2;2(R)9>>=>>; :Denote by �(X;Y ) := tr(XtY ) the Killing form of so(4). Then the Jensen metri
 on m to theparameter s 2 R is de�ned byh(a;X); (b; Y )i = 12�(X;Y ) + s�(a; b) = 12�(X;Y ) + 2s � ab :For s = 2=3, G. Jensen proved that this metri
 is Einstein, and Th. Friedri
h showed that it admitstwo Riemannian Killing spinors [Fri80℄ and thus realizes the equality 
ase in his estimate for the�rst eigenvalue of the Dira
 operator. A more 
areful analysis shows that V4;2 
arries three di�erent
onta
t stru
tures, one of whi
h is Sasakian, one quasi-Sasakian but not Sasakian, and the third onehas no spe
ial name, although spe
ial properties. It will be
ome 
lear in the dis
ussion that thismetri
 is only naturally redu
tive with respe
t to G = SO(4) for s = 1=2. In the following se
tions,we shall des
ribe the Jensen metri
s on V4;2 �rst from the point of view of 
onta
t geometry andthen from the point of view of naturally redu
tive spa
es.5.2. The 
onta
t geometry approa
h. Denote by Eij the standard basis of so(4). Then theelements Z1 := E13; Z2 := E14; Z3 = E23; Z4 = E24; Z5 = 1p2s E12form an orthonormal base of m. To start with, we 
ompute all nonvanishing 
ommutators in m.These are(�) [Z1; Z3℄m = p2sZ5; [Z1; Z5℄m = � 1p2s Z3; [Z2; Z4℄m = p2sZ5;[Z2; Z5℄m = � 1p2s Z4; [Z3; Z5℄m = 1p2s Z1; [Z4; Z5℄m = 1p2s Z2:Noti
e that all these 
ommutators have no h-
ontribution. Identifying m with R5 via the 
hosenbasis, the isotropy representation of an element g(�) = � 
os � � sin �sin � 
os � � 2 H = SO(2) may bewritten as follows: Ad g(�) = 266664 
os � � sin � 0 0 0sin � 
os � 0 0 00 0 
os � � sin � 00 0 sin � 
os � 00 0 0 0 1 377775 :In parti
ular, Z5 is invariant under the isotropy a
tion. As in [Fri80℄, we use a suitable basis 1; : : : ;  4 for the 4-dimensional spinor representation � : Spin(R5 ) ! GL(�5). One derives theexpression for the lift of the isotropy representation,�� eAd g(�)� = 2664 
os � + i sin � 0 0 00 
os � � i sin � 0 00 0 1 00 0 0 1 3775 :Thus, the elements  3 and  4 de�ne se
tions of the spinor bundle S = G ��(eAd ) �5 if viewed as
onstant maps G ! �5. In fa
t, for s = 2=3,  � :=  3 � i 3 are exa
tly the Riemannian Killing



22 ILKA AGRICOLAspinors from [Fri80℄ as we will see below. The se
tions indu
ed by  1 and  2 are not 
onstant andthus more diÆ
ult to treat. We will not 
onsider them in our dis
ussion. In [Jen75, Prop. 3℄, theauthor 
omputed the map �LCm : m �= R5 ! so(5) (see Wang's Theorem in Se
tion 2) de�ning theLevi-Civita 
onne
tion:�LCm (Z�)Z� = 12[Z�; Z�℄; �LCm (Z5)Z� = (1�s)[Z5; Z�℄; �LCm (Z�)Z5 = s[Z�; Z5℄ for �; � = 1; : : : ; 4:Indeed, one easily veri�es that this is the unique map �m verifying the 
onditionsh�m(X)Y; Zi+ hY;�m(X)Zi = 0 and �m(X)Y � �m(Y )X = [X;Y ℄m :Thus, one sees that for s 6= 1=2, �m(X)Y is not globally proportional to the 
ommutator [X;Y ℄m,and both h�m(X)Y; Zi and �h[X;Y ℄m; Zi (the torsion of the 
anoni
al 
onne
tion) fail to de�ne a3-form: The �rst is not skew symmetri
 in X and Y , the se
ond is not skew symmetri
 in X andZ. In any 
ase, by using the 
ommutator relations (�), the Levi-Civita 
onne
tion 
an be identi�edwith an endomorphism of R5 as follows:�LCm (Z1) = rs2E35; �LCm (Z2) = rs2E45; �LCm (Z3) = �rs2E15; �LCm (Z4) = �rs2E25;�LCm (Z5) = 1� sp2s (E13 +E24) :The lift into the spin representation yields a global fa
tor 1=2 and repla
es Eij by Zi^Zj . By setting~T := (Z1 ^ Z3 + Z2 ^ Z4) ^ Z5;the Levi-Civita 
onne
tion may be rewritten in a uni�ed way as(10) ~�LCm (Z5) = 14 2(1� s)p2s (Z5 ~T ); ~�LCm (Z�) = 14p2s(Z� ~T ) for � = 1; : : : ; 4 :Now we dis
uss the three di�erent metri
 almost 
onta
t stru
tures existing on V4;2. The spa
e mhas a preferred dire
tion, namely � = Z5, whi
h is �xed under the isotropy representation. Denoteits dual 1-form, �(X) = hZ5; Xi by �. The following operators'S = 266664 0 0 1 0 00 0 0 1 0�1 0 0 0 00 �1 0 0 00 0 0 0 0 377775 ; 'qS = 266664 0 1 0 0 0�1 0 0 0 00 0 0 1 00 0 �1 0 00 0 0 0 0 377775 ; '� = 266664 0 1 0 0 0�1 0 0 0 00 0 0 �1 00 0 1 0 00 0 0 0 0 377775intertwine the isotropy representation, and thus de�ne 
ompatible 
omplex stru
tures on the linearspan of Z1; : : : ; Z4. Then one 
he
ks for all three 
hoi
es for ' that the 
ompatibility 
onditionsde�ning a metri
 almost 
onta
t stru
ture hold:'2 = �Id + � 
 �; h'(X); '(Y )i = hX;Y i � �(X) � �(Y ); '(�) = 0 :The fundamental form of the stru
ture is de�ned by F (X;Y ) = hX;'(Y )i, thus yieldingFS = Z1 ^ Z3 + Z2 ^ Z4; FqS = Z1 ^ Z2 + Z3 ^ Z4; F� = Z1 ^ Z2 � Z3 ^ Z4 ;respe
tively. Sin
e Z5 is 
onstant under the isotropy a
tion, its exterior derivative may be 
omputedusing the general formula as stated at the beginning of the proof of Lemma 2.4,d!1(X0; X1) = X0(!1(X1))�X1(!1(X0))� !1([X0; X1℄) :For the 
onstant ve
tor �eld Z5, we thus obtain dZ5(Zi; Zj) = �hZ5; [Zi; Zj ℄i. Applying again the
ommutator relations implies dZ5 = �p2s (Z1 ^ Z3 + Z2 ^ Z4) :In parti
ular, dZ5 is proportional to FS , turning it into a Sasaki stru
ture (up to res
aling) andimplying immediately dFS = 0. For the other two stru
tures, remark that Z1 ^ Z2 and Z3 ^ Z4 arealso invariant forms under the isotropy a
tion, thus their exterior di�erential may be 
omputed in a



CONNECTIONS ON NATURALLY REDUCTIVE SPACES 23similar way. One gets that dFqS = 0, turning it into a non Sasakian quasi-Sasakian stru
ture, anddF� is proportional to Z2 ^ Z3 ^ Z5, whi
h implies dF'�� = 0. We 
an then 
ompute the Nijenhuistensor N(X;Y ) := ['(X); '(Y )℄ + '2([X;Y ℄)� '(['(X); Y ℄)� '([X;'(Y )℄) + d�(X;Y ) � �and see that it vanishes for all three metri
 almost 
onta
t stru
tures. By [FI01, Thm. 8.2℄, theStiefel manifold V4;2 admits a unique almost 
onta
t 
onne
tion r with torsionT = � ^ d� = �p2s (Z1 ^ Z3 + Z2 ^ Z4) ^ Z5 :Next we dis
uss the existen
e of spinors that are parallel with respe
t to the 
onne
tion r as wellas the existen
e of Killing spinors, sin
e we 
onsider the analogy and di�eren
es to the previous 
aseto be instru
tive.Theorem 5.1.(1) The 
onstant spinors are parallel with respe
t to the 
onta
t 
onne
tion r if and only ifs = 1=2;(2) The 
onstant spinors  � are Riemannian Killing spinors if and only if s = 2=3.Proof. In equation (10), we gave the general formula for the Levi-Civita 
onne
tion in dire
tion Zias the inner produ
t of Zi and the 3-form ~T . If a 
onstant spinor  is to be parallel with respe
t tor, 0 = rX = (~�LCm (X) + 14X T ) ;then the 
oeÆ
ients of ~�LCm as in equation (10) have to be equal for all Zi, hen
e, 2(1�s)=p2s = p2s,whi
h means that s = 1=2. For this value, the 
ombination ~�LC(X) + 14X T vanishes, so both
onstant spinors are parallel indeed. For the dis
ussion of Riemannian Killing spinors, we use thefollowing realization of the spin representation:e1 = 2664 0 0 0 i0 0 i 00 i 0 0i 0 0 0 3775 ; e2 = 2664 0 0 0 �10 0 1 00 �1 0 01 0 0 0 3775 ; e3 = 2664 0 0 �i 00 0 0 i�i 0 0 00 i 0 0 3775 ;e4 = 2664 0 0 1 00 0 0 1�1 0 0 00 �1 0 0 3775 ; e5 = 2664 i 0 0 00 i 0 00 0 �i 00 0 0 �i 3775 :Then one 
he
ks that(Z5 ~T ) �  � = �2Z5 �  �; (Z� ~T ) �  � = �Z� �  � for � = 1; : : : ; 4:Looking at Z5, we 
on
lude that the Killing equation rLCX  = �X �  implies that the 
oeÆ
ientsin equation (10) have to satisfy 2(1� s)=p2s = p2s=2. The solution is now s = 2=3, and one 
he
ksthat  � are Killing spinors indeed. �In [FI01a℄, Friedri
h and Ivanov studied the 5-dimensional 
onta
t 
ase in more detail.5.3. The naturally redu
tive spa
e approa
h. We would like to interpret the metri
 h ; i as anaturally redu
tive metri
 with respe
t to some other group �G, and the 
onne
tion with the torsionT = �p2s (Z1 ^ Z3 + Z2 ^ Z4) ^ Z5as its 
anoni
al 
onne
tion. So write M = �G= �H with the Lie algebra de
omposition �g = �h � �m,and assume that the original isotropy representation is a subrepresentation of the new isotropyrepresentation, i. e., the a
tion of h � �h on m �= �m remains un
hanged. This point of view ne
essarilyenlarges the holonomy group H already for dimensional reasons. In fa
t, we 
an dedu
e a lot ofinformation about the new isotropy representation from the formula for T . In Remark 2.2, we
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ommutators and the torsion. For example, the formula aboveimplies [Z1; Z3℄�m = p2sZ5; [Z4; Z5℄�m = p2sZ2; [Z1; Z4℄�m = [Z3; Z4℄�m = 0 :Then we 
an 
ompute Ja
�m(Z1; Z3; Z4) = 2sZ2 :On the other hand,Ja
�h(Z1; Z3; Z4) = �Z2 + [Z4; [Z1; Z3℄�h℄ + [Z3; [Z4; Z1℄�h℄ != �Ja
�m(Z1; Z3; Z4) :Thus, there must be two elements H1 := [Z1; Z3℄�h and H2 := [Z4; Z1℄�h in �h, not both zero, su
h that[H1; Z4℄ + [H2; Z3℄ = (2s� 1)Z2 :By some more 
areful analysis, one obtains H2 = 0, H1 = [Z2; Z4℄�h and the a
tion of H1 on the otherve
tors Zi. The systemati
 des
ription of h ; i as a naturally redu
tive metri
 
an be given using adeformation 
onstru
tion due to Chavel and Ziller ([Cha70℄, [Zil77℄). It is based on the remark thatfor s = 1=2, m splits into an orthogonal dire
t sum of m1 := f(0; X)g and m2 := f(a; 0)g su
h that[h;m2℄ = 0 and [m2;m2℄ � m2 :Let M2 � G be the subgroup of G with Lie algebra m2, and set �G = G �M2, �H = H � M2.An element (k;m) of �G a
ts on M = G=H by (k;m)gH = kgHm�1, and then �H 
an indeed beidenti�ed with the isotropy group of this a
tion. We endow �g = g � m2 with the dire
t sum Liealgebra stru
ture. The tri
k is now to 
hoose a realization of �m that depends on the deformationparameter s of the metri
. Writing all elements of �g as 4-tuples (H;U;X; Y ) with H 2 h, U 2 m1and X;Y 2 m2, we 
an realize the Lie algebra of �H as�h = f(H; 0; X;X) � �g : H 2 h; X 2 m2gand 
hoose m = f(0; X; 2s Y; (2s� 1)Y ) : X 2 m1; Y 2 m2gas an orthogonal 
omplement. Here, (0; 0; 2s Y; (2s� 1)Y ) will be identi�ed with Y 2 m2. Sin
e m2is abelian in this example, the Lie algebra stru
ture of �g is parti
ularly simple. �h is a Lie algebrawith 
ommutator [(H; 0; X;X); (H 0; 0; X 0; X 0)℄ = ([H;H 0℄; 0; 0; 0) ;the full isotropy representation is[(H; 0; X;X); (0; U; 2sY; (2s� 1)Y )℄ = (0; [H +X;U ℄; 0; 0)and the 
ommutator of two elements in �m splits into its �h and �m part as follows:[(0; U; 2sX; (2s� 1)X); (0; V; 2s Y; (2s� 1)Y )℄ = ([U; V ℄h; 0;�(2s� 1)[U; V ℄m2 ;�(2s� 1)[U; V ℄m2)+(0; [U; V ℄m1 + 2s([U; Y ℄ + [X;V ℄); 2s[U; V ℄m2 ; (2s� 1)[U; V ℄m2) :With these 
hoi
es for �h and �m, the metri
 h ; i is naturally redu
tive with respe
t to �G, the torsionof its 
anoni
al 
onne
tion is pre
isely T and the Ri

i tensor is given byRi
0 = 2(1� s)diag(1; 1; 1; 1; 0) :For s = 1, the 
anoni
al 
onne
tion is thus Ri

i 
at, and by Proposition 4.2, we know that no other
onne
tion 
an have this property. However, the holonomy �H �= SO(2)�SO(2) is too large to admitparallel spinors. For s = 1=2, we have two parallel spinors for the 
anoni
al 
onne
tion as seen inthe pre
eding se
tion, but the Ri

i 
urvature does not vanish. In this 
ase, one 
an ask the questionwhether some other 
onne
tion of the family rt admits parallel spinors. But using Wang's Theorem([KN96, Ch.X, Cor. 4.2℄) for 
omputing the holonomy, one sees that rt has full holonomy SO(m)for t 6= 0, ex
luding again the existen
e of parallel spinors.We 
lose this se
tion with a look at the eigenvalue estimate for (D1=3)2. Sin
e the extensionof H is by the abelian group SO(2), the Casimir operator 
g is non negative by Lemma 3.5 and
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an be applied. We 
ompute the s
alar in the general Kostant-Parthasarathy formula(Theorem 3.2)18Xi;j Qh([Zi; Zj ℄; [Zi; Zj ℄) + 38 t2Xi;j Qm([Zi; Zj ℄; [Zi; Zj ℄) = 18 � 8(1� s) + 38 t2 � 24s = 1+ (9t2 � 1)sand see that it is independent of the deformation parameter s pre
isely for the Kostant 
onne
tiont = 1=3. If s 6= 1=2, there exist no 
onstant spinors and hen
e Corollary 3.1 is a stri
t inequality,(�1=3)2 > 1 :For s = 1=2, there exists a 
onstant spinor  and it satis�es by Theorem 4.2(Dt)2 = 9t2 � 1 �  = 9t2 :Unfortunately, we have been unable to relate this bound with the in�mum of the spe
trum of (Dt)2 forother values of t. In parti
ular, it seems to be diÆ
ult to dedu
e from Corollary 3.1 any informationabout the Riemannian Dira
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